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Figure 1: Our Dynamic Ambient Occlusion (AO) model produces global illumination effects for character animation. Notice
how the effects change with different poses (right).

ABSTRACT
The widely used ambient occlusion (AO) technique provides an
approximation of some global illumination effects and is efficient
enough for use in real-time applications. Because it relies on com-
puting the visibility from each point on a surface, AO computation
is expensive for dynamically deforming objects, such as characters
in particular. In this paper, we describe an algorithm for producing
high-quality dynamically changing AO for characters. Our funda-
mental idea is to factorize the AO computation into a coarse-scale
component in which visibility is determined by approximating
spheres, and a fine-scale component that leverages a skinning-like
algorithm for efficiency, with both components trained in a re-
gression against ground-truth AO values. The resulting algorithm
accommodates interactions with external objects and generalizes
without requiring carefully constructed training data. Extensive
comparisons illustrate the capabilities and advantages of our algo-
rithm.

CCS CONCEPTS
• Computing methodologies → Animation; Rendering; Su-
pervised learning by regression; • Mathematics of computing→
Nonconvex optimization.
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1 INTRODUCTION
Realistic images require global illumination effects. Direct computa-
tion of global illumination is not possible for real-time applications,
however, since single images of complex scenes can take minutes
or hours to compute [Christensen and Jarosz 2016; Dutre et al.
2006]. Hardware support for ray tracing may address this problem
in the future [RTX 2018], but existing solutions fall short of the
performance needed to render complete complex scenes in real
time. As such the use of hardware assisted ray tracing will likely
be focused towards effects such as refraction, order-independent
transparency, and complex shadows that are difficult or impossible
to achieve with existing real-time rendering techniques. Another re-
cent idea is to use machine learning techniques to filter and inpaint
incomplete and high-variance samples from monte-carlo rendering
that has not yet run to convergence [Bako et al. 2017; Chaitanya
et al. 2017]. While extremely promising, on current hardware these
techniques still fall short of the performance needed to produce
production-quality complex scenes in real-time.

The cost of global illumination has resulted in the development
of techniques, such as shadow mapping [Williams 1978], horizon
mapping [Max 1988], precomputed radiance transfer [Sloan et al.
2002], and others, that cheaply approximate some of the first order
effects of global illumination. Among these, ambient occlusion (AO)
[Christensen 2002; Landis 2002b] is a proven technique that is
widely used in games. The AO value for every point in a 3D scene
is defined as its exposure to the ambient lighting. Equivalently, the
AO value at a point can be computed from the amount of shadow

https://doi.org/10.1145/3306131.3317029
https://doi.org/10.1145/3306131.3317029


I3D ’19, May 21–23, 2019, Montreal, QC, Canada Binh Huy Le, Henrik Halen, Carlos Gonzalez-Ochoa, and JP Lewis

from all other points casting on it. Under the assumption of static
geometry, the AO value can be precomputed and stored in a texture
for use in a real-time shader, where the value simply attenuates the
indirect lighting component.

Computing AO for animated objects such as characters is expen-
sive. This has led to screen-space ambient occlusion (SSAO) meth-
ods, which efficiently approximate AO using only screen-space
(e.g. deferred shading) information available at run-time, thereby
allowing AO for dynamic objects. However, SSAO is a further ap-
proximation on AO, and is limited to relatively short-range effects
that can be computed from screen-space information. As a result,
while games and other interactive experiences often have very re-
alistic background elements such as vehicles, the characters (which
are often the main point of interest) fall short.

Figure 2: Illustration of our AO model with two layers: the
non-linear layer first transforms proxy spheres (blue) and
key points (green) by the current skeleton pose (red), and
then, the linear layer interpolates the per-vertex AO from
values at key points.

In this paper, we compute dynamic AO in object space, using a
custom machine learning regression approach.

Our overall idea is to factorize the problem into a nonlinear,
coarse resolution component that captures the nonlinear articula-
tion effects of the body, and a higher-resolution linear interpolation
that leverages the low-dimensional computation and hardware
support of a skinning model. Our decomposition resembles some
radiosity approaches that decompose the scene into emitters (simi-
lar to our course-resolution component) and receivers (analogous to
our high-resolution component) [Arikan et al. 2005; Silvennoinen
and Lehtinen 2017]. Fig. 2 gives an overview of our model.

Our contributions include:
• AO model: our model is highly compatible with de-facto
skinning model (Linear Blend Skinning). This gives both
flexibility and good generalization. We can train parts of the
model individually and combine them later.
• New non-linear kernel functions: our solution is differen-
tiable through its entire useful range, while closely approxi-
mating the closed-form solution.
• Training/optimization: our robust initialization utilizes skin-
ning weights to handle multi-part models. We use caching
to obtain fast value and gradient calculations.
• Unlike some machine learning models, our method pro-
vides interpretability that enables easy manipulations such
as character-to-character interactions
• As shown in the evaluation, our solution is fast, robust, and
has better generalization than previous character-specific
methods.

