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Direct Delta Mush (DDM) is a high-quality, direct skinning method with
a low setup cost. However, its storage and run-time computing cost are
relatively high for two reasons: its skinning weights are 4 × 4 matrices
instead of scalars like other direct skinning methods, and its computation
requires one 3 × 3 Singular Value Decomposition per vertex.

In this paper, we introduce a compression method that takes a DDM
model and splits it into two layers: the first layer is a smaller DDM model
that computes a set of virtual bone transformations and the second layer is
a Linear Blend Skinning model that computes per-vertex transformations
from the output of the first layer. The two-layer model can approximate the
deformation of the original DDM model with significantly lower costs.

Our main contribution is a novel problem formulation for the DDM
compression based on a continuous example-based technique, in which we
minimize the compression error on an uncountable set of example poses.
This formulation provides an elegant metric for the compression error and
simplifies the problem to the common linear matrix factorization. Our for-
mulation also takes into account the skeleton hierarchy of the model, the
bind pose, and the range of motions. In addition, we propose a new update
rule to optimize DDM weights of the first layer and a modification to resolve
the floating-point cancellation issue of DDM.
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1 INTRODUCTION
For character animation, skinning, especially Linear Blend Skinning
(LBS) [Magnenat-Thalmann et al. 1988], is a de facto standard in
real-time animation systems. Skinning refers to a family of meth-
ods to deform character models (the skin) by controlling a set of
handles, typically a set of bones, which resemble the anatomical
skeleton of the characters. Skinning is a vital piece of many anima-
tion systems because characters, especially deformable characters
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Fig. 1. We compress DDM model by splitting it into two layers: the first
layer is a smaller DDM model that takes the master bones (yellow) and
computes a small set of virtual bone transformations (red), and the second
layer is a large but cheap LBS model that computes per-vertex skinning
(blue) from virtual bones.

such as humans and animals, are normally the main focus of the
story. Skinning - and LBS in particular - is widely used due to its
simplicity, performance and intuitiveness.

The main limitation of LBS is deformation quality, which includes
issues such as elbow collapsing and candy wrapper artifacts [Ja-
cobson et al. 2014]. Other skinning models have been proposed to
address these problems while keeping the advantages of perfor-
mance and intuitiveness. Some examples are: Log-matrix Skinning
(LMS) [Alexa 2002; Magnenat-Thalmann et al. 2004], Spherical Blend
Skinning (SBS) [Kavan and Žára 2005], Dual Quaternion Skinning
(DQS) [Kavan et al. 2008], Skinning with Optimized Centers of Ro-
tation (CoR) [Le and Hodgins 2016]. Most of these new models
belong to the direct skinning category, in which the deformation
on each vertex of the character can be explicitly expressed as a non-
linear function of the input bone transformations. Unfortunately,
this family of new methods introduces bulging artifacts [Jacobson
et al. 2014].

Notably, Direct Delta Mush skinning (DDM) [Le and Lewis 2019]
was introduced as a high-quality direct skinning method with cheap
setup costs. DDM is based onDeltaMush deformer (DM) [Mancewicz
et al. 2014], a popular skinning method in movie production. DDM
can produce the same deformations as the original DM, in which
collapsing and bulging issues are diminished. In particular, DDM
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was the first direct method to offer the skin sliding effect, thanks to
the decomposition of rotation and translation in its formulation.
However, the storage and run-time computing costs of DDM

are quite high compared to the traditional methods such as LBS or
DQS, especially with DDM variant 0, the variant that offers the best
skinning quality. The reasons are: (1) DDM stores pre-computed
4×4 multi-weights compared to scalar weights of LBS and DQS; and
(2) DDM computes a 3× 3 Singular Value Decomposition (SVD) per-
vertex at run-time. Theoretically, the multi-weight setup suggests
that DDM requires 16 times more storage than LBS and DQS (or
10 times when taking advantage of the symmetry of multi-weight
matrices).
In this paper, we explore the idea of compressing DDM with a

two-layer model (illustrated in Fig. 2):
• The first layer is a smaller DDM model that takes the origi-
nal bone transformation and computes a set of virtual bone
transformations.
• The second layer is a large but cheap LBS model that takes
the virtual bone transformations from the first layer and
computes per-vertex skinning.

Fig. 2. Left: an illustration of our two-layer skinning model: layer 1 (DDM)
computes virtual bone transformations (red) from master bone transforma-
tions (yellow) and layer 2 (LBS) computes per-vertex deformation (blue).
Right: (a) our deformation with master bones and virtual bones overlay, (b)
the approximation error, (c) our deformation, and (d) the ground truth DDM
deformation.

The compressed two-layer model can significantly reduce the
memory footprint and the run-time computation cost by sharing
the expensive computation of non-linear deformation to a small set
of virtual bones, and then, linearly interpolating the deformation to
the high-resolution mesh. This idea is similar to the previous work
by Kavan et al. [2009] and the later work by Le and Deng [2013].
The parameters of our compression model are computed by a

continuous example-based technique, in which we formulate the
problem as the compression error minimization on an uncountable
set of example poses (§3). Compared to the traditional example-
based techniques, which use a countable set of discrete poses, our
method offers several advantages:
• The continuous formulation provides an elegant metric for
the compression error over the set of example poses. Our
analytical solution creates a non-linear mapping of the DDM
multi-weights (Eq. (11b) and Eq. (11c)) so that the L2 norm on
the mapped multi-weights resembles the compression error
(Eq. (11a)).
• Our method uses unlimited amounts of data. The data sam-
pling is controlled by high-level parameters such as the ranges

of motion for example poses (§3.6). This approach helps to
reduce the data dependency and produce more robust results.
• The time complexity of our compression does not depend
on the number of example poses, therefore the run-time of
our method is significantly faster compared to the traditional
discrete example-based techniques.
• Our continuous formulation is linear, which allows using
well-studied optimization techniques. Specifically, our opti-
mization employs the dictionary learning and sparse coding
framework (§4).

