
Chapter 20 in Ray Tracing Gems, edited by Eric Haines and Tomas Akenine-Möller, Apress, 2019.
License: Creative Commons Attribution 4.0 International License (CC-BY-NC-ND), https://raytracinggems.com

Texture Level of Detail Strategies for
Real-Time Ray Tracing

Tomas Akenine-Möller,1 Jim Nilsson,1 Magnus Andersson,1 Colin
Barré-Brisebois,2 Robert Toth1, and Tero Karras1
1NVIDIA, 2SEED / Electronic Arts

Abstract

Unlike rasterization, where one can rely on pixel quad partial derivatives, an alter-
native approach must be taken for filtered texturing during ray tracing. We describe
two methods for computing texture level of detail for ray tracing. The first approach
uses ray differentials, which is a general solution that gives high-quality results. It
is rather expensive in terms of computations and ray storage, however. The sec-
ond method builds on ray cone tracing and uses a single trilinear lookup, a small
amount of ray storage, and fewer computations than ray differentials. We explain
how ray differentials can be implemented within DirectX Raytracing (DXR) and
how to combine them with a G-buffer pass for primary visibility. We present a new
method to compute barycentric differentials. In addition, we give previously unpub-
lished details about ray cones and provide a thorough comparison with bilinearly
filtered mip level 0, which we consider as a base method.

1 Introduction

Mipmapping [17] is the standard method to avoid texture aliasing, and all GPUs
support this technique for rasterization. OpenGL [7, 15], for example, specifies the
level of detail (LOD) parameter λ as

λ(x, y) = log2dρ(x, y)e, (1)

where (x, y) are pixel coordinates and the function ρ may be computed as

ρ(x, y) = max

√(

∂s

∂x

)2

+

(
∂t

∂x

)2

,

√(
∂s

∂y

)2

+

(
∂t

∂y

)2
 , (2)

for two-dimensional texture lookups, where (s, t) are texel coordinates, i.e., tex-
ture coordinates (∈ [0, 1]2) multiplied by texture resolution. See Figure 1. These
functions help ensure that sampling the mipmap hierarchy occurs such that a screen-
space pixel maps to approximately one texel. In general, GPU hardware computes
these differentials by always evaluating pixel shaders over 2 × 2 pixel quads and

1

https://raytracinggems.com

s

t ∂s
∂y

∂t
∂y
∂t
∂x

∂s
∂x

Figure 1: The footprint of a pixel approximated as a parallelogram in texture space. This
notation is used in Equation 2.

by using per-pixel differences. Note, however, that Equation 2 is not conserva-
tive for a single trilinear lookup, as it does not compute a minimum box around
the footprint. The maximum side of such a conservative box can be computed as
ρ(x, y) = max(|∂s/∂x| + |∂s/∂y|, |∂t/∂x| + |∂t/∂y|). OpenGL allows use of more
conservative estimates than Equation 2, but we are unaware of any such approach
or implementation. As a consequence, it is easily shown via GPU texturing that
most methods can produce both overblur and aliasing.

For ray tracing, a method to compute texture LOD is desired and it should be
capable of handling recursive ray paths as well. Since pixel quads are not generally
available for ray tracing (except possibly for eye rays), other approaches are needed.
This chapter describes two texturing methods for real-time ray tracing. The first,
ray differentials [9], uses the chain rule to derive expressions that can accurately
compute texture footprints even for specular reflections and refractions. Ray dif-
ferentials are computationally expensive and use a substantial amount of per-ray
data, but provide high-quality texture filtering. The second, called ray cones, is
less expensive and uses a cone to represent ray footprints as they grow or shrink
depending on distance and surface interactions. We describe implementations of
these two methods in DXR. See also Chapter ?? for information about how to filter
environment map lookups in a ray tracing engine.

2 Background

For filtered texture mapping, it is common to use a hierarchical image pyramid,
called a mipmap, for acceleration [17]. Each pixel footprint gets mapped to texture
space and a λ-value is computed. This λ, together with the current fragment’s
texture coordinates, is used to gather and trilinearly filter eight samples from the
mipmap. Heckbert [7, 8] surveyed various texture filtering techniques, and McCor-
mack et al. [10] presented a method for anisotropic sampling along with a survey
of previous methods. Greene and Heckbert [6] presented the elliptical weighted av-
erage (EWA) filter, often considered the method with best quality and reasonable
performance. EWA computes an elliptical footprint in texture space and samples
the mipmap using several lookups with Gaussian weights. EWA can be used both
for rasterization and for ray tracing.

Ewins et al. [5] presented various approximations for texture LOD, and we refer

2

readers to their survey of current methods. For example, they describe a crude
approximation using a single LOD for an entire triangle. This is computed as

∆ = log2

(√
ta
pa

)
= 0.5 log2

(
ta
pa

)
, (3)

where the variables ta and pa are twice the texel-space area and twice the triangle
area in screen space, respectively. These are computed as

ta = wh |(t1x − t0x)(t2y − t0y)− (t2x − t0x)(t1y − t0y)| ,
pa = |(p1x − p0x)(p2y − p0y)− (p2x − p0x)(p1y − p0y)| ,

(4)

where w × h is the texture resolution, Ti = (tix, tiy) are two-dimensional texture
coordinates for each vertex, and Pi = (pix, piy), i ∈ {0, 1, 2}, are the three screen-
space triangle vertices. Twice the triangle area can also be computed in world
space as

pa = ||(P1 − P0)× (P2 − P0)||, (5)

where Pi now are in world space. We exploit that setup as part of our solution for
ray cones filtering, since Equation 3 gives a one-to-one mapping between pixels and
texels if the triangle lies on the z = 1 plane. In this case, ∆ can be considered as a
base texture level of detail of the triangle.