2 RELATEDWORK
While precomputed (baked) AO [Kavan et al. 2011; Landis 2002a;
Larsson and Halen 2009; Zhukov et al. 1998] is often an acceptable
approximation for static objects, it fails for moving objects. In par-
ticular, precomputed AO cannot produce dynamic AO effects on
characters, such as the dynamically changing occlusion around the
elbow or knees as they bend, or the effect of holding a hand close
to the body.

The main existing solution for dynamic AO is screen space am-
bient occlusion (SSAO) [Mittring 2007]. SSAO rasterizes the scene
to a depth buffer and uses this as a surrogate for the original ge-
ometry for the purpose of AO computation. For each pixel in this
depth buffer, SSAO also discards the shadowing effect of distant
pixels to reduce the computation. SSAO is widely used because it
is independent of scene complexity and handles dynamic geome-
try. However, because of these two strategies, SSAO typically has
artifacts as shown in Figs. 3 and 9. SSAO only generates shadows
locally, e.g. near the creases, and these shadows fall off too quickly
with distance. SSAO can also discard the shadow contribution of
geometry hidden from the camera view.

Holden et al. [2016] and Nalbach et al. [2017] formulated AO
as a regression from screen-space input data to the ground-truth
AO (and other effects [Nalbach et al. 2017]). Since the AO values
used to train the regression can be precomputed using high-quality
global-illumination, the results improve upon SSAO. Effects that
cannot be deduced purely from screen-space information are still
difficult to handle in these methods however. Unfortunately char-
acters prominently feature one such effect: occlusions caused by
limbs. Consider the case where an arm crosses in front of the torso,
as seen for example in Figs. 8 and 9. Depending on the distance
between the arm and torso, AO may or may not be required, but
this is difficult to entirely deduce from only local screen-space infor-
mation. Given the importance of characters, methods that handle
this problem are required.

Kontkanen and Aila [2006] were the first to develop a dynamic
AO method targeted to characters. They formulate the problem as
a linear regression from pose to the AO value. This method is both
particularly simple and efficient, however, the restriction to linear
regression may limit the types effects that are obtained.

Kirk and Arikan [2007] introduced another dynamic AO method
for characters. This method moves beyond the linearity restriction
by using a “piecewise linear” collection of locally linear models.
More specifically, they cluster poses using k-Means, then compress
the representation for each pose using PCA, and represent AO as a
function of the pose. A moving least squares step is used to smooth
the boundaries in pose space between the local linear models. The
paper shows effective AO effects on characters. As is acknowledged
in the paper, this method requires careful tuning of several types
of parameters. Artifacts result if too few clusters are used, or if the
retained dimensionality of the PCA is too small, whereas choosing
these values too large results in excess memory use (and to a lesser
extent, unneeded computation). The number of clusters needed
may vary depending on the type of motion, and one must ensure
that the motion sample used for clustering contains the range of
poses that will be encountered online. Further, the results of the
k-Means algorithm depend on its initialization (which is usually
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random) [Arthur and Vassilvitskii 2007], so several iterations of
trial-and-error tuning may be required in the worst case.

In summary, previous research has shown the viability of custom
dynamic AO algorithms for characters, but there are trade-offs in
terms of the range of effects that can be obtained or the amount of
parameter tuning required. Our method generates very high quality
results with very limited parameter tuning. It also has no require-
ment for training data that anticipates the poses to be encountered
at runtime, as it successfully generalizes from very generic training
data.

Figure 3: The artifacts of SSAO (left) compared to our object
space AO (right). Notice the shadow of SSAO on the leg and
foot changes with the view point as SSAO does not retain
the geometry of the object. The shadows of SSAO quickly
drop to zero as we go further from creases. SSAO results are
rendered by Maya 2018’s viewport 2.0 with DirectX 111. The
rendering resolution is 1024×1024 and the radius of the sam-
pling area is 64.

3 COMPUTING MODEL
The input of our computing model is the skeleton poseM withm
rigid bones. The transformation of bone j = 1..m is denoted by the
matrix Mj =

[
Rj |tj

]
where Rj ∈ R3×3 is the rotation matrix and

tj ∈ R3 is the translation vector.
Our computing model includes two layers as illustrated in Fig. 2:
• The dense, non-linear layer (§3.1) computes the transformed
proxy spheres and key points (with their normals) from
their rest pose. Then, all proxy spheres (shadow emitters)
cast shadow on every key point (shadow receivers). The
dense combination (Cartesian product) of proxy spheres and
key points captures the global interaction between parts of
the model when its pose changes. This step outputs a low
resolution occlusion map stored at each key point.
• The sparse, linear layer (§3.2) up-samples the low resolution
occlusion map to the whole model, i.e. per-vertex AO output,
where the AO at each vertex can be linearly inferred from
some nearest key points.