In addition to the main contribution, which is the formulation
of continuous example-based DDM compression, this paper also
presents:
• The minimization algorithm for the formulated compression
error, including a novel DDM multi-weights update (§4.3).
• A modification to solve the floating-point cancellation issue
of the DDM (§5). This modification allows more robust com-
putation when using lower precision floating-point numbers
and offers more skinning performance on less storage.
• An extensive analysis of most of the steps in our pipeline
(§7).

2 RELATED WORK
In the previous section, we reviewed the state-of-the-art direct skin-
ning methods, such as LBS, LMS, SBS, DQS, CoR, and DDM. On
top of these models, the skinning quality can be further improved
by adding helper bones [Mohr and Gleicher 2003; Mukai 2015;
Mukai and Kuriyama 2016], decomposing transformations [Jacob-
son and Sorkine 2011; Kavan and Sorkine 2012], or adding corrective
shapes [Kry et al. 2002; Lewis et al. 2000; Sloan et al. 2001]. These
setups are typically complex. Their quality and cost heavily depend
on the talent of rigging artists, where many extra helper bones,
extra weights, or corrective shapes are just used to correct skinning
artifacts.
Setup burdens can be reduced by using indirect skinning meth-

ods [Jacobson et al. 2012; Sorkine and Alexa 2007; Sumner and
Popović 2004; Sumner et al. 2005; Vaillant et al. 2013, 2014]. Typi-
cally, these methods formulate non-linear problems locally, which
better resemble the deformation properties of materials. However,
the main limitation of these methods is the iterative computation,
which can greatly impact the performance due to the overhead of
global synchronizations between iterations.

A popular indirect method is Delta Mush (DM) [Mancewicz et al.
2014]. It is a versatile mesh deformer that improves any non-smooth
deformation. The main idea of DM is to first apply mesh smoothing,
a.k.a. “mushing”, on top of an arbitrary deformed mesh, which will
smooth both deformation and surface details. Then, the surface
details are added back to the smooth mesh to produce the final
deformation. In this step, the surface details are the difference be-
tween the original (undeformed) mesh and its smooth version in
the local coordinate frame, a.k.a. the “delta”. Practically, DM can be
applied on top of rigid-bind skinning to produce smooth deforma-
tion. This process does not require smooth bone-vertex skinning
weights. However, the main bottleneck of DM is its iterative Lapla-
cian smoothing of every frame of the animation, which prevents
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parallel implementations in a single pass. This limitation is similar
to the issue of indirect skinning methods. For its characteristics, DM
is widely used in industry, especially in movie production, due to
the low requirement on real-time performance.
The more compute-intensive approaches with high-quality are

simulationmethods [Hahn et al. 2012, 2013; Ichim et al. 2017; Kadleček
et al. 2016; Lee et al. 2009; Li et al. 2013; Liu et al. 2013; McAdams et al.
2011b; Rémillard and Kry 2013; Saito et al. 2015; Smith et al. 2018;
Teran et al. 2005]. These methods can generate many complex effects
such as skin sliding, collision, muscle bulging, or jiggling. However,
their performance is not suitable for real-time applications.

Skinning from examples formulates the problem as a general data
regression that learns the map from skeleton articulation to vertex
displacements [Anguelov et al. 2005; Bailey et al. 2018; Feng et al.
2008; Gao et al. 2016; Jones et al. 2016; Loper et al. 2014, 2015;
Wang et al. 2007]. These models can be trained with the input
from simulation methods or corrective shapes made by artists, a.k.a
example poses. These models have high approximation power once
they are trained on a large amount of data. In addition, due to the
complexity of the machine learning model, implementing these
methods with GPU shaders is challenging.

There is a family of example-based skinning methods specifically
designed around linear models [Hasler et al. 2010; James and Twigg
2005; Kavan et al. 2010; Le and Deng 2012, 2014]. These methods
are highly compatible with graphics and animation engines due
to their model representations (LBS). In addition, some units of
these methods can be used in other tasks for LBS; for example, con-
strained linear least squares solvers are used for solving skinning
weights [James and Twigg 2005] and weights sparsification [Landre-
neau and Schaefer 2010], and Procrustes analysis is used for solving
bone transformations [Hasler et al. 2010; Le and Deng 2012].

Our idea of reducing the cost of skinning models by a two-layer
compression is similar to previous attempts [Kavan et al. 2009; Le
and Deng 2013]. Kavan et al. [2009] reduce the cost of DQS by
splitting it into a small DQS layer and a large LBS layer. The op-
timization of this model is specifically designed for DQS, which
requires an explicit calculation of dual quaternion derivatives. Le
and Deng [2013] compress a dense LBS by splitting it into a small,
dense LBS layer on top and a large, sparse, LBS layer at the bottom.
The problem is formulated and solved as a sparse compression of the
skinning weight matrix. While we use this optimization framework,
the major difference of our work is the continuous formulation and
constrained update to keep the multi-weights in a valid domain of
DDM weights.

