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Abstract

This chapter describes the rendering pipeline developed for PICA PICA, a real-time
ray tracing experiment featuring self-learning agents in a procedurally assembled
world. PICA PICA showcases a hybrid rendering pipeline in which rasterization,
compute, and ray tracing shaders work together to enable real-time visuals ap-
proaching the quality of offline path tracing.

The design behind the various stages of such a pipeline is described, includ-
ing implementation details essential to the realization of PICA PICA’s hybrid ray
tracing techniques. Advice on implementing the various ray tracing stages is pro-
vided, supplemented by pseudocode for ray traced shadows and ambient occlusion.
A replacement to exponential averaging in the form of a reactive multi-scale mean
estimator is also included. Even though PICA PICA’s world is lightly textured and
small, this chapter describes the necessary building blocks of a hybrid rendering
pipeline that could then be specialized for any AAA game. Ultimately, this chap-
ter provides the reader with an overall good design to augment existing physically
based deferred rendering pipelines with ray tracing, in a modular fashion that is
compatible across visual styles.

1 Hybrid Rendering Pipeline Overview

PICA PICA [2, 3] features a hybrid rendering pipeline that relies on the rasterization
and compute stages of the modern graphics pipeline, as well as the recently added
ray tracing stage [23]. See Figure 1. The reader can see such results via a video
available online [10]. Visualized as blocks in Figure 2, several aspects of such a
pipeline are realized by a mix-and-match of the available graphical stages, and the
pipeline takes advantage of each stage’s unique capabilities in a hybrid fashion.

By relying on the interaction of multiple graphical stages, and by using each
stage’s unique capabilities to solve the task at hand, modularization of the render-
ing process allows for achieving each visual aspect optimally. The interoperability of
DirectX also allows for shared intermediary results between passes and, ultimately,
the combination of those techniques into the final rendered image. Moreover, a com-
partmentalized approach as such is scalable, where techniques mentioned in Figure 2
can be adapted depending on the user’s hardware capabilities. For example, pri-
mary visibility and shadows can be rasterized or ray traced, and reflections and
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Figure 1: Hybrid ray tracing in PICA PICA.
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Figure 2: Hybrid rendering pipeline.
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ambient occlusion can be ray traced or ray marched. Global illumination, trans-
parency, and translucency are the only features of PICA PICA’s pipeline that fully
require ray tracing. The various stages described in Figure 2 are executed in the
following order:

1. Object-space rendering.

1.1. Texture-space object parameterization.

1.2. Transparency and translucency ray tracing.

2. Global illumination (diffuse interreflections).

3. G-buffer layout.

4. Direct shadows.

4.1. Shadows from G-buffer.

4.2. Shadow denoising.

5. Reflections.

5.1. Reflections from G-buffer.

5.2. Ray traced shadows at reflection intersections.

5.3. Reflection denoising.

6. Direct lighting.

7. Reflection and radiosity merge.

8. Post-processing.

2 Pipeline Breakdown

In the following subsection we break down and discuss the rendering blocks that
showcase the hybrid nature of PICA PICA’s pipeline. We focus on shadows, reflec-
tions, ambient occlusion, transparency, translucency, and global illumination. We
will not discuss the G-buffer and the post-processing blocks, since those are built
on well-documented [1] state-of-the-art approaches.

2.1 Shadows

Accurate shadowing undeniably improves the quality of a rendered image. As seen
in Figure 3, ray traced shadows are great because they perfectly ground objects in
a scene, handling both small- and large-scale shadowing at once.

Implementing ray traced shadows in their simplest (hard) form is straightfor-
ward: launch a ray from the surface toward the light, and if the ray hits a mesh,
the surface is in shadow. Our approach is hybrid because it relies on a depth buffer
generated during G-buffer rasterization to reconstruct the surface’s world-space po-
sition. This position serves as the origin for the shadow ray.

Soft penumbra shadows with contact hardening are implemented by launching
rays in the shape of a cone, as described in the literature [1, 21]. Soft shadows are
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Figure 3: Hybrid ray traced soft shadows.

superior to hard shadows at conveying scale and distance, and they are also more
representative of real-world shadowing. Both hard and soft shadows are demon-
strated in Figure 4.

With DirectX Raytracing (DXR), ray traced shadows can be achieved by both
a ray generation shader and miss shader :

1 // HLSL pseudocode ---does not compile.

2 [shader("raygeneration")]

3 void shadowRaygen ()

4 {

5 uint2 launchIndex = DispatchRaysIndex ();

6 uint2 launchDim = DispatchRaysDimensions ();

7 uint2 pixelPos = launchIndex +

8 uint2(g_pass.launchOffsetX , g_pass.launchOffsetY);

9 const float depth = g_depth[pixelPos ];

10

11 // Skip sky pixels.

12 if (depth == 0.0)

13 {

14 g_output[pixelPos] = float4(0, 0, 0, 0);

15 return;

16 }

17

18 // Compute position from depth buffer.

19 float2 uvPos = (pixelPos + 0.5) * g_raytracing.viewDimensions.zw;

20 float4 csPos = float4(uvToCs(uvPos), depth , 1);

21 float4 wsPos = mul(g_raytracing.clipToWorld , csPos);

22 float3 position = wsPos.xyz / wsPos.w;

23

24 // Initialize the Halton sequence.