The parameters of our computing model (illustrated in Fig. 4)
will be optimized by the model fitting (§4). They include:
• s proxy spheres, where s can be directly or indirectly con-
trolled by the user. Proxy sphere h = 1..s is rigid bounded
to bone b(h), i.e. sphere h will be transformed byMb(h) only.
The center of h at the rest pose is oh ∈ R3. The radius of h
is r j ∈ R, which is unchanged during animation.

1https://www.autodesk.com/products/maya

Figure 4: The pipeline of our computing model, where the
transformations of proxy spheres, the transformations of
key points, and the per-vertex AO interpolations are con-
trolled by fitting parameters.

• p key points, where p is set by the user. At the rest pose, the
position and normal of key point k = 1..p are ck ∈ R3 and
uk ∈ R3, respectively. Key point k is smoothly bound tom
bones, i.e. it will be transformed by a linear blending of all
{Mj |∀j = 1..m}. Let wk ∈ Rm be the blending weights of
key point k , wherewk j denotes the weight w.r.t. bone j.wk
is sparse and affine.
• n linear regression weights and biases, wheren is the number
of vertices of the model. The weights and bias of vertex i =
1..n are αi ∈ Rp and βi ∈ R, respectively, where αik denotes
the weight w.r.t. key point k . αi is sparse, non-negative, and
soft-constrained affine. The number of non-zero values, nnz ,
is defined by the users.

The output of our model is n per-vertex AO values, where Θi ∈
R, 0 ≤ Θi ≤ 1 is the AO value at vertex i = 1..n.

3.1 Non-linear Layer
This layer is inspired by the classical idea of approximating AO
from sphere proxies with modifications to reduce stress on the
run-time model and parameter optimization. Our design philoso-
phy avoids discontinuous, branching geometry intersections (inter-
sect/no intersect) and replaces them with continuous, differentiable,
non-branching approximations.

We first compute the transformation of skeleton pose M =
{Mj |j = 1..m} on each proxy sphereh = 1..s and each key pointk =
1..p by using Eq. (1), where the tilde with super script (•̃Mh ) denotes
the transformed position from the rest pose •, and normalize(•) de-
notes the vector normalization function. We recall that each proxy

https://www.autodesk.com/products/maya
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sphere is rigid bound to one bone. Therefore, we need neither
blending transformations nor changing its radius.

õMh = Rb(h)oh + tb(h) (1a)

c̃Mk =
m∑
j=1

wk j (Rjck + tj ) (1b)

ũMk = normalize ©«
m∑
j=1

wk jRjuk
ª®¬ (1c)

Then, we compute the shadow of each proxy sphere h casting
on key point k as the product ΩMhkΛ

M
hk , where Ω

M
hk estimates the

normalized solid angle that sphere h covers, i.e. solid angle scaled
down by 2π , and ΛMhk estimates its visibility ratio, i.e. ratio of h
inside the hemisphere angle defined by ũMk . The normalization aims
to scale ΩMhkΛ

M
hk in the range of [0, 1]. The intuition of ΩMhk and

ΛMhk is illustrated in Fig. 5.

Figure 5: Illustration of the normalized solid angle ΩMhk and
the visibility ratio ΛMhk at key point k with respect to proxy
sphere h. c̃k and ũk are the position and the normal of the
key point, respectively. õMh and rh are the center and the ra-
dius of the proxy sphere, respectively.

3.1.1 Normalized Solid Angle. ΩMhk is computed with Eq. (2), where
δMhk is the ratio between the distance from key point c̃Mk to center õMh
and the sphere radius rh . Notice that as we use simple spheres and
points (with normals), ΩMhk can be computed in closed-form [Sloan

et al. 2007]: Ω∗ = 1 −
√
1 − 1/δMhk

2. However, this function is C1

discontinuous at 1 and undefined with δMhk < 1, i.e. key point k
is inside proxy sphere h. Ω∗ will not be convenient for the model
training. For this reason, we created ΩMhk by first plotting Ω∗, then
searching for an activation function that has a form like Ω∗, and
finally tuning coefficients to match with Ω∗. The function ΩMhk here
is a softsign function that passes close to the point (1, 1).

ΩMhk =
3
4
−

3
(
δMhk − 1

)
1 + 4

���δMhk − 1��� (2a)

where: δMhk =

õMh − c̃Mk 
2

rh
(2b)

Figure 6: Our smooth normalized solid angle function ΩMhk
(red) can approximate the closed-form function Ω∗ (blue)
and extrapolate to the range of 0 ≤ δMhk < 1.

3.1.2 Visibility Ratio. ΛMhk is estimated in Eq. (3) from the signed
projection length of the distance vector õMh − c̃Mk on the normal
ũk . Referring to the illustration in Fig. 5, we can see that proxy
sphere h is totally visible (Ω = 1) if the signed projection length(
õMh − c̃

M
k

)
· ũMk ≥ rh , i.e. ξMhk ≥ 1, and h is totally not visible

(Ω = 0) if
(
õMh − c̃

M
k

)
· ũMk ≤ −rh , i.e. ξ

M
hk ≤ −1. Because this

visibility function is discontinuous, we instead use visibility ratio
function ΛMhk as a sigmoid (algebraic) function. Our ΛMhk is plotted
in Fig. 7. While there is a closed-form solution of this visibility
problem in [Mazonka 2012], that solution is C1 discontinuous at(
õMh − c̃

M
k

)
· ũMk = ±rh .