3 PROBLEM FORMULATION
We solve the parameters of the compressed model by minimizing the
mean squared compression error over a set of example poses. Instead
of using a countable set of poses, we carefully design a continuous
sampling strategy of poses so that the compression error can be
analytically computed from the distribution of bone transformations
(Eq. (11)). In particular, this formulation maps the original DDM
multi-weights to a new space so that the compression error can be
measured by a linear system (Eq. (11b)). This map is composed of
four consecutive steps, where each step is a map of R4×4 → R4×4:

• The linearization map (§3.3) relaxes the (non-linear) orthogo-
nal constraint of DDM;
• The hierarchical map (§3.4) handles the skeleton structure;
• The coordinate changing map (§3.5) converts non-uniform
transformation sampling in world space to uniform transfor-
mation sampling in local joint space;
• The continuous sampling map (§3.6) analytically computes
the distribution of uniform transformation sampling with
controllable rotation and translation ranges.

This strategy allows for constructing the objective function with-
out explicit summing over example poses like the traditional example-
based methods while still retaining the high-level control over the
skeleton hierarchical and the range of motions.

3.1 Data
The input for our compression method is a DDM skinning character
model, including:
• the geometry consists of 𝑛 vertices, where u𝑖 ∈ R4 is the
homogeneous coordinate of vertex 𝑖 at the rest pose;
• theDDM skinningmodelwith𝑚master bones and pre-computed
multi-weights {Ω 𝑗𝑖 ∈ R4×4 | 𝑗 = 1..𝑚, 𝑖 = 1..𝑛}, where Ω 𝑗𝑖

denotes the multi-weight of bone 𝑗 on vertex 𝑖;
• the skeletal hierarchy, defined by a hierarchical matrix H ∈
{0, 1}𝑚×𝑚 , where:

ℎ𝛾 𝑗 =

{
1 if 𝑗 = 𝛾 or bone 𝑗 is a descendant of bone 𝛾 ,
0 otherwise;

(1)

• the bind pose {B𝑗 ∈ R4×4 | 𝑗 = 1..𝑚}, where B𝑗 denotes the
rigid transformation in the world coordinate of bone 𝑗 (world
transformation) at the rest pose;
• the ranges of motion {𝑟 𝑗 ∈ R and 𝑡 𝑗 ∈ R | 𝑗 = 1..𝑚}, where
[−𝑟 𝑗 ..𝑟 𝑗 ] denotes the range of Euler angles rotation and
[−𝑡 𝑗 ..𝑡 𝑗 ] denotes the range of xyz translation of bone 𝑗 with
respect to the bind pose.

With user-defined target virtual bones 𝑝 , the output compressed
model consists of two layers:
• The first layer is a DDM model that computes transforma-
tion of 𝑝 virtual bones, represented by multi-weights {Δ 𝑗𝑘 ∈
R4×4 | 𝑗 = 1..𝑚, 𝑘 = 1..𝑝}, where Δ 𝑗𝑘 denotes the multi-
weight of master bone 𝑗 on virtual bone 𝑘 .
• The second layer is a LBS model that computes 𝑛 mesh vertex
transformations, represented by scalar-weights {𝑎𝑘𝑖 ∈ R | 𝑘 =

1..𝑝, 𝑖 = 1..𝑛}, where 𝑎𝑘𝑖 is the weight of virtual bone 𝑘 on
vertex 𝑖 .

The multi-weights of DDM skinning models are constrained to
be symmetric and affine:
• Ω 𝑗𝑖 and Δ 𝑗𝑘 are symmetric ∀𝑖, 𝑗, 𝑘 ;
• ∑𝑚

𝑗=1 (Ω 𝑗𝑖 )4,4 = 1,∀𝑖 and ∑𝑚
𝑗=1 (Δ 𝑗𝑘 )4,4 = 1,∀𝑘 , where (·)4,4

denotes the element at the 4th row and 4th column of the
matrix.

The scalar-weights of the LBS model are constrained to be sparse,
non-negative, and affine:
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• ∥{𝑎𝑘𝑖 , 𝑘 = 1..𝑝}∥0 ≤ 𝑧,∀𝑖 , where ∥ · ∥0 denotes the zero-norm,
a.k.a. the number of non-zeros, of the set;
• 𝑎𝑘𝑖 ≥ 0,∀𝑖, 𝑘 ;
• ∑𝑝

𝑘=1 𝑎𝑘𝑖 = 1,∀𝑖 .

3.2 Example Poses
We design the set of example poses based on the skeletal hierarchy
and the bind pose.
The skeletal hierarchy, defined in Eq.(1), is a forest, which may

include unorganized bones and multiple roots (i.e. bones without a
parent), as illustrated in Fig. 3. We denote joint 𝑗 as the joint between
bone 𝑗 and its parent. If 𝑗 has no parent, i.e. unorganized bone or
root bone, joint 𝑗 and bone 𝑗 are the same. Note that the translation
part of the bind matrix B𝑗 is the position of joint 𝑗 at the rest pose
and the rotation part of B𝑗 represents the orientation of joint 𝑗 at
the rest pose.

Fig. 3. Illustration of skeletal hierarchy and our example pose sampling
strategy. Left: the rest pose. Right: one example pose with bone transforma-
tion sampled around the red joint and the transformation is carried down
to its descendants.

Our set of example poses S consists of 𝑚 uncountable subsets
S = ∪{S𝛾 | 𝛾 = 1..𝑚}, where S𝛾 denotes the set of example poses ob-
tained by uniformly sampling the transformation of bone 𝛾 around
its joint at the bind pose B𝛾 . Due to the skeletal hierarchy of bones,
the transformation of bone 𝛾 will be propagated to all of its descen-
dants (Fig. 3).