25 HaltonState hState =

26 haltonInit(hState , pixelPos , g_raytracing.frameIndex);

27

28 // Generate random numbers to rotate the Halton sequence.

29 uint frameseed =
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Figure 4: Hybrid ray traced shadows: hard (left) and soft and filtered (right).

30 randomInit(pixelPos , launchDim.x, g_raytracing.frameIndex);

31 float rnd1 = frac(haltonNext(hState) + randomNext(frameseed));

32 float rnd2 = frac(haltonNext(hState) + randomNext(frameseed));

33

34 // Generate a random direction based on the cone angle.

35 // The wider the cone , the softer (and noisier) the shadows are.

36 // uniformSampleCone () from [pbrt]

37 float3 rndDirection = uniformSampleCone(rnd1 , rnd2 , cosThetaMax);

38

39 // Prepare a shadow ray.

40 RayDesc ray;

41 ray.Origin = position;

42 ray.Direction = g_sunLight.L;

43 ray.TMin = max (1.0f, length(position)) * 1e-3f;

44 ray.TMax = tmax;

45 ray.Direction = mul(rndDirection , createBasis(L));

46

47 // Initialize the payload; assume that we have hit something.

48 ShadowData shadowPayload;

49 shadowPayload.miss = false;

50

51 // Launch a ray.

52 // Tell the API that we are skipping hit shaders. Free performance!

53 TraceRay(rtScene ,

54 RAY_FLAG_SKIP_CLOSEST_HIT_SHADER ,

55 RaytracingInstanceMaskAll , HitType_Shadow , SbtRecordStride ,

56 MissType_Shadow , ray , shadowPayload);

57

58 // Read the payload. If we have missed , the shadow value is white.

59 g_output[pixelPos] = shadowPayload.miss ? 1.0f : 0.0f;

60 }

61

62 [shader("miss")]

63 void shadowMiss(inout ShadowData payload : SV_RayPayload)

64 {
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Figure 5: Hybrid ray traced shadows: unfiltered (left) and filtered (right).

65 payload.miss = true;

66 }

As shown in this pseudocode, the miss shader payload is used to carry ray-
geometry visibility information. Additionally, we use the RAY FLAG SKIP CLOSEST HIT SHADER

flag to inform the TraceRay() function that we do not require any-hit shader re-
sults. This can improve performance, since the API will know up front that hit
shaders do not need to be invoked. The driver can use this information to schedule
such rays accordingly, maximizing performance.

The code also demonstrates the use of the cone angle function, uniformSampleCone(),
which drives the softness of the penumbra. The wider the angle, the softer the
penumbra, but more noise will be generated. This noise can be mitigated by launch-
ing additional rays, but it can also be solved with filtering. The latter is illustrated
in Figure 5.

To filter the shadows, we apply a filter derived from spatiotemporal variance-
guided filtering (SVGF) [24], with a single scalar value to represent shadowing. A
single scalar is faster to evaluate compared to a full color. To reduce temporal
lag and improve overall responsiveness, we couple it with a pixel value bounding
box clamp similar to the one proposed by Karis [15]. We calculate the size of the
bounding box using Salvi variance-based method [22], with a kernelfootprint of 5×5
pixels. The whole process is visualized in Figure 6.

One should note that we implement shadows with closest-hit shaders. Shadows
can also be implemented with any-hit shaders, and we could specify that we only
care about the first unsorted hit. We did not have any alpha-tested geometry such
as vegetation in PICA PICA, therefore any-hit shaders were not necessary for this
demo.

Though our approach works for opaque shadows, it is possible to rely on a
similar approach for transparent shadows [4]. Transparency is a hard problem in
real-time graphics [20], especially if limited to rasterization. With ray tracing new
alternatives are possible. We achieve transparent shadows by replacing the regular
shadow tracing code with a recursive ray trace through transparent surfaces. Results
are showcased in Figure 7.

In the context of light transport inside thick media, proper tracking [11] in real
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Figure 6: Shadow filtering, inspired by the work of Schied et al. [24].

Figure 7: Hybrid ray traced transparent shadows.
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Figure 8: Hybrid ray traced transparent shadow accumulation.

time is nontrivial. For performance reasons we follow a thin-film approximation,
which assumes that the color is on the surface of the objects. Implementing distance-
based absorption could be a future improvement.

For any surface that needs shadowing, we shoot a ray toward the light. If we
hit an opaque surface, or if we miss, we terminate the ray. However, if we hit a
transparent surface, we accumulate absorption based on the albedo of the object.
We keep tracing toward the light until all light is absorbed, the trace misses, or we
hit an opaque surface. See Figure 8.

Our approach ignores the complexity of caustic effects, though we do take the
Fresnel effect into account on interface transitions. To that, Schlick’s Fresnel ap-
proximation [25] falls apart when the index of refraction on the incident side of the
medium is higher than the far side. Therefore, we use a modified total internal
reflection modification [16] of Schlick’s model.

Similar to opaque ray traced soft shadows, we filter transparent soft shadows
with our modified SVGF filter. One should note that we only compute transparent
shadows in the context of direct shadowing. In the event where any other pass
requires light visibility sampling, for performance reasons we approximate such vis-
ibility by treating all surfaces as opaque.

2.2 Reflections

One of the main techniques that takes advantage of ray tracing is reflections. Reflec-
tions are an essential part of a rendered image. If done properly, reflections ground
objects in the scene and significantly improve visual fidelity.