ΛMhk =
1
2
+

ξMhk√
1 + 4ξMhk

2
(3a)

where: ξMhk =

(
õMh − c̃

M
k

)
· ũMk

rh
(3b)

Figure 7: Our visibility ratio function is a smooth function
that passes close to (ξMhk = −1,Λ

M
hk = 0) and (ξMhk = 1,ΛMhk = 1).

3.1.3 Sparse Shadow Value. ΓMk at key point k , i.e. the output of
the non-linear layer, is computed by adding contributions from all
proxy spheres with aγ -norm function (Eq. (4)), where the parameter
γ > 1 is set by the users. The γ -norm reduces double shadowing,
i.e. spheres with overlapping solid angles will cast shadow twice,
by emphasizing contributions from spheres with most shadow,
i.e. sparsifying the contribution vector similar to the maximum
norm (γ = ∞). Our γ -norm approximation significantly reduces
the computation cost compared to the traditional geometry-based
multi-pass technique [Bunnell 2005], i.e. our complexity is linear
with the number of spheres compared to the quadratic order (two
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passes to remove double shadowing) or cubic order (three passes
to add triple shadowing back).

ΓMk =

( s∑
h=1

(
ΩMhkΛ

M
hk

)γ ) 1
γ

(4)

3.2 Linear Layer
The AO value of vertex i at pose M is the linear combination of
shadow values at key points ΓMk followed by remapping back to
the range of [0, 1] (Eq. (5)). Note that depending on the poseM and
the parameters, the actual value of ΘMi could go out of the range
[0, 1]. For rendering, we could clamp this value at the final step.
We recall that the weight vector αi is sparse, non-negative, and

soft-constrained affine, i.e.
p∑

k=1
αik ≈ 1. This soft affinity constraint

is handled in the optimization step (§4.2). A regression bias βi is
added to encode local detail at the vertex:

ΘMi = 1 −
( p∑
k=1

αik Γ
M
k + βi

)
(5)

Algorithm 1 summarizes our AO computing steps. All foreach
loops can be parallelized.

ALGORITHM 1: Compute Per-vertex Ambient Occlusion

input :M = {Mj |j = 1..m }, whereMj =
[
Rj |tj

]
.

parameters : {oh, rh |h = 1..s }, {ck , uk |k = 1..p },
{wk j |k = 1..p, j = 1..m }, {αik , βi |i = 1..n, k = 1..p }.

output : {ΘMi |i = 1..n }.

1 foreach proxy sphere h do
2 Compute center õMh ; // Eq. (1a)
3 end
4 foreach key point k do
5 Compute position c̃Mk and normal ũMk ; // Eqs. (1b) and (1c)
6 Compute shadow ΓMk ; // Eqs. (2), (3) and (4)
7 end
8 foreach vertex i do
9 Compute AO value ΘMi ; // Eq. (5)

10 end

4 MODEL FITTING
Given a skinning model of a character, we find parameters of the
AO model (described in §3) by generating sample poses, ray tracing
the ground truth AO, and then optimizing the model parameters to
minimize sum of squared difference with the ground truth AO.

We used uniform, per-joint sampling and single-bounce, GPU-
raytraced AO as detailed in Appendix A. This uniform sampling
is general without any special knowledge about the desired target
animation. Per-joint sampling contains no combination of different
joint rotations, i.e. we do not rotate more than one joint at once,
which keeps the size of our training data manageable. However,
our model fitting can work with any off the shelf pose sampling
and ground truth AO rendering such as artist-made poses or multi-
bounce ray tracing.

The skinning deformation model (LBS) might generate self in-
tersecting output geometry. In that case, vertices at the self inter-
sections are rendered black, i.e. they are totally covered from the
ambient light. We treat the AO values at these vertices as missing
data and we keep updating these values using the prediction of the
current model during training.

Let f be the number of sample poses, where Mt = {Mt
j |j =

1..m} is the set ofm bone transformations at pose 1 ≤ t ≤ f . Let
0 ≤ At i ≤ 1 be the AO value at vertex i of pose t . Our minimization
problem is:

minE =
f∑
t=1

n∑
i=1

(
ΘM

t

i − At i

)2
(6)

We minimize the objective function (6) by the Block coordinate
descent [Bertsekas 1999] as described in Algorithm 2, which alterna-
tively updates: non-linear layer (spheres o, r , and key points c, u,w),
linear layer (α , β), and missing values.

Although a random initialization could work, we suggest initial-
izing the solution as described in Appendix B, which utilizes the
geometry properties of the skinning model for a good convergence.