For each poseM ∈ S, defined by world transformations of bones
M = {M𝑗 | 𝑗 = 1..𝑚}, assuming:
• the input DDM model computes the deformation
{v𝑖 = Θ(M,O𝑖 )u𝑖 | 𝑖 = 1..𝑛},
• the output two-layer model computes the deformation
{ṽ𝑖 =

∑𝑝

𝑘=1 𝑎𝑘𝑖 Θ(M,D𝑘 )u𝑖 | 𝑖 = 1..𝑛},

where v𝑖 ∈ R4 and ṽ𝑖 ∈ R4 are the homogeneous coordinate
of vertex 𝑖 in the deformed pose, Θ(M,O𝑖 ) is the transformation
of vertex 𝑖 and Θ(M,D𝑘 ) is the transformation of virtual bone 𝑘 .
For convenience, we define O𝑖 = {Ω 𝑗𝑖 ∈ R4×4 | 𝑗 = 1..𝑚} as the
multi-weights of vertex 𝑖 and D𝑘 = {Δ 𝑗𝑘 ∈ R4×4 | 𝑗 = 1..𝑚} as the
multi-weights of virtual bone 𝑘 .
The mean squared compression error on set S is:

𝐸 =
1

𝑛
∑𝑚
𝛾=1 |S𝛾 |

𝑚∑
𝛾=1

𝑛∑
𝑖=1

∫
S𝛾

∥ṽ𝑖 − v𝑖 ∥22

=
1

𝑛
∑𝑚
𝛾=1 |S𝛾 |

𝑚∑
𝛾=1

𝑛∑
𝑖=1

∫
S𝛾

( 𝑝∑
𝑘=1

𝑎𝑘𝑖 Θ(M,D𝑘 ) − Θ(M,O𝑖 )
)
u𝑖

2

2
(2)

In this equation, |S𝛾 | denotes the size of S𝛾 , or the (uncountable)
number of example poses when sampling at joint 𝛾 . We assume that
the number of examples per joint are the same, i.e. |S𝛾 | = |S𝑗 |,∀𝛾, 𝑗 .

3.3 Linearization

The transformation Θ(M,O𝑖 ) =
[
R𝑖 t𝑖
0 1

]
is computed by Eq. 10 of

the original DDM model [Le and Lewis 2019]:

R𝑖 = arg min
Φ

ΦZ𝑖Λ𝑖
1/2 − (Q𝑖 − q𝑖p𝑖T)Z𝑖Λ𝑖

−1/2
2

𝐹
,

t𝑖 = q𝑖 − R𝑖p𝑖 ,

subject to: ΦTΦ = I , det(Φ) = 1 ,

where: Z𝑖Λ𝑖Z𝑖T = P𝑖 − p𝑖p𝑖T is the Eigen Decomposition[
P𝑖 p𝑖
p𝑖T 1

]
=

𝑚∑
𝑗=1

Ω𝑖 𝑗 ,

[
Q𝑖 q𝑖
p𝑖T 1

]
=

𝑚∑
𝑗=1

M𝑗Ω𝑖 𝑗 .

Relaxing the special orthogonal constraint ΦTΦ = I, det(Φ) =
1 yields the linear least square solution: R𝑖 = (Q𝑖 − q𝑖p𝑖T) (P𝑖 −
p𝑖p𝑖T)−1. Substituting this solution to t𝑖 = q𝑖 −R𝑖p𝑖 and simplifying
the equation yields:

Θ(M,O𝑖 ) =
[
R𝑖 t𝑖
0 1

]
=

𝑚∑
𝑗=1

M𝑗Ω 𝑗𝑖

( 𝑚∑
𝑗
′
=1

Ω 𝑗
′
𝑖

)−1

We define the linearization maps:

Ω
′
𝑗𝑖 = Ω 𝑗𝑖

( 𝑚∑
𝑗
′
=1

Ω 𝑗
′
𝑖

)−1
, Δ

′

𝑗𝑘
= Δ 𝑗𝑘

( 𝑚∑
𝑗
′
=1

Δ 𝑗
′
𝑘

)−1
(3)

Using these maps, we can linearize the DDM transformations
Θ(M,O𝑖 ) =

∑𝑚
𝑗=1 M𝑗Ω

′
𝑗𝑖
and Θ(M,D𝑘 ) =

∑𝑚
𝑗=1 M𝑗Δ

′

𝑗𝑘
. Substitut-

ing these approximations to Eq. (2) yields:

𝐸 =
1

𝑛
∑𝑚
𝛾=1 |S𝛾 |

𝑚∑
𝛾=1

𝑛∑
𝑖=1

∫
S𝛾

 𝑚∑
𝑗=1

M𝑗

( 𝑝∑
𝑘=1

𝑎𝑘𝑖Δ
′

𝑗𝑘
− Ω

′
𝑗𝑖

)
u𝑖

2

2
(4)

Note that we only linearize DDM models for compression but
not at run-time. The linearization can be viewed as the extracted
features for the compression.

3.4 Hierarchical Mapping
Let M𝛾 ∈ R4×4 be the world transformation matrix of bone 𝛾 in the
set of example poses S𝛾 . This transformation is only propagated to
descendent bones while all other (non-descendent) bones have no
transformation (identity). The world transformation matrix for an
arbitrary bone 𝑗 is:

M𝑗 = (1 − ℎ𝛾 𝑗 )I + ℎ𝛾 𝑗M𝛾

= I + ℎ𝛾 𝑗 (M𝛾 − I) ,
where: hierarchy ℎ𝛾 𝑗 is defined in Eq. (1),

I is the identity matrix.