Lately, video games have relied on both local reflection volumes [17] and screen-
space reflections (SSR) [27] for computing reflections with real-time constraints.
While such techniques can generally provide convincing results, they are often not
robust. They can easily fall apart, either by lacking view-dependent information or
simply by not being able to capture the complexity of interreflections. As shown in
Figure 9, ray tracing enables fully dynamic complex reflections in a robust fashion.

Similar to our approach for shadows and ambient occlusion, reflection rays are
launched from the G-buffer, thus eliminating the need for ray tracing of primary
visibility. Reflections are traced at half resolution, or at a quarter of a ray per pixel.
While this might sound limiting, a multistage reconstruction and filtering algorithm
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Figure 9: Hybrid ray traced reflections.

brings reflections up to full resolution. By relying on both spatial and temporal
coherency, missing information can be filled and visually convincing reflections can
be computed while keeping performance in check. Our technique works on arbitrary
opaque surfaces, with varying normals, roughness, and material types. Our initial
approach combined this with SSR for performance, but in the end we rely solely on
ray traced reflections for simplicity and uniformity. Our approach relies on stochastic
sampling and spatiotemporal filtering, instead of post-trace screen-space blurring.
Therefore, we believe that our approach is closer to ground-truth path tracing, as
surface appearance is driven by the construction of stochastic paths from the BRDF.
Our approach also does not require special care at object boundaries, where blurring
issues may occur with screen-space filtering approaches.

The reflection system comes with its own pipeline, as depicted in Figure 10.
The process begins by generating rays via material importance sampling. Given
a view direction, a reflected ray taking into account our layered BRDF is gener-
ated. Inspired by Weidlich and Wilkie’s work [29], our material model combines
multiple layers into a single, unified, and expressive BRDF. This model works for
all lighting and rendering modes, conserves energy, and handles the Fresnel effect
between layers. Sampling the complete material is complex and costly, so we only
importance-sample the normal distribution. A microfacet normal is selected, which
reflects the incident view vector, and a reflected ray direction is generated. As such,
reflection rays follow the properties of the materials.

Since we have only a quarter of a ray per pixel, we must ensure a high-quality
distribution. We use the low-discrepancy quasi-random Halton sequence because it
is easy to calculate, and well distributed for low and high sample counts. We couple
it with Cranley-Patterson rotation [7] for additional per-pixel jittering, in order to
obtain a uniquely jittered sequence for every source pixel.

From every point in the sample space, a reflected direction is generated. Because
we are sampling solely from the normal distribution, reflection rays that point below
the horizon are possible. We detect this undesirable case, as depicted by the blue
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Figure 10: Reflection pipeline.

Figure 11: Left: BRDF reflection sampling. Right: Cranley-Patterson rotated Halton
sequence. The probability distribution (light gray area with dashed outline)
contains valid BRDF importance-sampled reflection rays (green) and reflection
rays below the horizon (blue).

line in Figure 11, and compute an alternative reflection ray.
The simplest way to sample our material model is by choosing one of the layers

with uniform probability and then sampling that layer’s BRDF. This can be waste-
ful: a smooth clear coat layer is barely visible head on yet dominates at grazing
angles. To improve the sampling scheme, we draw the layer from a probability mass
function based on each layer’s approximate visibility. See Figure 12.

After selecting the material layer, we generate a reflection ray matching its prop-
erties using the microfacet normal sampling algorithm mentioned earlier. In addi-
tion to the reflection vector, we also need the probability with which it has been
sampled. We will later scale lighting contributions by the inverse of this value, as
dictated by the importance sampling algorithm. It is important to keep in mind
that multiple layers can potentially generate the same direction. Yet, we are inter-
ested in the probability for the entire stack, not just an individual layer. We thus
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Figure 12: Eight frames of material layer sampling.

Figure 13: Hybrid ray traced reflections at a quarter ray per pixel.

add up the probabilities so that the final value corresponds to having sampled the
direction from the entire stack, rather than an individual layer. Doing so simplifies
the subsequent reconstruction pass, and allows using it to reason about the entire
material rather than its parts.

We get results as shown in Figure 13, resembling the reflection component of the
path traced image but at half resolution and with a single bounce.

1 result = 0.0

2 weightSum = 0.0

3

4 for pixel in neighborhood:

5 weight = localBrdf(pixel.hit) / pixel.hitPdf

6 result += color(pixel.hit) * weight

7 weightSum += weight

8

9 result /= weightSum
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Figure 14: Hybrid ray traced reflections reconstructed at full resolution.

Once the half-resolution results have been computed, the spatial filter is applied.
Results are shown in Figure 14. While the output is still noisy, it is now full
resolution. This filter also gives variance reduction similar to actually shooting 16
rays per pixel, similar to work by Stachowiak [27] and Heitz et al. [12]. Every
full-resolution pixel uses a set of ray hits to reconstruct its reflection, and there is
a weighted average where the local pixel’s BRDF is used to weigh contributions.
Contributions are also scaled by the inverse PDF of the source rays, to account for
their distribution. This operation is biased, but it works well in practice.