Igehy [9] presented the first method to filter textures for ray tracing. He used
ray differentials, tracked these through the scene, and applied the chain rule to
model reflections and refractions. The computed LOD works with either regular
mipmapping or anisotropically sampled mipmapping. Another texturing method
for ray tracing is based on using cones [1]. Recently, Christensen et al. [3] revealed
that they also use a ray cone representation for filtering textures in movie rendering,
i.e., similar to what is presented in Section 3.4.

3 Texture Level of Detail Algorithms

This section describes the texture LOD algorithms that we consider for real-time
ray tracing. We improve the ray cones method (Section 3.4) so that it handles
curvature at the first hit, which improves quality substantially. We also extend ray
differentials for use with a G-buffer, which improves performance. In addition, we
present a new method for how to compute barycentric differentials.

3.1 Mip Level 0 with Bilinear Filtering

One easy way to access textures is to sample mip level 0. This generates great images
using many rays per pixel, but performance can suffer since repeated mip level 0
accesses often lead to poor texture caching. When tracing with only a few rays
per pixel, quality will suffer, especially when minification occurs. Enabling bilinear
filtering provides a small improvement. However, with a competent denoiser as a
post-process, bilinear filtering may suffice, as the denoised result is blurred.

3

3.2 Ray Differentials

Assume that a ray is represented (see Chapter ??) as

R(t) = O + td̂, (6)

where O is the ray origin and d̂ is the normalized ray direction, i.e., d̂ = d/‖d‖.
The corresponding ray differential [9] consists of four vectors:{

∂O

∂x
,
∂O

∂y
,
∂d̂

∂x
,
∂d̂

∂y

}
, (7)

where (x, y) are the screen coordinates, with one unit between adjacent pixels. The
core idea is to track a ray differential along each path as it bounces around in the
scene. No matter the media that the rays traverse, all interactions along the path are
differentiated and applied to the incoming ray differential, producing an outgoing ray
differential. When indexing into a texture, the current ray differential determines
the texture footprint. Most equations from the ray differential paper [9] can be used
as presented, but the differential for the eye ray direction needs modification. We
also optimize the differential barycentric coordinate computation.

3.2.1 Eye Ray Setup

The non-normalized eye ray direction d for a pixel at coordinate (x, y) for a w × h
screen resolution is usually generated in DXR as

p =

(
x+ 0.5

w
,
y + 0.5

h

)
, c = (2px − 1, 2py − 1) , and

d(x, y) = cxr + cyu + v =

(
2x+ 1

w
− 1

)
r +

(
2y + 1

h
− 1

)
u + v,

(8)

or using some minor modification of this setup. Here, p ∈ [0, 1]2, where the 0.5
values are added to get to the center of each pixel, i.e., the same as in DirectX
and OpenGL, and thus c ∈ [−1, 1]. The right-hand, orthonormal camera basis is
{r′,u′,v′}, i.e., r′ is the right vector, u′ is the up vector, and v′ is the view vector
pointing toward the camera position. Note that we use {r,u,v} in Equation 8, and
these are just scaled versions of the camera basis, i.e.,

{r,u,v} = {afr′,−fu′,−v′} , (9)

where a is the aspect ratio and f = tan(ω/2), where ω is the vertical field of view.
For eye rays, Igehy [9] computes the ray differentials for the direction as

∂d

∂x
=

(d · d)r− (d · r)d

(d · d)
3
2

and
∂d

∂y
=

(d · d)u− (d · u)d

(d · d)
3
2

, (10)

where r is the right vector from one pixel to the next and u is the up vector, which
in our case are

r = d(x+ 1, y)− d(x, y) =
2af

w
r′ and u = d(x, y + 1)− d(x, y) = −2f

h
u′, (11)

derived using Equation 8. This is all that is needed to set up the ray differential for
eye rays.

4

P

P0

P1

P2

e1

e2
(u,v)

g

Figure 2: The setup for the derivation of differential barycentric coordinate computation.

3.2.2 Optimized Differential Barycentric Coordinate Computation

Any point on the triangle can be described using barycentric coordinates (u, v) as
P0 + ue1 + ve2, where e1 = P1 − P0 and e2 = P2 − P0. Once we have found
an intersection, we need to compute the differentials of these, i.e., ∂u/∂x, ∂u/∂y,
∂v/∂x, and ∂v/∂y. Now let P be an arbitrary point in space and let g be a projection
vector, which is not parallel to the triangle plane. The point P = (px, py, pz) can
be described as

P = P0 + ue1 + ve2︸ ︷︷ ︸
point on triangle plane

+ sg, (12)

where s is the projection distance. This is illustrated in Figure 2.
This setup is similar to the one used in some ray/triangle intersection tests [11]

and can be expressed as a system of linear equations and hence solved using Cramer’s
rule, which results in

u =
1

k
(e2 × g) · (P − P0) =

1

k

(
(e2 × g) · P − (e2 × g) · P0

)
,

v =
1

k
(g × e1) · (P − P0) =

1

k

(
(g × e1) · P − (g × e1) · P0

)
,

(13)

where k = (e1 × e2) · g. From these expressions, we can see that

∂u

∂P
=

1

k
(e2 × g) and

∂v

∂P
=

1

k
(g × e1). (14)

These expressions will be useful later on in the derivation. Next, assume that a
point of intersection is computed as P = O+ td (note that the ray direction vector
d needs not be normalized), which means that we can express ∂P/∂x as

∂P

∂x
=
∂(O + td)

∂x
=
∂O

∂x
+ t

∂d

∂x
+
∂t

∂x
d = q +

∂t

∂x
d, (15)

where q = ∂O/∂x+ t(∂d/∂x). The same is done for ∂P/∂y, where we instead use
r = ∂O/∂y+ t(∂d/∂y). We use the results from Equations 14 and 15 together with