Substituting to Eq. (4) yields:
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𝐸 =
1

𝑛
∑𝑚
𝛾=1 |S𝛾 |

𝑛∑
𝑖=1

𝑚∑
𝛾=1

∫
S𝛾

 𝑚∑
𝑗=1

( 𝑝∑
𝑘=1

𝑎𝑘𝑖Δ
′

𝑗𝑘
− Ω

′
𝑗𝑖

)
u𝑖

+
𝑚∑
𝑗=1

ℎ𝛾 𝑗
(
M𝛾 − I

) ( 𝑝∑
𝑘=1

𝑎𝑘𝑖Δ
′

𝑗𝑘
− Ω

′
𝑗𝑖

)
u𝑖

2

2

We have, by construction,
∑𝑚

𝑗=1 Δ
′

𝑗𝑘
=

∑𝑚
𝑗=1 Ω

′
𝑗𝑖

= I, and by
the affinity constraint of the LBS layer,

∑𝑝

𝑘=1 𝑎𝑘𝑖 = 1, therefore,∑𝑚
𝑗=1 (

∑𝑝

𝑘=1 𝑎𝑘𝑖Δ
′

𝑗𝑘
− Ω

′
𝑗𝑖
) = 0, and:

𝐸 =
1

𝑛
∑𝑚
𝛾=1 |S𝛾 |

𝑛∑
𝑖=1

𝑚∑
𝛾=1

∫
S𝛾

(M𝛾 − I
) 𝑚∑
𝑗=1

ℎ𝛾 𝑗

( 𝑝∑
𝑘=1

𝑎𝑘𝑖Δ
′

𝑗𝑘
− Ω

′
𝑗𝑖

)
u𝑖
2

2

=
1

𝑛
∑𝑚
𝛾=1 |S𝛾 |

𝑛∑
𝑖=1

𝑚∑
𝛾=1

∫
S𝛾

(M𝛾 − I
) ( 𝑝∑

𝑘=1
𝑎𝑘𝑖Δ

′′

𝛾𝑘
− Ω

′′
𝛾𝑖

)
u𝑖
2

2
, (5)

where Ω′′
𝛾𝑖

and Δ
′′

𝛾𝑘
are hierarchical maps:

Ω
′′
𝛾𝑖 =

𝑚∑
𝑗=1

ℎ𝛾 𝑗Ω
′
𝑗𝑖 , Δ

′′

𝛾𝑘
=

𝑚∑
𝑗=1

ℎ𝛾 𝑗Δ
′

𝑗𝑘
(6)

3.5 Coordinate Changing
For each set S𝛾 , we want to sample bone 𝛾 around joint 𝛾 so that the
sample mean ofM𝛾 is B𝛾 . It can be done by performing a coordinate
changeM𝛾 = B𝛾M𝛾B𝛾−1, and then sampling onM𝛾 .

From this coordinate change, we infer:M𝛾 − I = B𝛾M𝛾B𝛾−1 − I =
B𝛾 (M𝛾 − I)B𝛾−1. Because the leading B𝛾 is a rigid transformation,
we can remove it from the objective function (5) without changing
its L2 norm:

𝐸 =
1

𝑛
∑𝑚
𝛾=1 |S𝛾 |

𝑛∑
𝑖=1

𝑚∑
𝛾=1

∫
S𝛾

(M𝛾 − I
)
B𝛾−1

( 𝑝∑
𝑘=1

𝑎𝑘𝑖Δ
′′

𝛾𝑘
− Ω

′′
𝛾𝑖

)
u𝑖

2

2

=
1

𝑛
∑𝑚
𝛾=1 |S𝛾 |

𝑛∑
𝑖=1

𝑚∑
𝛾=1

∫
S𝛾

(M𝛾 − I
) ( 𝑝∑

𝑘=1
𝑎𝑘𝑖Δ

′′′

𝛾𝑘
− Ω

′′′
𝛾𝑖

)
u𝑖

2

2
, (7)

where Ω′′′
𝛾𝑖

and Δ
′′′

𝛾𝑘
are coordinate changing maps:

Ω
′′′
𝛾𝑖 = B𝛾−1Ω

′′
𝑗𝑖 , Δ

′′′

𝛾𝑘
= B𝛾−1Δ

′′

𝑗𝑘
(8)

3.6 Continuous Sampling

Letting =

( 𝑝∑
𝑘=1

𝑎𝑘𝑖Δ
′′′

𝛾𝑘
− Ω

′′′
𝛾𝑖

)
u𝑖 , the mean squared error on

example pose set S𝛾 is:

1
|S𝛾 |

∫
S𝛾

(M𝛾 − I)
2

2 =
1
|S𝛾 |

∫
S𝛾

tr
( T (M𝛾 − I)T (M𝛾 − I)

)
= tr

(
T
( 1
|S𝛾 |

∫
S𝛾

(M𝛾 − I)T (M𝛾 − I)
) )

(9)

Given the rotation range [−𝑟𝛾 ..𝑟𝛾 ] for boneM𝛾 , we can represent
the rotation part of M𝛾 as the product of 3 Euler angles rotation

matrices R𝑥R𝑦R𝑥 , where R𝑥 ,R𝑦,R𝑧 are uniformly sampled of x,
y, z rotations in range of [−𝑟𝛾 ..𝑟𝛾 ]. Also, the x, y, z translation
parts ofM𝛾 are uniformly sampled in the given translation range of
[−𝑡𝛾 ..𝑡𝛾 ]. We can directly compute the multiple integral:

S𝛾 2 =
1
|S𝛾 |

∫
S𝛾

(M𝛾 − I)T (M𝛾 − I)

=
1

8𝑟𝛾 3𝑡𝛾
3

∭
[−𝑡𝛾 ..𝑡𝛾 ]3

∭
[−𝑟𝛾 ..𝑟𝛾 ]3

( [
R t
0 1

]
− I

)T ( [
R t
0 1

]
− I

)
dR dt

=


𝛼𝛾

2 0 0 0
0 𝛼𝛾

2 0 0
0 0 𝛼𝛾

2 0
0 0 0 𝛽𝛾

2

 , where: 𝛼𝛾
2 = 2 − 2

sin2 𝑟𝛾

𝑟𝛾
2 , 𝛽𝛾

2 = 4𝑡𝛾 2
.