The final step in the reflection pipeline is a simple bilateral filter that cleans up
some of the remaining noise. While this kind of filter can be a blunt instrument
that can overblur the image, it is needed for high-roughness reflections. Compared
to SSR, ray tracing cannot rely on a blurred version of the screen for prefiltered
radiance. It produces much more noise compared to SSR, therefore more aggressive
filters are required. Nonetheless, we can still control the filter’s effect. We estimate
variance in the image during the spatial reconstruction pass, as shown in Figure 15,
and use it to tune the bilateral kernel. Where variance is low, we reduce the kernel
size and sample count, which prevents overblurring.

Near the end of the frame, we apply temporal antialiasing and get a pretty clean
image. When looking at Figure 9, it is important to remember that it comes from
a quarter reflection ray per pixel per frame and works with a dynamic camera and
dynamic objects.

Since we rely on stochastic sampling to generate smooth to rough reflections,
our approach is inherently noisy. Though stochastic sampling is prone to noise, it
produces the correct answer given enough samples. An alternative approach could
be to blur mirror-like reflections for high roughness. Such a post-filter could work
but may introduce bleeding. Filtering also requires a wide pixel footprint to generate
blurry reflections, and it may still produce noisy output from high-frequency details.
Structured aliasing is difficult to filter as well, so non-stochastic effects can produce
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Figure 15: Reflection variance.

more flickering than stochastic ones. In parallel, stochastic techniques can amplify
variance in a scene, especially for small bright sources. Tiny bright sources could be
detected and handled with more bias, shifting the algorithm toward a non-stochastic
approach. Additional research here is required. Our reflection pipeline is already
a step in this direction, combining stochastic sampling with spatial reconstruction.
In practice, we bias our primary sample space so that rays fly a bit closer to the
mirror direction, and we then cancel some of this bias during filtering.

For temporal accumulation a simple exponential smoothing operator, which
blends on top of the previous frame, is not sufficient. Movement is particularly
difficult for temporal techniques, as reprojection has to correlate results between
frames. Two different methods first come to mind when reprojecting reflections.
First, we can use the motion vectors of the reflector, which we can inherently reuse
from other techniques in the hybrid pipeline. Second, reflections move with their
own parallax, can be tracked by finding the average length of the reflection rays,
and can be reprojected via an average hit point for each pixel. Both approaches are
shown in Figure 16.

Separately each method has its advantages. As shown in Figure 16, motion
vectors work well for rough and curved surfaces but fail with shiny flat surfaces.
Hit point reprojection, on the other hand, works for the floor but fails on curved
surfaces. Alternatively, we can build simple statistics of every pixel in the newly
generated image and use that to choose which reprojection approach to take. If
we calculate the mean color and standard deviation of every new pixel, a distance
metric can be defined and used to weigh the reprojected values:

1 dist = (rgb - rgb_mean) / rgb_deviation;

2 w = exp2(-10 * luma(dist));

Finally, as demonstrated by Karis [15], we can use local pixel statistics to reject
or clamp the reprojected values, and force them to fit the new distribution. While
the results are not perfect, it is certainly a step forward. This biases the result and
can create some flickering, but it nicely cleans up the ghosting and is sufficient for
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Figure 16: Top left: motion reprojection. Top right: hit point reprojection. Bottom left:
motion and hit point reprojection blending. Bottom right: with reprojection
clamping.

real-time purposes.

2.3 Ambient Occlusion

In offline and real-time graphics, ambient occlusion (AO) [18] is used to improve
near field rendering, where the general global illumination solution fails. This can
improve perceived quality and ground objects where little direct shadowing is vis-
ible. In video games, AO is often either precalculated offline or computed in real
time using screen-space information. Baking can provide accurate results, but fails
to account for dynamic geometry. Screen-space techniques such as ground-truth am-
bient occlusion (GTAO) [14] and horizon-based ambient occlusion (HBAO) [5] can
produce convincing results, but are limited by the information available on screen.
The failure of screen-space techniques can be quite jarring, especially if offscreen
geometry should be affecting occlusion. The same is true if such geometry is inside
the view frustum but is occluded.

With real-time ray tracing, we can calculate high-quality ambient occlusion in a
way that is free from the constraints of the raster-based techniques just mentioned.
In PICA PICA, we stochastically sample the occlusion function by generating rays
randomly across the hemisphere. To reduce noise, we sample with a cosine-weighted
distribution [9]. We also expose the maximum ray distance as a configurable variable
per scene, for performance but also visual-quality purposes. To further reduce noise,
we filter the raw ray traced ambient occlusion with a technique similar to the one
used for our ray traced shadows.

1 // Partial code for AO ray generation shader , truncated for brevity.

2 // The full shader is otherwise essentially identical to the shadow
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3 // ray generation.

4 float result = 0;

5

6 for (uint i = 0; i < numRays; i++)

7 {

8 // Select a random direction for our AO ray.

9 float rnd1 = frac(haltonNext(hState) + randomNext(frameSeed));

10 float rnd2 = frac(haltonNext(hState) + randomNext(frameSeed));

11 float3 rndDir = cosineSampleHemisphere(rnd1 , rnd2);

12

13 // Rotate the hemisphere.

14 // Up is in the direction of the pixel surface normal.

15 float3 rndWorldDir = mul(rndDir , createBasis(gbuffer.worldNormal));

16

17 // Create a ray and payload.

