Towards Optimal Training Distribution for Photo-to-Face Parametric Models in Video Games

Igor Borovikov, Karine Levonyan iborovikov@ea.com, karine@ea.com

Electronic Arts, SEED, Redwood Shores, CA

Agenda

• Intro

- Pseudo-Random Heads
- Motivation
 - Parametric models, FLAME, Photo to (Face) Parameters
- Objectives
 - Latent and authoring spaces
 - Optimal distributions
 - Pseudo-random heads
- Conclusion and future work

Pseudo-random Heads

- Believable, "natural"
- Variety and Dissimilarity
- "Unlimited" number of heads

FLAME parametric model

Terminology and context:

- We focus on parametric model of a human head (FLAME and an in-house tool)
- FLAME parameters are "authoring parameters"

FLAME 2020 Female V	May Planck Institute for Intelligent System
Shape 1 0.00	Perceiving Systems
Shape 2 0.00	Tubingen Campus
Shape 3 0.00	
Shape 4 0.00	
Shape 5 0.00	
Shape 6 0.00	
Shape 7 0.00	
Shape 8 0.00	
Shape 9 0.00	
Shape 10 0.00	
Expression 1 0.00	
Expression 2 0.00	
Expression 3 0.00	
Expression 4 0.00	
Expression 5 0.00	
Expression 6 0.00	
Expression 7 0.00	
Expression 8 0.00	
Expression 9 0.00	
Expression 10 0.00	
Jaw 0.00	,
Neck 0.00	
Reset Values Reset View	
Version: 20200420	For educational use only

FLAME web-based editor https://flame.is.tue.mpg.de/

Motivation: monocular reconstruction face-to-parameters

- Parametric models are common in video games
- Fitting parameters from a single photo (aka "monocular reconstruction")
 Art pipeline, potential player-facing features
- Training a large DNN for that requires lots of training data.
- Training data is synthetic, generated with authoring tools via automation by varying authoring parameters.
 Data = {(Image, parameters), ...}

Completely random training data

Completely random heads. Top: FLAME, bottom: in-house We lose correlations between features in completely random data

28th Annual Signal and Image Sciences Workshop at LLNL, Center for Advanced Signal and Image Sciences (CASIS)

Domain gap

Synthetic data diversity and domain coverage

28th Annual Signal and Image Sciences Workshop at LLNL, Center for Advanced Signal and Image Sciences (CASIS)

Electronic Arts

Training data optimization objectives

- Diversity of the generated heads
- Maximum coverage of possible heads in the wild
- Parameters correlations:
 - Avoid spurious correlations
 - Capture "natural" correlations

Training data optimization objectives

- Diversity of the generated heads
- Maximum coverage of possible heads in the wild
- Parameters correlations:
 - Avoid spurious correlations
 - Capture "natural" correlations
- Optimal sampling of the domain:
 - Prevents biases
 - Reduces the amount of required data

FaceNet and its latent Space

Latent space offers a compressed representation of facial features.

28th Annual Signal and Image Sciences Workshop at LLNL, Center for Advanced Signal and Image Sciences (CASIS)

Electronic Arts

FaceNet Latent Space

- Similar latent vectors (cosine distance) represent similar faces
- Cosine distance < 0.51 ⇒ "same face"
 ~10k "substantially different" human faces
- 512-dimensional unit sphere

Latent and authoring spaces

Completely random training data

Completely random heads. Top: FLAME, bottom: in-house We lose correlations between features in completely random data

28th Annual Signal and Image Sciences Workshop at LLNL, Center for Advanced Signal and Image Sciences (CASIS)

Latent and authoring spaces

Electronic Arts

Sampling with the backward mapping

Distribution shift: $B \neq F^{-1}$

Q: Can we learn "rotation correction" $\rho(s)$?

Define $\rho(s) = s - B \circ A \circ F(s)$ for the "roundtrip" of a sample from *L* to *A* and then back to *L*. Then, instead of B(s), use $B(s - \rho(s))$ when sampling. The goal is to reduce the distribution shift on the plot.

Future work, work in progress

- From shape to full head including color palette elements, facial expression, hairstyle, facial hair, etc
 - Expectation: the distribution shift will reduce
 - Better understanding of the latent space structure and the influence of concrete features on embeddings
 - Ranking authoring parameters by influence on visual variety to reduce number of sliders (e.g., mobile applications)
 - Completeness of the authoring space: how large are gaps in the latent space that we can't populate with the authoring tool?
- Other face-related latent spaces in generative domain?

Conclusion and future work

Conclusion

- Utilizing latent spaces allows the introduction of "natural" correlations of authoring parameters when sampling.
- Photo-to-face models trained on samples obtained in such a way will preserve such correlations.

Future Work

- •Learn the "correction rotation" term δ , e.g., for FLAME and FaceNet.
- For the prescribed accuracy of the photo-to-face model, estimate the size of a minimal dataset constructed as proposed.

Thank you for attending! Q&A