The missing values are updated in the loop from line 8 to line
10, where ϕ is the set of all missing value positions in the matrix A,
i.e. vertices i in the self-intersections at pose t .

We stop the algorithm (line 11) when the number of iterations
reaches max_iters = 500, or the relative tolerance ε = 1e − 3 is
reached, i.e. each parameter change less than ε relatively to its
current value.

ALGORITHM 2: Block Coordinate Descent Optimization

input :A ∈ Rf ×n ,
{Mt

j |t = 1..f , j = 1..m },
initialized values: o, r, c, u, w, α, β .

output : {oh, rh |h = 1..s },
{ck , uk |k = 1..p },
{wk j |k = 1..p, j = 1..m },
{αik , βi |i = 1..n, k = 1..p }.

1 repeat
2 Cache A and B ; // Eq. (7)
3 BFGS(max_local_iter s) ; // §4.1

4 Cache C , d , and e ; // Eq. (8)
5 foreach vertex i do
6 Constrained LS solve αi and βi ; // §4.2

7 end
8 foreach (t, i) ∈ ϕ do // self-intersecting vertices

9 At i ←− ΘMti ; // predict using current model

10 end
11 untilmax_iter s iterations reached or relative tolerance ε reached;

4.1 Non-linear Layer Update
We update parameters in the non-linear layer (line 2 and 3) by per-
formingmax_local_iters = 20 iterations of the Broyden-Fletcher-
Goldfarb-Shanno algorithm (BFGS) [Fletcher 1987]. We chose BFGS
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over other gradient-based optimizers because of its quadratic con-
vergence rate, compared to the sub-linear convergence rate of gra-
dient descent or the linear convergence rate of conjugate gradient
descent.

We can effectively compute the objective function (Eq. (6)) and
its gradient by re-arranging its terms while taking advantage of the
parameters in linear layer (α , β) being fixed:

E =

f∑
t=1

n∑
i=1

(
ΘM

t

i − At i

)2
=

f∑
t=1

n∑
i=1

(
1 −

( p∑
k=1

αik Γ
Mt

k + βi

)
− At i

)2
=

f∑
t=1

n∑
i=1

( p∑
k=1

p∑
k ′=1

αikαik ′Γ
Mt

k ΓM
t

k ′

+2
p∑

k=1
αik (1 − βi − At i ) ΓM

t

k + constant

)
=

f∑
t=1

p∑
k=1

p∑
k ′=1

( n∑
i=1

αikαik ′

)
ΓM

t

k ΓM
t

k ′

+2
f∑
t=1

p∑
k=1

( n∑
i=1

αik (1 − βi − At i )
)
ΓM

t

k + constant

Then, we pre-compute and cache Akk ′ and Btk to quickly evalu-
ate the objective function (Eq. (7a)). The gradient of E is computed
by explicitly computing each term ΓM

t

k using chain rule, product
and quotient rule. Caching Akk ′ and Btk significantly reduces the
complexity of value/gradient evaluation by an order of n, i.e. the
mesh resolution. With our tested models (§5), we observed a speed
up about two orders of magnitude with caching.

E =

f∑
t=1

p∑
k=1

p∑
k ′=1

Akk ′Γ
Mt

k ΓM
t

k ′ + 2
f∑
t=1

p∑
k=1

Btk Γ
Mt

k + constant

(7a)

where: Akk ′ =

n∑
i=1

αikαik ′ (7b)

Btk =
n∑
i=1

αik (1 − βi − At i ) (7c)

The unit-length constraints on normal vectors uk ,∀k = 1..p are
imposed by normalizing them before every objective function value
evaluation in the BFGS optimization. The affinity constraints on
blending weightswk are imposed by projecting the corresponding
gradient ∇wk to the hyper plane

∑m
j=1 ∇wk j = 0. The sparseness

constraints on wk are imposed by not updating zero values, i.e.
keeping the sparse matrix structure ofw during the optimization.

For robustness, we start BFGS optimization with only updating
normals u while keeping other parameters in the non-linear layer
fixed. Then, until their relative values change less than ϵ = 1e−2, we
update normals u, sphere positions o and radiuses r . Finally, until
their relative values change less than ϵ , we update all parameters.

4.2 Linear Layer Update
We solve linear regression weights and biases for each vertex by
Constrained Linear Least-squares (LS) (line 4 to line 7). Our solver is
similar to the non-negative vertex skinning weights solver [James
and Twigg 2005] where weights and bias are solved by a constrained
LS (αi , βi ) = argminx ∥Aix−bi ∥22 . Similar to the caching for BFGS
in our previous section, we re-arrange the terms in the objective
function so that the cross product AT

i Ai and AT
i bi are elements in

the cache matrix C , vector d , and vectors {ei |i = 1..n}:

E =
n∑
i=1

(
(αi , βi )T

[
C d

d T f

]
(αi , βi ) − 2(αi , βi )Tei + constant

)
(8a)

where: Ckk ′ =
f∑
t=1

ΓM
t

k ΓM
t

k ′ + λ (8b)

dk =
f∑
t=1

ΓM
t

k (8c)

eik =
f∑
t=1
(1 − βi − At i ) ΓM

t

k + λ (8d)

We use the soft-affinity constraint with the scaling parameter
λ = f (Eq. (8b) and Eq. (8d)).