18 ShadowData shadowPayload;

19 shadowPayload.miss = false;

20

21 RayDesc ray;

22 ray.Origin = position;

23 ray.Direction = rndWorldDir;

24 ray.TMin = g_aoConst.minRayLength;

25 ray.TMax = g_aoConst.maxRayLength;

26

27 // Trace our ray;

28 // use the shadow miss , since we only care if we miss or not.

29 TraceRay(g_rtScene ,

30 RAY_FLAG_SKIP_CLOSEST_HIT_SHADER|

31 RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH ,

32 RaytracingInstanceMaskAll ,

33 HitType_Shadow ,

34 SbtRecordStride ,

35 MissType_Shadow ,

36 ray ,

37 shadowPayload);

38

39 result += shadowPayload.miss ? 1 : 0;

40 }

41

42 result /= numRays;

The shader code for ray traced ambient occlusion is similar to that of shadows,
and as such we only list the part specific to AO here. As with shadows, we recon-
struct the world-space position and normal for each pixel visible on screen using the
G-buffer.

Since the miss flag in the shadow payload is initialized to false and is only
set to true in the miss shader, we can set RAY FLAG SKIP CLOSEST HIT SHADER to
skip the hit shader, for performance. We also do not care about how far away
an intersection is. We just want to know if there is an intersection, so we use
RAY FLAG ACCEPT FIRST HIT AND END SEARCH as well. Finally, the cosine-weighted
distribution of samples is generated on a unit hemisphere and rotated into world
space using a basis produced from the G-buffer normal.

In Figure 17, a comparison between different versions of ambient occlusion can
be seen, with a maximum ray length of 0.6 meters. In the top left ground truth was
generated by sampling with 1000 samples per pixel (spp). This is too slow for real
time. In PICA PICA, we sample with one or two rays per pixel, which produces
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Figure 17: Top left: ray traced AO (1000 spp). Top right: hybrid ray traced AO (1 spp).
Bottom left: filtered hybrid ray traced AO (1 spp). Bottom right: GTAO.

the rather noisy result seen in the top right of Figure 17. After applying our filter,
the results are more visually pleasing, as seen in the bottom left part of the same
figure. Our filtered ray traced ambient occlusion matches the reference well, albeit
a bit less sharp, with only one ray per pixel.

2.4 Transparency

Unlike rasterization, where the rendering of transparent geometry is often treated
separately from opaque geometry, ray tracing can streamline and unify the compu-
tation of light transport inside thick media with the rest of the scene. One notable
example is the rendering of realistic refractions for transparent surfaces such as
glass. See Figure 18.

With ray tracing, interface transitions are easier to track because each transition
is part of a chain of intersections. As seen in Figure 19, as a ray travels inside and
then outside a medium, it can be altered based on the laws of optics and parameters
of that medium. Intermediary light transport information is modified and carried
with the ray, as part of its payload, which enables the computation of visually
convincing effects such as absorption and scattering. We describe the latter in
Section 2.5.

When tracking medium transitions, ray tracing enables order-independent trans-
parency and exact sorting of transparent meshes with other scene geometry. While
order-independent smooth refractions are straightforward, rough refractions are also
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Figure 18: Left: object-space ray traced transparency result. Right: texture-space output.

Figure 19: Object-space ray traced smooth transparency.
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Figure 20: Object-space ray traced rough transparency.

possible but require additional care. As shown in Figure 20, multiple samples are
necessary in order to converge rough refractions to a noise-free result. Such re-
fractions are difficult to filter in an order-independent fashion, due to the pos-
sibility of multiple layers overlapping on screen. Successful denoisers today as-
sume just one layer of surfaces, making screen-space denoising intractable for order-
independent transparency. Additionally, depending on scene complexity, per-pixel
order-independent transparency can also be quite memory-intensive and its perfor-
mance intractable.

To palliate this, we adopt a hybrid approach that combines object-space ray
tracing with texture-space parameterization and integration. Textures provide a
stable integration domain, as well as a predictable memory footprint. Object-space
parameterization in texture space for ray tracing also brings a predictable number of
rays per object per frame and can therefore be budgeted. This level of predictability
is essential for real-time constraints. An example of this texture-space parameter-
ization, generated on demand prior to ray tracing, is presented in Figure 21. Our
approach minimally requires positions and normals, but additional surface and ma-
terial parameters can be stored in a similar fashion. This is akin to having per-object
G-buffers. A non-overlapping UV unwrap is also required. The ray traced result is
shown in Figure 22.

Using our parameterization and camera information, we drive ray origin and ray
direction during tracing. Clear glass refraction is achieved using Snell’s law, whereas
rough glass refraction is achieved via a physically based scattering function [28]. The
latter generates rays refracted off microfacets, spreading into wider cones for rougher
interfaces.

A feature of DXR that enables this technique is the ability to know if we have
transitioned from one medium to another. This information is provided by the
HitKind() function, which informs us if we have hit the front or back side of the
geometry:

1 // If we are going from air to glass or glass to air ,

2 // choose the correct index of refraction ratio.

3 bool isBackFace = (HitKind () == HIT_KIND_TRIANGLE_BACK_FACE);

4 float ior = isBackFace ? iorGlass / iorAir : iorAir / iorGlass;

5

6 RayDesc refractionRay;
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Figure 21: Object-space parameterization: normals (left) and positions (right).

Figure 22: Object-space ray traced transparency: result (left) and texture-space output
(right).
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Figure 23: Ray traced translucency.