5

the chain rule to obtain

∂u

∂x
=

∂u

∂px

∂px
∂x

+
∂u

∂py

∂py
∂x

+
∂u

∂pz

∂pz
∂x

=
∂u

∂P
· ∂P
∂x︸ ︷︷ ︸

dot product

=
1

k
(e2× g) ·

(
q +

∂t

∂x
d

)
. (16)

Next, we choose g = d and simplify the previous expression to

∂u

∂x
=

1

k
(e2 × d) ·

(
q +

∂t

∂x
d

)
=

1

k
(e2 × d) · q, (17)

since (e2×d)·d = 0. Now, the expressions for which we sought can be summarized as

∂u

∂x
=

1

k
cu · q and

∂u

∂y
=

1

k
cu · r,

∂v

∂x
=

1

k
cv · q and

∂v

∂y
=

1

k
cv · r,

(18)

where

cu = e2×d, cv = d×e1, q =
∂O

∂x
+ t

∂d

∂x
, r =

∂O

∂y
+ t

∂d

∂y
, and k = (e1×e2) ·d.

(19)
Note that q and r are evaluated using the ray differential representation in Equa-
tion 7 along with t, which is the distance to the intersection point. In addition,
since w = 1− u− v, we have

∂w

∂x
= −∂u

∂x
− ∂v

∂x
, (20)

and similarly for ∂w/∂y.
Once the differentials of (u, v) have been computed, they can be used to compute

the corresponding texture-space differentials, which can be used in Equation 2, as

∂s

∂x
= w

(
∂u

∂x
g1x +

∂v

∂x
g2x

)
,

∂t

∂x
= h

(
∂u

∂x
g1y +

∂v

∂x
g2y

)
,

∂s

∂y
= w

(
∂u

∂y
g1x +

∂v

∂y
g2x

)
,

∂t

∂y
= h

(
∂u

∂y
g1y +

∂v

∂y
g2y

)
,

(21)

where w × h is the texture resolution and g1 = (g1x, g1y) = T1 − T0 and g2 =
(g2x, g2y) = T2 − T0 are the differences of texture coordinates between neighboring
vertices. Similarly, differentials for the ray origin O′ of a subsequent reflection/re-
fraction ray can be computed as

∂O′

∂(x, y)
=

∂u

∂(x, y)
e1 +

∂v

∂(x, y)
e2. (22)

We have seen slightly better performance using this method compared to the tradi-
tional implementation following Igehy’s work [9].

6

3.3 Ray Differentials with the G-Buffer

For real-time ray tracing, it is not uncommon to render the eye rays using raster-
ization into a G-buffer. When combining ray differentials [9] with a G-buffer, the
ray differential for the eye rays can be created as usual, but the interaction at the
first hit must use the content from the G-buffer, since the original geometry is not
available at that time. Here, we present one method using the G-buffer, which we
assume has been created with normals n̂ and with distances t from the camera to
the first hit point (or alternatively the world-space position). We describe how the
ray differential is set up when shooting the first reflection ray from the position in
the G-buffer.

The idea of this method is simply to access the G-buffer to the right and above
the current pixel and create a ray differential from these values. The normals and the
distances t, for the current pixel (x, y) and for the neighbors (x+1, y) and (x, y+1),
are read out from the G-buffer. Let us denote these by n̂0:0 for the current pixel,
n̂+1:0 for the pixel to the right, and n̂0:+1 for the pixel above, and similarly for other
variables. The eye ray directions ê for these neighbors are computed next. At this
point, we can compute the ray differential of the ray origin at the first hit as

∂O

∂x
= t+1:0ê+1:0 − t0:0ê0:0, (23)

and similarly for ∂O/∂y. The ray differential direction is computed as

∂d̂

∂x
= r(ê+1:0, n̂+1:0)− r(ê0:0, n̂0:0), (24)

where r is the shader function reflect(). Similar computations are done for ∂d̂/∂y.

We now have all components of the ray differential, {∂O/∂x, ∂O/∂y, ∂d̂/∂x, ∂d̂/∂y},
which means that ray tracing with ray differentials can commence from the first hit.

The method above is fast, but sometimes you hit different surfaces when com-
paring to the pixel to the right and above. A simple improvement is to test if
|t+1:0 − t0:0| > ε, where ε is a small number, and, if so, access the G-buffer at −1:0
instead and use the one with the smallest difference in t. The same approach is
used for the y-direction. This method is a bit slower but gives substantially better
results along depth discontinuities.

3.4 Ray Cones

One method for computing texture level of detail is based on tracing cones. This
is quite similar to the method proposed by Amanatides [1], except that we use the
method only for texture LOD and we derive the details on how to implement this,
which are absent in previous work. The core idea is illustrated in Figure 3. When
the texture LOD λ has been computed for a pixel, the texture sampler in the GPU
is used to perform trilinear mipmapping [17].

In this section, we derive our approximation for texture LOD for ray tracing using
ray cones. We start by deriving an approximation to screen-space mipmapping using
cones and then extend that to handle recursive ray tracing with reflections. Ideally,
we would like to handle all sorts of surface interactions, but we will concentrate on
the cases shown in Figure 4. This excludes saddle points, which exist in hyperbolic
paraboloids, for example.

7

w0= ɣ0t0

w1= w0+ɣ1t1

w2 = w1+ ɣ2t2

Pixel

n0

n1

n2

Figure 3: Illustration of how a cone is created through a pixel and how it is transported
through the scene, growing and shrinking. Assuming that the rectangle is tex-
tured and the other objects are perfectly reflective, we will perform a texture
lookup at the hit point on the rectangle using the width of the cone and the
normal there, and a textured reflection would appear in the leftmost object.
Computation of the cone widths wi is explained in the text.