Note that the rotation range of each Euler angle can be set inde-
pendently. This could be useful to handle hinge joints (one Euler
angle is locked), or to add discrete example poses (three Euler angles
are fixed). We will leave this extension for the future.

Substituting S𝛾 2 to Eq. (9) and then substituting Eq. (9) and to
Eq. (7) yields:

𝐸 =
1
𝑛𝑚

𝑛∑
𝑖=1

𝑚∑
𝛾=1

S𝛾 ( 𝑝∑
𝑘=1

𝑎𝑘𝑖Δ
′′′

𝛾𝑘
− Ω

′′′
𝛾𝑖

)
u𝑖

2

2

We define the continuous sampling maps:

Ω
′′′′
𝛾𝑖 = S𝛾Ω

′′′
𝑗𝑖 , Δ

′′′′

𝛾𝑘
= S𝛾Δ

′′′

𝑗𝑘
(10)

Combining all maps (3), (6), (8), and (10) yields the final objective
function:

𝐸 =
1
𝑛𝑚

𝑛∑
𝑖=1

𝑚∑
𝛾=1

( 𝑝∑
𝑘=1

𝑎𝑘𝑖Δ
′′′′

𝛾𝑘
− Ω

′′′′
𝛾𝑖

)
u𝑖

2

2
,

where: Ω
′′′′
𝛾𝑖 = S𝛾B𝛾−1

( 𝑚∑
𝑗=1

ℎ𝛾 𝑗Ω 𝑗𝑖

) ( 𝑚∑
𝑗=1

Ω 𝑗𝑖

)−1
,

Δ
′′′′

𝛾𝑘
= S𝛾B𝛾−1

( 𝑚∑
𝑗=1

ℎ𝛾 𝑗Δ 𝑗𝑘

) ( 𝑚∑
𝑗=1

Δ 𝑗𝑘

)−1
,

S𝛾 =


𝛼𝛾 0 0 0
0 𝛼𝛾 0 0
0 0 𝛼𝛾 0
0 0 0 𝛽𝛾

 , 𝛼𝛾 =

√√
2 − 2

sin2 𝑟𝛾

𝑟𝛾
2 , 𝛽𝛾 = 2𝑡𝛾

(11a)

(11b)

(11c)

(11d)

4 OPTIMIZATION
Generally, the objective function (11a) resembles a matrix factoriza-
tion problem, and it can be solved by different strategies, depending
on the constraints, such as multiplicative updates [Lee and Seung
2000], alternating least squares [Kim and Park 2008], or block coor-
dinate descent [Aharon et al. 2006]. We choose the sparse coding
optimization for skinning solution [Le and Deng 2013]. An overview
of our optimization is presented in Algorithm 1, and all steps are
detailed in the following sections.
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ALGORITHM 1: Sparse Coding Optimization

input : {Ω′′′′
𝛾𝑖
|𝛾 = 1..𝑚, 𝑖 = 1..𝑛}, {u𝑖 |𝑖 = 1..𝑛}, parameter 𝑝 ,

output : {Δ𝛾𝑘 |𝛾 = 1..𝑚, 𝑘 = 1..𝑝 }, {𝑎𝑘𝑖 |𝑘 = 1..𝑝, 𝑖 = 1..𝑛}.

1 Initialize a feasible solution ; // §4.1

2 repeat
3 foreach vertex 𝑖 = 1..𝑛 do
4 Constrained least squares solve {𝑎𝑘𝑖 |𝑘 = 1..𝑝 } ; // §4.2

5 end
6 foreach virtual bone 𝑘 = 1..𝑝 do
7 Update {Δ𝛾𝑘 |𝛾 = 1..𝑚} ; // §4.3

8 end
9 foreach virtual bone 𝑘 = 1..𝑝 do
10 Re-initialize bone 𝑘 if

∑𝑛
𝑖=1 𝑎𝑖𝑘

2 < 𝜀 ; // §4.4

11 end
12 until converged or maximum number of iterations reached;

4.1 Initialization
In this step, we generate the set of 𝑝 virtual bones and their multi-
weights for the first DDM layer, where 𝑝 is provided by the user.
The second LBS layer is initialized as the rigid bind of each vertex to
the best virtual bone, i.e. LBS weights 𝑎𝑘𝑖 ∈ {0, 1}. Our initialization
includes two steps:
First, we use farthest points sampling [Schlömer et al. 2011] to

select 𝑝 vertices and assign multi-weights of each selected vertex
O𝑖 = {Ω 𝑗𝑖 | 𝑗 = 1..𝑚} to the multi-weights of one virtual bone
D𝑘 = {Δ 𝑗𝑘 | 𝑗 = 1..𝑚}. The distance between virtual bone 𝑘 and
vertex 𝑖 is computed by:

distance(𝑘, 𝑖) =
𝑚∑
𝛾=1

(Δ′′′′
𝛾𝑘
− Ω

′′′′
𝛾𝑖 )u𝑖

2
2

Then, we perform K-means clustering [Lloyd 1982] to refine the
initialization. The K-means clustering alternatively performs an
assignment step and an update step. In the assignment step, each
vertex 𝑖 is assigned to the closest virtual bone, i.e. setting LBS weight
𝑎
𝑘𝑖

= 1 for closest virtual bone 𝑘 and 𝑎𝑘𝑖 = 0,∀𝑘 ≠ 𝑘 . In the update
step, the multi-weights of each virtual bone 𝑘 are updated as the
average multi-weights of vertices assigned to 𝑘 , specifically:

Δ 𝑗𝑘 =
1∑𝑛

𝑖=1 𝑎𝑘𝑖

𝑛∑
𝑖=1

𝑎𝑘𝑖Ω 𝑗𝑖

Although the above Δ 𝑗𝑘 update is sub-optimized, Δwill be further
refined (§4.3). Therefore, this simple update is sufficient.