7 refractionRay.Origin = worldPosition;

8 refractionRay.Direction = refract(worldRayDir , worldNormal , ior);

With such information we can alter the index of refraction and correctly handle
media transitions. We can then trace a ray, sample lighting, and finish by modulat-
ing the results by the medium’s absorption, approximated by Beer’s law. Chromatic
aberration can also be applied, to approximate wavelength-dependent refraction.

This process is repeated recursively, with a recursion limit set depending on
performance targets.

2.5 Translucency

Three ray traced images with translucency are shown in Figure 23. Similar to
transparency, we parameterize translucent objects in texture space. The scattering
process is represented in Figure 24: Starting with (a) a light source and a surface,
we consider valid vectors using (b) the surface normals. Focusing on a single normal
vector for now, (c) we then push the vector inside the surface. Next, (d) we launch
rays in a uniform sphere distribution similar to the work by Christensen et al. [6].
Several rays can be launched at once, but we only launch one per frame. Finally,
(e) lighting is computed at the intersection, and (f) previous results are gathered
and blended with the current result.

We let results converge over multiple frames via temporal accumulation. See
Figure 25. Spatial filtering can be used as well, although we did not encounter
enough noise to make it worthwhile because of the diffuse nature of the effect.
Since lighting conditions can change when objects move, the temporal filter needs
to invalidate results and adapt to dynamism. A simple exponential moving average
here can be sufficient. For improved response and stability, we use an adaptive
temporal filter based on exponential averaging [26], which is described further in
the next section and which varies its hysteresis to quickly reconverge to dynamically
changing conditions.
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(b) (c)(a)

(d) (e) (f)
Figure 24: Light scattering process. (See text for details.)

Figure 25: Texture-space ray traced translucency accumulation.
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Figure 26: Surfel-based diffuse interreflection.

2.6 Global Illumination

As part of global illumination (GI), indirect lighting applied in a diffuse manner to
surfaces makes scene elements fit with each other, and provides results representative
of reality.

PICA PICA features an indirect diffuse lighting solution that does not require
any precomputation or pre-generated parameterization, such as UV coordinates.
This reduces the mental burden on artists, and provides realistic results by default,
without them having to worry about implementation details of the GI system.

It supports dynamic and static scenes, is reactive, and refines over time to a high-
quality result. Since solving high-quality per-pixel GI every frame is not currently
possible for real-time rates, spatial or temporal accumulation is required. For this
project, 250,000 rays per frame are budgeted for diffuse interreflections.

To achieve this performance target at quality, a world-space structure of dy-
namically distributed surfels is created. See Figure 26. For this scene we use up
to 250,000 surfels, corresponding to one ray per surfel per frame. Each surfel is
represented by a position, normal, radius, and irradiance. Persistent in world space,
results accumulate over time without disocclusion issues. As it is a freeform cloud
of surfels, no parameterization of the scene is necessary. In the case of animated
objects, surfels remember the object on which they were spawned and are updated
every frame.

A pre-allocated array of surfels is created at startup. Surfels are then spawned
progressively, based on the view camera. See Figure 27. The latter step is done on
the GPU, using an atomic counter incremented as surfels get assigned. The surfel
placement algorithm uses G-buffer information and is an iterative process. We start
by calculating the coverage of each pixel by the current surfel set, in a 16 × 16 tile.
We are interested in pixels with low coverage because we would like to spawn new
surfels there. To find the best candidates, the worst coverage is chosen first. We
detect it by subdividing the screen into tiles and finding the lowest coverage in each
tile. Once found, we can spawn a surfel at the pixel’s location using the G-buffer
normal and depth. The pixel is then added to the surfel structure.

It is important to note that surfels are spawned probabilistically. In the event
where the camera moves close to a wall that is missing surfels, suddenly all pixels
have low coverage and will require surfels. This would end up creating a lot of surfels
in a small area, since screen tiles are independent of each other. To solve this issue,
the spawn heuristic is made proportional to the pixel’s projected area in world space.
This process runs every frame and continues spawning surfels wherever coverage is
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Figure 27: Surfels progressively allocated to the scene.

low. Additionally, since surfels are allocated based on screen-space constraints,
sudden geometric or camera transitions to first-seen areas can show missing diffuse
interreflections. This “first frame” problem is common among techniques that rely
on temporal amortization, and it could be noticed by the user. The latter was not
an issue for PICA PICA, but it could be depending on the target usage of this
approach.

Once assigned, surfels are persistent in the array and scene. See Figure 28. This
is necessary for the incremental aspect of the diffuse interreflection accumulation.
Because of the simple nature of PICA PICA’s scene, we did not have to manage
complex surfel recycling. We simply reset the atomic counter at scene reload. As
shown in Section 3, performance on current ray tracing hardware was quite man-
ageable, at a cost of 0.35 ms for 250,000 surfels. We believe surfel counts can be
increased quite a bit before it becomes a performance issue. A more advanced al-
location and deallocation scheme might be necessary in case one wants to use this
technique for a more complex use case, such as a video game. Further research
here is required, especially with regards to level of detail management for massive
open-world games.