Figure 4: Illustrations of cones reflected in a planar (left), a convex (center), and a concave
(right) surface. Note how the convex surface increases the angle of the cone, while
the concave surface reduces it, until it becomes zero and starts growing again.

3.4.1 Screen Space

The geometrical setup for a cone through a pixel is shown in Figure 5. The footprint
angle, also called spread angle, of a pixel is called α, d0 is the vector from the camera
to the hit point, and n0 is the normal at the hitpoint. This cone is tracked through
a pixel and the cone parameters are updated at each surface the center ray hits.

The footprint width will grow with distance. At the first hit point, the cone
width will be w0 = 2||d0|| tan(α/2) ≈ α||d0||, where the index 0 will be used to
indicate the first hit. This index will be used extensively in the next subsection. We
have used the small angle approximation, i.e., tanα ≈ α, in this expression. The
footprint projected onto the plane at the hit point will also change in size due to the
angle between −d0 and n0, denoted [−d0,n0]. Intuitively, the larger the angle, the
more the ray can “see” of the triangle surface, and consequently, the LOD should
increase, i.e., texel access should be done higher in the mipmap pyramid. Together

8

Pixel
n0

d0
α

Figure 5: The geometrical setup of a cone through a pixel.

these factors form the approximated projected footprint as

α‖d0‖
1

|n̂0 · d̂0|
, (25)

where |n̂0 · d̂0| models the square root of the projected area. The absolute value
is there to handle frontfacing and backfacing triangles in the same way. When
[−d0,n0] = 0, we have only the distance dependency, and as [−d0,n0] grows, the
projected footprint will get larger and larger toward infinity, when [−d0,n0]→ π/2.

If the value of the expression in Equation 25 doubles/halves, then we need to
access one level higher/lower in the mipmap pyramid. Therefore, we use log2 on
this term. Hence, a heuristic for texture LOD for the first hit, i.e., similar to what
screen-space mipmapping produced by the GPU would yield, is

λ = ∆0 + log2

(
α||d0||︸ ︷︷ ︸
w0

1

|n̂0 · d̂0|

)
, (26)

where ∆0 is described by Equations 3 and 5, i.e., using world-space vertices. Here,
∆0 is the base texture LOD at the triangle seen through a pixel, i.e., without any
reflections at this point. This term needs to be added to provide a reasonable
base LOD when the triangle is located at z = 1. This term takes changes in
triangle vertices and texture coordinates into account. For example, if a triangle
becomes twice as large, then the base LOD will decrease by one. The other factors
in Equation 26 are there to push the LOD up in the mipmap pyramid, if the distance
or the incident angle increases.

3.4.2 Reflection

Our next step is to generalize the method in Section 3.4.1 to also handle reflections.
The setup that we use for our derivation is shown in Figure 6, where we want to
compute the width, w1, of the footprint at the reflected hit point. Note that the
angle β is a curvature measure (further described in Section 3.4.4) at the surface
hit point, and it will influence how much the spread angle will grow or shrink due
to different surface interactions. See Figure 4. We first note that

tan

(
α

2
+
β

2

)
=

w0

2

t′
⇐⇒ t′ =

w0

2 tan
(
α
2 + β

2

) (27)

and

tan

(
α

2
+
β

2

)
=

w1

2

t′ + t1
⇐⇒ w1 = 2(t′ + t1) tan

(
α

2
+
β

2

)
. (28)

9

d1

t1 = ||d1||

d0α/2

t0 = ||d0||
n1

β/2

n0

α/2

w1

2

t1t0 = ||d0||

β/2

α/2 + β/2

w0/2

t'

w1

2

Figure 6: Top left: the geometrical setup for our computations for texture LOD for reflec-
tions, where the camera has been reflected in the plane of the first hit, which
makes the green and blue rays collinear. The reflected hit point is the black cir-
cle on the green line. Bottom right: exaggerated view along the green and blue
rays. We want to compute the footprint width w1. Note that the surface spread
angle β models how the cone footprint grows/shrinks due to the curvature of
the surface, which in this case is convex and so grows the footprint (β > 0).

Next, we use the expression from Equation 27 for t′, substitute it into Equation 28,
and arrive at

w1 = 2

 w0

2 tan
(
α
2 + β

2

) + t1

 tan

(
α

2
+
β

2

)

= w0 + 2t1 tan

(
α

2
+
β

2

)
≈ w0 + (α+ β)t1,

(29)

where we have used the small angle approximation tanα ≈ α in the last step.
Intuitively, this expression makes sense because w0 ≈ α||d0|| makes the footprint
grow with the distance from the eye to the first hit times the size α of a pixel,
and the second term models the growth from the first hit to the second hit, which
depends on the distance t1 (from first to second hit) and the angle α+ β.

3.4.3 Pixel Spread Angle

In this subsection, we present a simple method to compute the spread angle α of a
pixel, i.e., for primary rays. The angle from the camera to a pixel varies over the
screen, but we have chosen to use a single value as an approximation for all pixels,

10

φ/2

n

v

θ

n'

θ + φ/2

φ = β/2

r

r'

φ/2

n

δn/δx

δn/δy

Figure 7: Left: the geometry involved in computing φ. Right: the view vector v is reflected
around the normal n, which generates r. If n is perturbed by φ/2 into n′, we get
another reflection vector r′. Since [−v,n′] = θ+φ/2, we have [r′,n′] = θ+φ/2,
which means that the angle [r, r′] = φ, i.e., is twice as large as [n,n′] = φ/2.

i.e., we trade a bit of accuracy for faster computation. This angle α is computed as

α = arctan

2 tan
(
ψ
2

)
H

 , (30)

where ψ is the vertical field of view and H is the height of the image in pixels. Note
that α is the angle to the center pixel.