5 RESULTS AND DISCUSSIONS
We test our method on three rigged models and test animations
acquired from Mixamo2. Our model training was implemented in
C++ using CppNumericalSolvers 3 as the non-linear optimization
framework, in which the objective function value and its gradient
are computed by CUDA 4 and OpenMP 5. The statistics of the
models and training process are presented in Table 1. We use the
same set of parameters for both generating training data and fitting
the mode (as reported in §4, Appendix A, and Table 1).

In Fig. 8, we visualize the proxy spheres and key points computed
by our optimization algorithm. In this example, our optimization
robustly converge to a plausible solution as the sizes of the proxy
spheres are roughly at the same size of corresponding body parts.
Notice that how our model can keep the mid-level surface details
as the tested pose is quite different from the training poses, i.e. the
neighbors of T-pose.

5.1 Comparisons
We evaluate our model by comparing it with previous approaches
(Fig. 9). The static baked AO is generated by performing ray tracing
at the rest pose with the same setting that we used to generate our
training data (Appendix A). The screen-space AO (SSAO) is ren-
dered by Maya 2018’s viewport 2.0 with DirectX 11. The rendering
resolution is 1920 × 1080 pixels and the radius of the sampling area
is 64 pixels. Despite of the large radius, SSAO appears flat due to
its local computation. We also compare our model with Kontkanen
and Aila [2006] and Kirk and Arikan [2007]. For Kirk and Arikan’s
2https://www.mixamo.com
3https://github.com/PatWie/CppNumericalSolvers
4https://developer.nvidia.com/cuda-zone
5https://www.openmp.org

https://www.mixamo.com
https://github.com/PatWie/CppNumericalSolvers
https://developer.nvidia.com/cuda-zone
https://www.openmp.org
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Table 1: Test models in this paper: n denotes the number of
vertices,m denotes the number of bones, f denotes the num-
ber of training poses, s denotes the number of proxy spheres,
and p denotes the number of key points. For all models, we
set the number of non-zero weights per vertex nnz = 8 and
the sparsifying normγ = 1.5. The errorsMSEinit andMSEmin
are themean-square errors, i.e. 1

nf E, at the initialization and
the end of the training, respectively. time is the training time
recorded on a computer with an 24-core 3.00 GHz CPU and
GeForce GTX Titan V GPU. iters is the number of global it-
erations, where each global iteration contains 20 (local) non-
linear BFGS iterations and one linear solver step. sizedata is
the size of the training data and sizemodel is the size of the
trained model (all parameters). Scalar values in the training
data and AOmodel were stored as 32 bit floats and indices are
stored as 32 bit integers.

Vanguard Maria Warrok
n = 5, 890 n = 8, 876 n = 6, 557
m = 65 m = 66 m = 65

f = 21, 438 f = 23, 131 f = 21, 438
sizedata ≈ 652MB sizedata ≈ 970 MB sizedata ≈ 706 MB

s = 81 s = 130 s = 77
p = 500 p = 500 p = 500

MSEinit = 1.85e−3 MSEinit = 1.30e−3 MSEinit = 1.69e−3
MSEmin = 0.67e−3 MSEmin = 0.59e−3 MSEmin = 0.56e−3

time ≈ 5.5 h time ≈ 14 h time ≈ 12 h
iters = 160 iters = 311 iters = 500

sizemodel = 563 KB sizemodel = 820 KB sizemodel = 598 KB

Figure 8: Leftmost: visualization of our calculated spheres
(blue) and key points (green). Others: comparison of our AO
model with the ground truth AO (NVIDIA’s OptiX Prime ray
tracer).

model, we set the number of pose clusters, the reduced dimensions,
the number of vertex clusters, and the moving least squares blend
parameter (α ) to be 15, 1000, 15, and 10.0 respectively as these are
a good set of parameters reported by the authors.

5.1.1 Model Fitting. We compare the effectiveness of our model
fitting against previous works by testing these models on the train-
ing data (Fig. 9). In practice, this setup could be use to compress
the animated AO map. The results show very low fitting errors
with Kontkanen and Aila’s model and our model. We believe the
reduced models (clustering and principal component analysis) of
Kirk and Arikan are not robust enough to capture the non-linear
space for their pose interpolation. In contrast, our geometry-based
clustering for model initialization (Appendix B) combined with
the joint-optimization on two layers converges to a good local
optimized solution.

Figure 9: Comparison between different AO renderingmeth-
ods. Top row: non data-driven methods. Middle row: data-
driven methods used as compression, i.e. training and test-
ing on the same data (“Fight" animation sequence). Bottom
row: differences between the middle row and the ground
truth AO (ray tracing).