Surfels are rendered similarly to light sources when applied to the screen. Similar
to the approach by Lehtinen et al. [19], a smoothstep distance attenuation function
is used, along with the Mahalanobis metric to squash surfels in the normal direction.
Angular falloff is used as well, but each surfel’s payload is just irradiance, without
any directionality. For performance reasons, an additional world-space data struc-
ture enables the query of indirect diffuse illumination in three-dimensional space.
This grid structure, in which every cell stores a list of surfels, also serves as a culling
mechanism. Each pixel or point in space can then look up the containing cell and
find all relevant surfels.

A downside of using surfels is, of course, the limited resolution and the lack of
high-frequency detail. To compensate, a colored multiple-bounce variant of screen-
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Figure 28: Surfel screen application.
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Figure 29: Left: colored GTAO. Center: surfel GI. Right: surfel GI with colored GTAO.

Light Source

Scene Geometry

Surfel

Light Source

Query Surfels
at Hit Point

Surfel

Sky

Figure 30: Left: full recursive path tracing. Right: incremental previous frame path trac-
ing.

space ambient occlusion [14] is applied to the calculated per-pixel irradiance. The
use of high-frequency AO here makes our technique diverge from theory, but it is an
aesthetic choice that compensates for the lack of high-frequency detail. This colored
multi-frequency approach also helps retain the warmth in our toy-like scenes. See
Figure 29.

Surfel irradiance is calculated by building a basic unidirectional path tracer with
explicit light connections. More paths are allocated to newly spawned surfels, so
that they converge quickly, and then slowly the sample rate is decreased to one path
per frame. Full recursive path tracing is a bit expensive, and for our use case quite
unnecessary. We can exploit temporal coherence by reusing previous outputs and
can amortize the extra bounces over time. We limit path length to just one edge
by shooting a single ray and immediately sampling the previous frame’s results, as
shown in Figure 30. The surfels path trace one bounce with indirect shading coming
from other surfels at that bounce (converging over time), instead of going for a full
multiple-bounce path. Our approach is much closer to radiosity than path tracing,
but the visual results are similar in our mostly-diffuse scenes.

Path tracing typically uses Monte Carlo integration. If expressed as a running
mean estimator, the integration is an average of contributions with linearly decaying
weights. Its convergence hinges on the integrand being immutable. In the case of
our dynamic GI, the integrand changes all the time. Interactive path tracers and
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progressive light map bakers [8, 13] typically tackle this by resetting accumulation
on change. Their goals are different though, as they try to converge to the correct
solution over time, and do not allow error. As such, a hard reset is actually desirable
for them, but not for a real-time demo.

Since we cannot use proper Monte Carlo, we outright give up on ever converging.
Instead, we use a modified exponential mean estimator,

x0 = 0,

xn+1 = lerp(xn, xn+1, k),
(1)

whose formulation is similar to that of plain Monte Carlo. The difference is in how
the blending factor k is defined. In exponential averaging, the weight for a new
sample is constant and typically set low, so that variance in input is scaled by a
small value and does not look jarring in the output.

If the input does not have high variance, the output will not either. We can then
use a higher blending factor k. The specifics of our integrand change all the time
though, so we need to estimate that dynamically. We run short-term mean and
variance estimators, which we then use to inform our primary blending factor. The
short-term statistics also give us an idea of the plausible range of values into which
the inputs samples should fall. When they start to drift, we increase the blending
factor. This works well in practice and allows for a reactive indirect diffuse lighting
solution, as demonstrated by this demo.

1 struct MultiscaleMeanEstimatorData

2 {

3 float3 mean;

4 float3 shortMean;

5 float vbbr;

6 float3 variance;

7 float inconsistency;

8 };

9

10 float3 MultiscaleMeanEstimator(float3 y,

11 inout MultiscaleMeanEstimatorData data ,

12 float shortWindowBlend = 0.08f)

13 {

14 float3 mean = data.mean;

15 float3 shortMean = data.shortMean;

16 float vbbr = data.vbbr;

17 float3 variance = data.variance;

18 float inconsistency = data.inconsistency;

19

20 // Suppress fireflies.

21 {

22 float3 dev = sqrt(max(1e-5, variance));

23 float3 highThreshold = 0.1 + shortMean + dev * 8;

24 float3 overflow = max(0, y - highThreshold);

25 y -= overflow;

26 }

27

28 float3 delta = y - shortMean;

29 shortMean = lerp(shortMean , y, shortWindowBlend);

30 float3 delta2 = y - shortMean;

31

32 // This should be a longer window than shortWindowBlend to avoid bias

33 // from the variance getting smaller when the short -term mean does.
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34 float varianceBlend = shortWindowBlend * 0.5;

35 variance = lerp(variance , delta * delta2 , varianceBlend);

36 float3 dev = sqrt(max(1e-5, variance));

37

38 float3 shortDiff = mean - shortMean;

39

40 float relativeDiff = dot( float3 (0.299 , 0.587, 0.114) ,

41 abs(shortDiff) / max(1e-5, dev) );

42 inconsistency = lerp(inconsistency , relativeDiff , 0.08);

43

44 float varianceBasedBlendReduction =

45 clamp( dot( float3 (0.299 , 0.587 , 0.114) ,

46 0.5 * shortMean / max(1e-5, dev) ), 1.0/32 , 1 );

47

48 float3 catchUpBlend = clamp(smoothstep (0, 1,

49 relativeDiff * max(0.02, inconsistency - 0.2)), 1.0/256 , 1);

50 catchUpBlend *= vbbr;