4.2 Scalar-weights (𝑎) Update
For robustness, we use the solution proposed by Le and Deng [2014],
which adds a smoothness regularization to guide the selection of
non-zero weights:

𝐸
′
= 𝐸 + 𝛼ALAT ,

where: A ∈ R𝑝×𝑛 is the matrix form of LBS weights 𝑎,
L ∈ R𝑛×𝑛 is the Laplacian matrix of the mesh,
𝛼 is the user-defined regularization strength.

This objective function is optimized by sequentially solving scalar
skinning weights for each vertex, where each per-vertex solver is
formulated as a non-negative least squares problem with an affinity
constraint.

4.3 Multi-weights (Δ) Update
In this step, we need to minimize the objective function (11a) with
respect to {Δ𝛾𝑘 | 𝛾 = 1..𝑚, 𝑘 = 1..𝑝} when {𝑎𝑘𝑖 | 𝑘 = 1..𝑝, 𝑖 = 1..𝑛}
are fixed. Unfortunately, this function is linear with respect to Δ

′′′′

𝛾𝑘

but not to Δ𝛾𝑘 . In addition, we cannot directly solve the inverse
of the map in Eq. (11c) to get Δ𝛾𝑘 from Δ

′′′′

𝛾𝑘
due to the symmetric

constraints on Δ𝛾𝑘 .
Similar to [Le and Deng 2013; Mairal et al. 2010], Δ′′′′

𝛾𝑘
can be

sequentially updated for each virtual bone 𝑘 while keeping oth-
ers {Δ′′′′

𝛾𝑘
′ ,∀𝑘

′
≠ 𝑘} fixed. The update rule for Δ′′′′

𝛾𝑘
to reduce the

objective function (11a) is:

Δ
′′′′ {𝑡+1}
𝛾𝑘

← Φ𝑘𝑘
−1

(
Γ
′′′′

𝛾𝑘
−

𝑝∑
𝜆=1

Δ
′′′′ {𝑡 }
𝛾𝜆

Φ𝜆𝑘

)
+ Δ

′′′′ {𝑡 }
𝛾𝑘

,

where: Φ𝜆𝑘 =

𝑛∑
𝑖=1

𝑎𝜆𝑖𝑎𝑘𝑖u𝑖
Tu𝑖 , Γ

′′′′

𝛾𝑘
=

𝑛∑
𝑖=1

Ω
′′′′
𝛾𝑖 𝑎𝑘𝑖u𝑖

Tu𝑖 .

Because the hierarchical map (Eq. (6)), the coordinate changing
map (Eq. (8)), and the continuous sampling map (Eq. (10)) are linear
and they have the same action on 𝛾 , we can invert these maps in
the above update rule and yield:

Δ
′ {𝑡+1}
𝛾𝑘

← Φ𝑘𝑘
−1

(
Γ
′

𝛾𝑘
−

𝑝∑
𝜆=1

Δ
′ {𝑡 }
𝜆𝑘

Φ𝜆𝑘

)
+ Δ

′ {𝑡 }
𝛾𝑘

,

where: Γ
′

𝛾𝑘
=

𝑛∑
𝑖=1

Ω
′
𝛾𝑖𝑎𝑘𝑖u𝑖

Tu𝑖 .

Multiplying both sides with
∑𝑚

𝑗=1 Δ
{𝑡+1}
𝑗𝑘

and using approxima-

tions
∑𝑚

𝑗=1 Δ
{𝑡+1}
𝑗𝑘

≈ ∑𝑚
𝑗=1 Δ

{𝑡 }
𝑗𝑘

yields:

Δ
{𝑡+1}
𝛾𝑘

←
(
Φ𝑘𝑘
−1

(
Γ
′

𝛾𝑘
−

𝑝∑
𝜆=1

Δ
′ {𝑡 }
𝛾𝜆

Φ𝜆𝑘

)
+ Δ

′ {𝑡 }
𝛾𝑘

) ( 𝑚∑
𝑗=1

Δ
{𝑡+1}
𝑗𝑘

)
≈
(
Φ𝑘𝑘
−1

(
Γ
′

𝛾𝑘
−

𝑝∑
𝜆=1

Δ
′ {𝑡 }
𝛾𝜆

Φ𝜆𝑘

)
+ Δ

′ {𝑡 }
𝛾𝑘

) ( 𝑚∑
𝑗=1

Δ
{𝑡 }
𝑗𝑘

)
= Φ𝑘𝑘

−1
(
Γ
′

𝛾𝑘
−

𝑝∑
𝜆=1

Δ
′ {𝑡 }
𝛾𝜆

Φ𝜆𝑘

) ( 𝑚∑
𝑗=1

Δ
{𝑡 }
𝑗𝑘

)
+ Δ{𝑡 }

𝛾𝑘

≈ 1
det(Φ𝑘𝑘 )

(
Γ
′

𝛾𝑘
−

𝑝∑
𝜆=1

Δ
′ {𝑡 }
𝛾𝜆

Φ𝜆𝑘

)
det

( 𝑚∑
𝑗=1

Δ
{𝑡 }
𝑗𝑘

)
+ Δ{𝑡 }

𝛾𝑘
,

where: det(·) denotes the determinant of the matrix.
The determinants are used to approximate the pre-multiplied

matrix inverse Φ𝑘𝑘−1 and the post-multiplied matrix
( ∑𝑚

𝑗=1 Δ
{𝑡 }
𝑗𝑘

)
so that the updated Δ

{𝑡+1}
𝛾𝑘

is closer to a symmetric matrix.
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Finally we normalize the multi-weights to enforce symmetry and
affinity constraints:

Δ
{𝑡+2}
𝛾𝑘

← 1
2
∑𝑚

𝑗=1
(
Δ
{𝑡+1}
𝛾𝑘

)
4,4

(
Δ
{𝑡+1}
𝛾𝑘

+ Δ{𝑡+1}
𝛾𝑘

T)
For robustness, the multi-weights update above is skipped for

virtual bone 𝑘 if det(Φ𝑘𝑘 ) < 𝜖 . Most likely, these bones will be
degenerate and they will be re-initialized (§4.4).