While there are more accurate ways to compute the pixel spread angle, we use
the technique above because it generates good results and we have not seen any
discrepancies in the periphery. In extreme situations, e.g., for virtual reality, one
may want to use a more complex approach, and for foveated renderers with eye
tracking [12], one may wish to use a larger α in the periphery.

3.4.4 Surface Spread Angle for Reflections

Figure 4 illustrates reflection interactions at different types of geometry: planar,
convex, and concave. In addition, Figure 6 illustrates the surface spread angle β,
which will be zero for planar reflections, greater than zero for convex reflections, and
less than zero for concave reflections. Intuitively, β models the extra spread induced
by the curvature at the hit point. In general, the two principal curvatures [4] at the
hit point or the radius of the mean curvature normal would be better to model this
spread. Instead, we have opted for a simpler and faster method, one that uses only
a single number β to indicate curvature.

If primary visibility is rasterized, then the G-buffer can be used to compute the
surface spread angle. This is the approach that we take here, though there are likely
other methods that could work. The normal n and the position P of the fragment
are both stored in world space, and we use ddx and ddy (in HLSL syntax) to obtain
their differentials. A differential of P in x is denoted ∂P/∂x.

The left part of Figure 7 shows the geometry involved in the first computations

11

for β. From the figure we can see that

φ = 2 arctan

(
1

2

∥∥∥∥∂n∂x +
∂n

∂y

∥∥∥∥) ≈ ∥∥∥∥∂n∂x +
∂n

∂y

∥∥∥∥ . (31)

An angular change in the normal, in our case φ/2, results in change in the reflected
vector, which is twice as large [16]; this is illustrated to the right in Figure 7. This
means that β = 2φ. We also add two additional user constants k1 and k2 for β and
a sign factor s (all of which will be described below), resulting in β = 2k1sφ + k2,
with default values k1 = 1 and k2 = 0. In summary, we have

β = 2k1sφ+ k2 ≈ 2k1s

√
∂n

∂x
· ∂n
∂x

+
∂n

∂y
· ∂n
∂y

+ k2. (32)

A positive β indicates a convex surface, while a negative value would indicate a
concave surface region. Note that φ is always positive. So, depending on the type
of surface, the s factor can switch the sign of β. We compute s as

s = sign

(
∂P

∂x
· ∂n
∂x

+
∂P

∂y
· ∂n
∂y

)
, (33)

where sign returns 1 if the argument is greater than zero and −1 otherwise. The
rationale behind this operation is that ∂P/∂x and ∂n/∂x (and similarly for y) will
have approximately the same direction when the local geometry is convex (positive
dot product) and approximately opposite directions when it is concave (negative
dot product). Note that some surfaces, such as a hyperbolic paraboloid, are both
concave and convex in all points on the surface. In these cases, we have found that
it is better to just use s = 1. If a glossy appearance is desired, the values of k1 and
k2 can be increased. For planar surfaces, φ will be 0, which means that k1 does not
have any effect. Instead, the term k2 can be used.

3.4.5 Generalization

Let i denote the enumerated hit point along a ray path, starting at 0. That is, the
first hit is enumerated by 0, the second by 1, and so on. All our terms for texture
LOD for the ith hit point are then put together as

λi = ∆i + log2

(
|wi| ·

∣∣∣∣ 1

n̂i · d̂i

∣∣∣∣) = ∆i︸︷︷︸
Eqn. 3

+ log2 |wi|︸ ︷︷ ︸
distance

− log2

∣∣∣n̂i · d̂i∣∣∣︸ ︷︷ ︸
normal

, (34)

and as can be seen, this is similar to Equation 26, with both a distance and a normal
dependency. Refer to Figure 6 for the variables and recall that ni is the normal at
the surface at the ith hit point and di is the vector to the ith hit point from the
previous hit point. The base triangle LOD, ∆i, now has a subscript i to indicate
that it is the base LOD of the triangle at the ith hit point that should be used.
Similar to before, d̂i means a normalized direction of di. Note that we have added
two absolute value functions in Equation 34. The absolute value for the distance
term is there because β can be negative, e.g., for concave surface points (see the
right part of Figure 4). The absolute value for the normal term is there to handle
backfacing triangles in a consistent manner.

12

Ray Cones Ray Differentials

Figure 8: Zooming in on the base of a vase reflected in a table top shows that the ray cones
method is weaker than the method based on ray differentials in areas of recursive
reflections. In the lower part of the ray cones image, there is a substantial amount
of aliasing, which is caused by the fact that, in our implementation, the method
assumes that all surfaces beyond the first hit are planar.

Note that w0 = αt0 = γ0t0 and w1 = αt0 + (α + β0)t1 = w0 + γ1t1, where we
have introduced γ0 = α and γ1 = α + β0, and β0 is the surface spread angle at
the first hit point. Hence, Equation 34 handles recursion, which we describe with
pseudocode in Section 6, and in general it holds that

wi = wi−1 + γiti, (35)

where γi = γi−1 + βi−1. This is illustrated in Figure 3.

4 Implementation

We have implemented the ray cones and ray differentials techniques on top of Fal-
cor [2] with DirectX 12 and DXR. For the texture lookups in ray cones, we compute
λi according to Equation 34 and 35 and feed it into the SampleLevel() function of
the texture.