51

52 vbbr = lerp(vbbr , varianceBasedBlendReduction , 0.1);

53 mean = lerp(mean , y, saturate(catchUpBlend));

54

55 // Output

56 data.mean = mean;

57 data.shortMean = shortMean;

58 data.vbbr = vbbr;

59 data.variance = variance;

60 data.inconsistency = inconsistency;

61

62 return mean;

63 }

3 Performance

Here we provide various performance numbers behind the ray tracing aspect of our
hybrid rendering pipeline. The numbers in Figure 31 were measured on pre-release
NVIDIA Turing hardware and drivers, for the scene and view shown in Figure 32.
When presented at SIGGRAPH 2018 [4], PICA PICA ran at 60 frames per second
(FPS), at a resolution of 1920 × 1080. Performance numbers were also captured
against the highest-end GPU at that time, the NVIDIA Titan V (Volta).

4 Future

The techniques in PICA PICA’s hybrid rendering pipeline enable real-time visually
pleasing results with (almost) path traced quality, while being mostly free from noise
in spite of relatively few rays being traced per pixel and per frame. Real-time ray
tracing makes it possible to replace finicky hacks with unified approaches, allowing
for the phasing-out of artifact-prone algorithms such as screen-space ray marching,
along with all the artist time required to tune them. This opens the door to truly
effortless photorealism, where content creators do not need to be experts in order
to get high-quality results.

The surface has been barely scratched, and with real-time ray tracing a new
world of possibilities opens up. While developers will always keep asking for more
power, the hardware that we have today already allows for high-quality results at
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Volta (ms)
Shadows

1 SPP 1.48

2 SPP 2.98

4 SPP 5.89

8 SPP 11.53

16 SPP 23.54

AO

0.5m 2.0m 20m

1 SPP 1.67 2.18 2.50

2 SPP 3.41 4.48 5.08

4 SPP 6.71 8.81 10.03

8 SPP 13.27 17.44 19.85

16 SPP 26.56 34.90 39.96

Reflections 2.97

Trans. & Transp. 0.47

GI 1.70

Turing (ms)

0.44

0.77

1.31

2.33

4.65

0.5m 2.0m 20m

0.54 0.62 0.62

0.88 1.01 1.01

1.48 1.64 1.64

2.55 3.02 3.02

4.90 5.82 5.82

1.45

0.25

0.35

×-faster

3.3×

3.9×

4.5×

4.9×

5.0×

3.0–3.6×

3.8–4.4×

4.5–5.3×

5.2–5.7×

5.4–6.0×

2.0×

1.9×

4.8×

Figure 31: Performance measurements in milliseconds (ms). SIGGRAPH 2018 timings are
highlighted in green.

Figure 32: Performance scene.
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real-time performance rates. If ray budgets are devised wisely, with hybrid rendering
we can approach the quality of offline path tracers in real time.

5 Code

1 struct HaltonState

2 {

3 uint dimension;

4 uint sequenceIndex;

5 };

6

7 void haltonInit(inout HaltonState hState ,

8 int x, int y,

9 int path , int numPaths ,

10 int frameId ,

11 int loop)

12 {

13 hState.dimension = 2;

14 hState.sequenceIndex = haltonIndex(x, y,

15 (frameId * numpaths + path) % (loop * numpaths));

16 }

17

18 float haltonSample(uint dimension , uint index)

19 {

20 int base = 0;

21

22 // Use a prime number.

23 switch (dimension)

24 {

25 case 0: base = 2; break;

26 case 1: base = 3; break;

27 case 2: base = 5; break;

28 [...] // Fill with ordered primes , case 0-31.

29 case 31: base = 131; break;

30 default: base = 2; break;

31 }

32

33 // Compute the radical inverse.

34 float a = 0;

35 float invBase = 1.0f / float(base);

36

37 for (float mult = invBase;

38 sampleIndex != 0; sampleIndex /= base , mult *= invBase)

39 {

40 a += float(sampleIndex % base) * mult;

41 }

42

43 return a;

44 }

45

46 float haltonNext(inout HaltonState state)

47 {

48 return haltonSample(state.dimension++, state.sequenceIndex);

49 }

50

51 // Modified from [pbrt]

52 uint haltonIndex(uint x, uint y, uint i)

53 {
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54 return (( halton2Inverse(x % 256, 8) * 76545 +

55 halton3Inverse(y % 256, 6) * 110080) % m_increment) + i * 186624;

56 }

57

58 // Modified from [pbrt]

59 uint halton2Inverse(uint index , uint digits)

60 {

61 index = (index << 16) | (index >> 16);

62 index = (( index & 0x00ff00ff) << 8) | ((index & 0xff00ff00) >> 8);

63 index = (( index & 0x0f0f0f0f) << 4) | ((index & 0xf0f0f0f0) >> 4);

64 index = (( index & 0x33333333) << 2) | ((index & 0xcccccccc) >> 2);

65 index = (( index & 0x55555555) << 1) | ((index & 0xaaaaaaaa) >> 1);

66 return index >> (32 - digits);

67 }

68

69 // Modified from [pbrt]

70 uint halton3Inverse(uint index , uint digits)

71 {

72 uint result = 0;

73 for (uint d = 0; d < digits; ++d)

74 {

75 result = result * 3 + index % 3;

76 index /= 3;

77 }

78 return result;

79 }
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