5.1.2 Generalization. We performed two tests to compare the gen-
eralization of different models. In the perturbation test (Fig.10), we
slightly move the character pose off the last frame of the training
sequence. As shown from the results, the non-reduced linear model
[Kontkanen and Aila 2006] suffers more from this perturbation
than Kirk and Arikan model and our method.

In Fig. 11, we trained all models with our uniform joint rotation
sampled data (Appendix A), then tested the model predictions on a
novice animation. The training data does not contain complex poses
(all training poses are the neighbors that differ from the T-pose by
only one joint rotation) but it provides good coverage for the joint
rotation ranges. With this setup, Kirk and Arikan model underfits
the training data and produces a large testing error.

5.1.3 Size of Model. For real-time applications such as games,
the size of the model is important not only for storage but also
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Figure 10: Perturbation test for model generalization: we
trained different methods with “Fight" animation sequence
and tested them on a slightly different pose with the poses
in the training sequence. Top row: the AO outputs of differ-
entmethods. Bottom row: differences from the ground truth
AO (ray tracing).

Figure 11: Model generalization test: we trained different
methodswith uniform joint rotation sampling (AppendixA)
and tested them on the “Fight" animation. Top row: the AO
outputs of different methods. Bottom row: differences with
the ground truth AO (ray tracing).

for loading time. Despite using a large amount of training data
with a naïve sampling (sizedata in Table 1), our model results in
a very small run-time model (sizemodel in Table 1). Even without
compression, sizemodel is approximately as small as a single low-
resolution texture (less than a megabyte). In theory, the size of
our AO model and the size of Kirk and Arikan’s model [2007]
are independent from the number of training, while the size of
Kontkanen and Aila’s model [2006] grows with the size of the
training data. In Table 2, we compare the size of trained models
from different methods. While offering higher AO quality, the sizes
of our trained AO models are significantly smaller than trained
models from previous methods.

Our method outperformed previous methods [Kirk and Arikan
2007; Kontkanen and Aila 2006] in all comparisons. Although a

Table 2: Sizes of trained models with different methods.
Scalar values were stored as 32 bit floats and indices are
stored as 32 bit integers. Training was done on the “Warrok"
model with different test animation sequences. "Uniform" is
our uniform sampling data as described in Appendix A. f is
the number of samples.

Test sequence Uniform Idle Fight
(f ) (21438) (180) (88)

[Kontkanen and Aila 2006] 5,179 KB 1,875 KB 1,875 KB
[Kirk and Arikan 2007] 1,625 KB 1,625 KB 1,625 KB

Our AO model 598 KB 583 KB 579 KB

well designed training dataset could help improve problems of the
previous methods, with our method, it is easier to automate the
process by not having to tune the training animation or the training
parameters.

5.2 Interaction
Intuitively, the proxy spheres and the key points are shadow block-
ers and light receivers.We can simply inter-connect proxy spheres/key
points between different models to make interactions. This allows
integration without retraining the models. In Fig. 12, we simulate
the ground AO by simply adding a proxy sphere underneath the
character, e.g. connecting x and z coordinates of the sphere to the
root joint, assuming y is the up/down direction. In Fig. 1, we add
the spheres set of one character to the other and vise versa. As the
result, when two characters are close, they block the ambient light
from each other. Fig. 13 shows the difference between having no
interaction and having interaction between two characters. Fig. 13
also shows the benefit of our proposed γ -norm sparsification on
reducing the double shadowing effect. Note that we do not need
to retrain the models to setup the character-character interactions.
This is a side benefit of the interpretability of our model.

Figure 12: We can add a ground AO effect to a trained model
by adding a large proxy sphere underneath the character.
Notice the ground AO effect is less noticeable as the char-
acter jumps higher.

5.3 Run-time Performance
Fig. 14 shows a scene with 100 characters rendered in real time
with our AO model. The AO of each character is computed from
itself and four neighbors. The system is implemented by C++ with
DirectX 12. For each frame in this 100 character scene, our CPU
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Figure 13: Top row: two individually trained models put
together do not have a global illumination effect. Middle
row: cross-illumination between models can be created by
adding the set of proxy spheres of one character to the other
character and vise versa, double shadowing makes AO ap-
pear very dark. Bottom row: our γ -norm sparsification (γ =
1.5) reduces double shadowing while still keeping the cross-
illumination effect.

Figure 14: Screen capture of 100 animated characters ren-
dered with our AO at nearly 30fps. Notice the AO interac-
tion is stronger when characters are close (magnified view
on the left), and AO interaction is less for distant characters
(magnified view on the right).

(32 cores) takes about 20ms to compute the non-linear layer and
all other CPU tasks. Our GPU (NVIDIA Titan V) takes about 10ms
to compute the linear layer and all other rendering tasks. This
performance can be greatly improved by moving the non-linear
layer computation to the GPU.