Since rasterization is highly optimized for rendering primary visibility, where
all rays share a single origin, we always use a G-buffer pass for ray cones and for
the ray differentials method in Section 3.3. When a G-buffer is used, ray tracing
commences from the first hit described by the G-buffer. As a consequence, texturing
is done using the GPU’s texturing units for the first hits and so, using the methods
in this chapter, λ is computed only after that. For ray cones, βi is computed using
the G-buffer differentials from rasterization, which implies that there is a curvature
estimate β0 at only the first hit point. In our current implementation, we use βi = 0
for i > 0. This means that beyond the first hit point, all interactions are assumed to
be planar. This is not correct but gives reasonable results, and the first hit is likely
the most important. However, when recursive textured reflections are apparent, this
approximation can generate errors, as shown in Figure 8.

Next, we discuss the precision of the ray cones method. The data that needs to
be sent with each ray is one float for wi and one for γi. We have experimented with
both fp32 and fp16 precision for β (in the G-buffer), wi, and γi, and we conclude
that 16-bit precision gives good quality in our use cases. In a hyperbolic paraboloid

13

scene, we could not visually detect any differences, and the maximum error was
a pixel component difference of five (out of 255). Depending on the application,
textures, and scene geometry, it could be worthwhile to use fp16, especially when
G-buffer storage and ray payload need to be reduced. Similarly, errors induced by
using the small angle approximation (tan(α) ≈ α) for β resulted in nothing that
was detectable by visual inspection. With per-pixel image differences, we could
see another set of errors sparsely spread over the surface, with a maximum pixel
component difference of five. This is another trade-off to be made.

The per-triangle ∆ (Equation 3) can be computed in advance for static models
and stored in a buffer that is accessed in the shader. However, we found that it
equally fast to recompute ∆ each time a closest hit on a triangle is found. Hence,
the ray cones method handles animated models and there are no major extra costs
for handling several texture coordinate layers per triangle. Note that |n̂i · d̂i| in
Equation 34 will approach +0.0 when the angle between these vectors approaches
π/2 radians. This does not turn out to be a problem, as using IEEE standard 754
for floating-point mathematics, we have log2(+0.0) = -inf, which makes λ = inf.
This in turn will force the trilinear lookup to access the top level of the mipmap
hierarchy, which is expected when the angle is π/2 radians.

Our ray differentials implementation follows the description of Igehy [9] fairly
well. However, we use the λ computation in Equations 1 and 2, unless otherwise
mentioned, and the methods in Sections 3.2.1 and 3.2.2. For ray differentials, each
ray needs 12 floats of storage, which is rather substantial.

5 Comparison and Results

The methods that we use in this section are:

• Groundtruth: a ground-truth rendering (ray traced with 1,024 samples per
pixel).

• Mip0: bilinearly filtered mip level 0.

• RayCones: ray cones method (Section 3.4).

• RayDiffs GB: ray differentials with the G-buffer (Section 3.3).

• RayDiffs RT: our implementation of ray differentials with ray tracing [9].

• RayDiffs PBRT: ray differentials implementation in the pbrt renderer [14].

Note that Mip0, RayCones, and RayDiffs GB always use a G-buffer for primary
visibility, while RayDiffs RT and RayDiffs PBRT use ray tracing. For all our
performance results, an NVIDIA RTX 2080 Ti (Turing) was used with driver 416.16.

To verify that our implementation of ray differentials [9] is correct, we compared
it to the implementation in the pbrt renderer [14]. To visualize the resulting mip
level of a filtered textured lookup, we use a specialized rainbow texture, shown in
Figure 9. Each mip level is set to a single color. We rendered a reflective hyperbolic
paraboloid in a diffuse room in Figure 10. This means that the room only shows the
mip level as seen from the eye, while the hyperbolic paraboloid shows the mip level of
the reflection, which has some consequences discussed in the caption of Figure 10. It

14

0 1 2 3 4 5 6+

Figure 9: The mip level colors in the rainbow texture are selected according to this image,
i.e., the bottom mip level (level 0) is red, level 1 is yellow, and so on. Mip levels
6 and above are white.

RayCones RayDiffs GB RayDiffs RT RayDiffs PBRT

Figure 10: Visualization of mipmap level, where red is level 0, yellow is level 1, and so on,
as defined in Figure 9. Both RayCones and RayDiffs GB use a G-buffer pass
for the eye rays, and so we used the texture derivatives generated in that pass
to compute the mipmap level using the same formula as used by pbrt in order
to get a reasonable match on the floor. Since the hyperbolic paraboloid is both
concave and convex in all points, we used s = 1 in Equation 32. Note that the
shading overlayed on top of the “rainbow” colors does not match perfectly, but
the focus should be on the actual colors. The three images to the right match
quite well, while RayCones is a bit different, in particular in the recursive
reflections. This difference is to be expected, since reflections are assumed to
be planar after the first bounce for this method.

is noteworthy that one can see the triangular structure of the hyperbolic paraboloid
surface in these images. The reason for this is that the differentials of barycentric
coordinates are not continuous across shared triangle edges. This is also true for
rasterization, which shows similar structures. As a consequence, this discontinuity
generates noise in the recursive reflections, but it does not show up visually in the
rendered images in our video.

Some further results are shown in Figure 11. We have chosen the hyperbolic
paraboloid (top) and the bilinear patch (bottom) because they are saddle surfaces
and are difficult for RayCones, since it is based on cones that handle only isotropic
footprints. The semicylinders were also chosen because they are hard for RayCones
to handle as the curvature is zero along the length of the cylinder and bends like
a circle in the other direction. As a consequence, RayCones sometimes generates
more blur compared to ray differentials. It is also clear that the Groundtruth
images are substantially more sharp than the other methods, so there is much to
improve on for filtered texturing. A consequence of this overblurring is that both
the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) values
are relatively poor. For the hyperbolic paraboloid, i.e., the top row in Figure 11,
the PSNR against Groundtruth is 25.0, 26.7, and 31.0 dB for Mip0, RayCones,
and RayDiffs RT, respectively. PSNR for Mip0 is lower as expected, but the
numbers are low even for the other methods. This is because they produce more

15

Mip0 RayCones RayDiffs RT Groundtruth

Figure 11: Comparison of textured reflections for different types of surfaces using different
techniques. The Groundtruth images were rendered using 1,024 samples per
pixel and by accessing mipmap level 0 for all texturing. For RayCones, we
used the sign function in Equation 33.

16

MIP-O RAYCONES RAYDIFFS GB RAYDIFFS RT

Pink Room

0.0

0.5

1.0

1.5

2.0

m
ill

is
ec

on
ds

2.5

3.0

3.5

4.0

RAYDIFFS GB RAYDIFFS RTMIP-O RAYCONES

Large Interior

0.0

2.5

5.0

7.5

10.0

m
ill

is
ec

on
ds

12.5

15.0

17.5

20.0

Figure 12: Performance impact of texture level of detail selection methods: Pink Room
(left) and Large Interior (right). The smaller scene (Pink Room) is less suscep-
tible to an extra filtering cost, the larger scene (Large Interior) more so. For
both scenes, however, the performance impact of RayDiffs GB is about 2×,
and RayDiffs RT about 3×, the impact of RayCones.

blur compared to Groundtruth. On the other hand, they alias substantially less
than Mip0. The corresponding SSIM numbers are 0.95, 0.95, and 0.97, which convey
a similar story.

While still images can reveal the amount of overblurring in an image fairly well,
it is substantially harder to truthfully show still images that expose the amount
of aliasing they contain. As a consequence, most of our results are shown in our
accompanying video (available on this book’s website), and we refer to this video in
the following paragraph. We will write mm:ss to reference a particular time in the
video, where mm is minutes and ss is seconds.

At 00:05 and 00:15 in our video, it is clear that RayCones produces images
with substantially less aliasing, as expected, compared to Mip0, since the reflective
object always uses mip level 0 for Mip0. At some distance, there is also a slight
amount of temporal aliasing for RayCones, but even GPU rasterization can alias
with mipmapping. The comparison between RayCones and Mip0 continues with a
crop from a larger scene at 00:25, where the striped wallpaper of the room generates
a fair amount of aliasing for Mip0, while RayCones and RayDiffs RT fare much
better.

We have measured the performance of the methods for two scenes: Pink Room
and Large Interior. All renderings are done at a resolution of 3840 × 2160 pixels.
To disregard warmup effects and other variability, we rendered the scenes through
a camera path of 1,000 frames once, without measuring frame duration, and then
through the same camera path again, while measuring. We repeated this procedure
100 times for each scene and collected the frame durations. For Mip0, the average
frame time was 3.4 ms for Pink Room and 13.4 ms for Large Interior. In Figure 12,
the average total frame times are shown for the two scenes, for Mip0, RayCones,
RayDiffs GB, and RayDiffs RT. Pink Room is a fairly small scene, where the
added complexity of texture level of detail computation shows up as a minor part
of the total frame time, while for Large Interior—a significantly larger scene—this
effect is more pronounced. For both scenes, however, the trend is quite clear: Ray-
Diffs GB adds about 2× the cost and RayDiffs RT adds about 3× the cost of
texture level of detail calculations compared to RayCones.

Our goal in this chapter is to provide some help in selecting a suitable texture
filtering method for your real-time application by implementing and evaluating dif-

17

ferent methods and to adapt them to using a G-buffer, since that usually improves
performance. When a sophisticated reflection filter is used to blur out the results or
when many frames or samples are accumulated, the recommendation is to use the
Mip0 method because it is faster and may give sufficient quality for that purpose.
When nicely filtered reflections are required and ray storage and instruction count
need to be minimized, we recommend RayCones. However, curvature is not taken
into account after the first hit, which might result in aliasing in deeper reflections.
In these cases, we recommend one of the RayDiffs methods. For larger scenes,
any type of texture filtering will likely help performance due to better texture cache
hit ratios, as pointed out by Pharr [13]. When using ray tracing for eye rays, we
have seen slight performance improvements when using texture filtering instead of
accessing mip level 0. Experimenting further with this for larger scenes will be a
productive avenue for future work.

6 Code

In this section, we show pseudocode that closely follows our current implementation
of RayCones. First, we need a couple of structures:

1 struct RayCone

2 {

3 float width; // Called wi in the text

4 float spreadAngle; // Called γi in the text

5 };

6

7 struct Ray

8 {

9 float3 origin;

10 float3 direction;

11 };

12

13 struct SurfaceHit

14 {

15 float3 position;

16 float3 normal;

17 float surfaceSpreadAngle; // Initialized according to Eq. 32

18 float distance; // Distance to first hit

19 };

In the next pseudocode, we follow the general flow of DXR programs for ray tracing.
We present a ray generation program and a closest hit program, but omit several
other programs that do not add useful information in this context. The TraceRay

function traverses a spatial data structure and finds the closest hit. The pseudocode
handles recursive reflections.