6 CONCLUSION
This paper introduces a dynamic AO method for characters that
excels in both quality (Figs. 1) and ease of use. It greatly outperforms

state of the art methods [Kirk and Arikan 2007; Kontkanen and
Aila 2006]. It also easily approximates shadowing with the ground
(Fig. 12) and interaction with other characters (Fig. 13).

Our method has few tunable parameters and is free of stochastic
computations (such as k-means initialization) that may need to be
re-run multiple times.

One current limitation is the long training time. This can be
improved by exploring batch optimization methods. An alternative
solution is deploying parallel implementation at larger scale, e.g.
on clusters, which could be more suitable for industrial production.

The current sampling strategy for poses is basic, and automati-
cally obtaining a more effective set of sample poses may be possible.
Designing a good pose sampling strategy is an interesting problem
for future research.
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A TRAINING DATA
We generate sample poses by wiggling each joint one by one (ex-
cept for the root joint), i.e. rotating each joint to different angles
depending on its range of motion and user-defined sampling steps.
In particular:
• for joints on the body (from the hip to shoulders), we sample
(Rx, Ry, Rz) in {−45◦, −15◦, 15◦, 45◦}3 (4 × 4 × 4 = 64 poses
per joint),
• for other joints (legs, arms, hands, fingers, head, etc.), we
sample each pair (Rx, Ry), (Ry, Rz), and (Rz, Rx) in {−150◦,
−120◦, −90◦, .., 90◦, 120◦, 150◦}2 (3 × 11 × 11 = 363 poses
per joint).

For each pose in the training data, we use linear blend skinning
(LBS) to deform the geometry model and use ray tracing to compute
the ground truth AO value at each vertex. Specifically, we use
NVIDIA’s OptiX Prime [Lacewell 2016] with 128 rays per sample
point, 3 sample points per face, and without least squares filtering
[Kavan et al. 2011].

B MODEL INITIALIZATION
We initialize proxy spheres by sampling on bones. For each bone
j, we perform Eigen analysis on the geometry influenced by j,
i.e. performing Eigen decomposition on the covariance matrix∑n
i=1 v

(w )
i j v(a)i vivTi , where v(w )i j ∈ R, v(a)i ∈ R, and vi ∈ R3 are

skinning weight, area of the Voronoi cell, and position of vertex
i , respectively. Let λ1 and λ3 be the smallest Eigen value and the
largest Eigen value, respectively. We uniformly distribute

√
λ3/λ1

spheres with radius
√
λ1 along the direction of the Eigen vector

with respect to λ3. Note that a more complicated sampling scheme
can be used [Ren et al. 2006].

The initialized key points are generated by clustering n vertices
to p clusters, where the users set the number of p. We generate
the features for the clustering by concatenating vertex’s positions,
normals, and skinning weights together, in which each component
can be scaled by the users. We employ the edge collapsing strategy
proposed by Schaefer and Yuksel [2007] to keep vertices in the same
cluster connected. Each cluster is then assigned to one key point

Figure 15: Left: the input model with many separated com-
ponents, different components of the pouch are illustrated
with different colors. Middle: using mesh normals lead to
separated vertex clusters for the front (vertices in red) and
the back of the pouch (vertices in blue). Right: our robust
normal estimation based on optimized center of rotation
(CoR) generates all normals pointing outward, thus pro-
duces one cluster for the whole pouch.

where positions, normals, and skinning weights are extracted from
the feature of the cluster.

We handle models with separated geometry components by
utilizing the skinning weights in addition to the geometry of the
rest pose as follows:

In addition to the original mesh edges, we add pairs of vertices
with closed positions and closed skinning weights as the extra
edges for the clustering. Generally, vertices with closed positions
but different skinning weights belong to different parts of the model.
Using skinning weights, we can easily separate vertices that are
closed in the rest pose, e.g. vertices at finger regions.

We compute the normal at each vertex as the normalized vec-
tor from the optimized center of rotation (CoR) [Le and Hodgins
2016] to the vertex. Instead of the proposed pairwise-based dis-
tance function, we use the Gaussian radial basis function s(v, v′) =
exp

(
− | |v

(w )−v′(w ) | |22
σ 2

)
because this function is also valid for vertices

with only one skinning weight, where the pairwise-based function
is not. The effect of using CoR-based normals is shown in Fig. 15.
Although CoR-based normals are generally less precise than the
mesh normals, they are more robust for initialization and optimiza-
tion. They never flip 180◦ from the desired direction, e.g. pointing
inward to the medial axis of the model. If this happened, the opti-
mization could suffer as the continuous descent search can hardly
flip them back.

With the initialized proxy spheres and key points, we run the
linear solver to initialize the linear regression weights and biases.
This is also the solver in our linear layer update (§4.2).

https://devblogs.nvidia.com/introduction-nvidia-rtx-directx-ray-tracing
https://devblogs.nvidia.com/introduction-nvidia-rtx-directx-ray-tracing
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