1 void rayGenerationShader(SurfaceHit gbuffer)

2 {

3 RayCone firstCone = computeRayConeFromGBuffer(gbuffer);

4 Ray viewRay = getViewRay(pixel);

5 Ray reflectedRay = computeReflectedRay(viewRay , gbuffer);

6 TraceRay(closestHitProgram , reflectedRay , firstCone);

7 }

8

9 RayCone propagate(RayCone cone , float surfaceSpreadAngle , float hitT)

10 {

18

11 RayCone newCone;

12 newCone.width = cone.spreadAngle * hitT + cone.width;

13 newCone.spreadAngle = cone.spreadAngle + surfaceSpreadAngle;

14 return newCone;

15 }

16

17 RayCone computeRayConeFromGBuffer(SurfaceHit gbuffer)

18 {

19 RayCone rc;

20 rc.width = 0; // No width when ray cone starts

21 rc.spreadAngle = pixelSpreadAngle(pixel); // Eq. 30

22 // gbuffer.surfaceSpreadAngle holds a value generated by Eq. 32

23 return propagate(rc, gbuffer.surfaceSpreadAngle , gbuffer.distance);

24 }

25

26 void closestHitShader(Ray ray , SurfaceHit surf , RayCone cone)

27 {

28 // Propagate cone to second hit

29 cone = cone.propagate(0, hitT); // Using 0 since no curvature

30 // measure at second hit

31 float lambda = computeTextureLOD(ray , surf , cone);

32 float3 filteredColor = textureLookup(lambda);

33 // use filteredColor for shading here

34 if (isReflective)

35 {

36 Ray reflectedRay = computeReflectedRay(ray , surf);

37 TraceRay(closestHitProgram , reflectedRay , cone); // Recursion

38 }

39 }

40

41 float computeTextureLOD(Ray ray , SurfaceHit surf , RayCone cone)

42 {

43 // Eq. 34

44 float lambda = getTriangleLODConstant ();

45 lambda += log2(abs(cone.width));

46 lambda += 0.5 * log2(texture.width * texture.height);

47 lambda -= log2(abs(dot(ray.direction , surf.normal)));

48 return lambda;

49 }

50

51 float getTriangleLODConstant ()

52 {

53 float P_a = computeTriangleArea (); // Eq. 5

54 float T_a = computeTextureCoordsArea (); // Eq. 4

55 return 0.5 * log2(T_a/P_a); // Eq. 3

56 }

Acknowledgments

Thanks to Jacob Munkberg and Jon Hasselgren for brainstorming help and com-
ments.

References

[1] Amanatides, J. Ray Tracing with Cones. Computer Graphics (SIGGRAPH)
18, 3 (1984), 129–135.

19

[2] Benty, N., Yao, K.-H., Foley, T., Kaplanyan, A. S., Lavelle, C.,
Wyman, C., and Vijay, A. The Falcor Rendering Framework. https:

//github.com/NVIDIAGameWorks/Falcor, July 2017.

[3] Christensen, P., Fong, J., Shade, J., Wooten, W., Schubert, B.,
Kensler, A., Friedman, S., Kilpatrick, C., Ramshaw, C., Bannister,
M., Rayner, B., Brouillat, J., and Liani, M. RenderMan: An Advanced
Path-Tracing Architecture for Movie Rendering. ACM Transactions on Graph-
ics 37, 3 (2018), 30:1–30:21.

[4] do Carmo, M. P. Differential Geometry of Curves and Surfaces. Prentice
Hall Inc., 1976.

[5] Ewins, J. P., Waller, M. D., White, M., and Lister, P. F. MIP-Map
Level Selection for Texture Mapping. IEEE Transactions on Visualization and
Computer Graphics 4, 4 (1998), 317–329.

[6] Green, N., and Heckbert, P. S. Creating Raster Omnimax Images from
Multiple Perspective Views Using the Elliptical Weighted Average Filter. IEEE
Computer Graphics and Applications 6, 6 (1986), 21–27.

[7] Heckbert, P. S. Survey of Texture Mapping. IEEE Computer Graphics and
Applications 6, 11 (1986), 56–67.

[8] Heckbert, P. S. Fundamentals of Texture Mapping and Image Warping.
Master’s thesis, University of California, Berkeley, 1989.

[9] Igehy, H. Tracing Ray Differentials. In Proceedings of SIGGRAPH (1999),
pp. 179–186.

[10] McCormack, J., Perry, R., Farkas, K. I., and Jouppi, N. P. Feline:
Fast Elliptical Lines for Anisotropic Texture Mapping. In Proceedings of SIG-
GRAPH (1999), pp. 243–250.

[11] Möller, T., and Trumbore, B. Fast, Minimum Storage Ray-Triangle In-
tersection. Journal of Graphics Tools 2, 1 (1997), 21–28.

[12] Patney, A., Salvi, M., Kim, J., Kaplanyan, A., Wyman, C., Benty, N.,
Luebke, D., and Lefohn, A. Towards Foveated Rendering for Gaze-Tracked
Virtual Reality. ACM Transactions on Graphics 35, 6 (2016), 179:1–179:12.

[13] Pharr, M. Swallowing the Elephant (Part 5). Matt Pharr’s blog, https:

//pharr.org/matt/blog/2018/07/16/moana-island-pbrt-5.html, July 16
2018.

[14] Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering:
From Theory to Implementation, third ed. Morgan Kaufmann, 2016.

[15] Segal, M., and Akeley, K. The OpenGL Graphics System: A Specification
(Version 4.5). Khronos Group documentation, 2016.

[16] Voorhies, D., and Foran, J. Reflection Vector Shading Hardware. In
Proceedings of SIGGRAPH (1994), pp. 163–166.

20

https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://pharr.org/matt/blog/2018/07/16/moana-island-pbrt-5.html
https://pharr.org/matt/blog/2018/07/16/moana-island-pbrt-5.html

[17] Williams, L. Pyramidal Parametrics. Computer Graphics (SIGGRAPH) 17,
3 (1983), 1–11.

21

	Introduction
	Background
	Texture Level of Detail Algorithms
	Mip Level 0 with Bilinear Filtering
	Ray Differentials
	Eye Ray Setup
	Optimized Differential Barycentric Coordinate Computation

	Ray Differentials with the G-Buffer
	Ray Cones
	Screen Space
	Reflection
	Pixel Spread Angle
	Surface Spread Angle for Reflections
	Generalization

	Implementation
	Comparison and Results
	Code