4.4 Re-initialization
Similar to the bone pruning idea proposed by Le and Deng [2014],
we can remove a virtual bone 𝑘 if its contribution is insignificant,
i.e.

∑𝑛
𝑖=1 𝑎𝑖𝑘

2 < 𝜀. Then, we can re-initialize bone 𝑘 by assigning
its multi-weights to the vertex with largest compression error and
resolve the LBS weights of the second layer.

5 FIXING FLOATING-POINT CANCELLATION
Assuming all vertex coordinates u𝑖 are in range of ±𝑟 . By construc-
tion, each multi-weight Δ 𝑗𝑘 is a weighted sum of u𝑖u𝑖T, therefore,
elements in the 3× 3 top left corner of Δ 𝑗𝑘 are in range of ±𝑟2. From
the DDM transformation of virtual bone 𝑘 on the first layer:

R𝑘 = U𝑘V𝑘T, t𝑘 = q𝑘 − R𝑘p𝑘 ,

where: Q𝑘 − q𝑘p𝑘T = U𝑘S𝑘V𝑘T is the SVD ,[
Q𝑘 q𝑘
p𝑘T 1

]
=

𝑚∑
𝑗=1

M𝑗Δ 𝑗𝑘 , (12)

we can infer that bothQ𝑘 and q𝑘p𝑘T are in range of ±𝑟2. Comput-
ing the difference Q𝑘 − q𝑘p𝑘T may cause a loss of significance and
inaccurate rotation. In practice, we observe this issue when using
single precision floating-point numbers as illustrated in Fig 4. The
issue is more noticeable when the bone translations or the rest pose
coordinates are further from the origin because these translations
cause more accumulated error in Q𝑘 .

Fig. 4. An example of the floating-point cancellation issue of DDM on
Ninja model. From left to right: using double precision weights, using single
precision weights, using single precision weights and translating the root
bone by 10m (the height of the model is 175cm), and lastly, using single
precision weights with our fix. We noticed no artifacts when translating the
root bone using double precision weights or using single precision weights
with our fix.

Instead of using double precision numbers to fix this issue, we
perform a coordinate change to the center of rotation p𝑘 , which is
equivalent to performing translation −p𝑘 :

Δ∗
𝑗𝑘

=

[
I −p𝑘
0 1

]
Δ 𝑗𝑘

[
I 0
−p𝑘T 1

]
⇒ Δ 𝑗𝑘 =

[
I p𝑘
0 1

]
Δ∗
𝑗𝑘

[
I 0

p𝑘T 1

]
Substituting Δ 𝑗𝑘 to Eq. (12) and simplifying equations yields:

[
Q𝑘 − q𝑘p𝑘T q𝑘

0 1

]
=

𝑚∑
𝑗=1

M𝑗

[
I p𝑘
0 1

]
Δ∗
𝑗𝑘

Letting Q∗
𝑘
= Q𝑘 − q𝑘p𝑘T yields:

R𝑘 = U𝑘V𝑘T , t𝑘 = q𝑘 − R𝑘p𝑘 ,

where: Q∗
𝑘
= U𝑘S𝑘V𝑘T is the SVD ,[

Q∗
𝑘

q𝑘
0 1

]
=

𝑚∑
𝑗=1

M𝑗

[
I p𝑘
0 1

]
Δ∗
𝑗𝑘

,

Δ∗
𝑗𝑘

=

[
I −p𝑘
0 1

]
Δ 𝑗𝑘

[
I 0
−p𝑘T 1

]
,[

P𝑘 p𝑘
p𝑘T 1

]
=

𝑚∑
𝑗=1

Δ 𝑗𝑘 .

(13a)

(13b)

(13c)

(13d)

(13e)

From the above equations, we modify the DDM model by these
steps:
• Computing and storing the center of rotation p𝑘 ∈ R3 by
Eq. (13e). This step requires storing three extra floating-point
numbers per virtual bone compared to the original model.
• Transforming and storing new multi-weights Δ∗

𝑘
by Eq. (13d).

Note that in our new model, we perform all calculations in
double precision and truncate to single precision when stor-
ing newmulti-weights. This reduces the storage requirements
by nearly half compared to the original model.

At run-time, we compute the transformation by:

• Computing the matrix blending
[
Q∗
𝑘

q𝑘
0 1

]
in Eq. (13c).

• Computing the SVD ofQ∗
𝑘
in Eq. (13b) and using it to compute

the rotation and translation (Eq. (13a)). This is the key step to
fix the floating-point cancellation issue, where the difference
of two matrices with large entries in the old model is replaced
by a direct computation of matrix Q∗

𝑘
with smaller entries.

6 RESULTS
We demonstrate the results on various LBS-rigged 3D models and
skeletal animations as listed in Table 1. Ninja model, Ortiz model,
and their animations are acquired from Mixamo1. Each model is
converted to DDM skinning as reported by Le and Lewis [2019],
where the LBS model is converted to rigid bind, and the smoothing
parameters of DDM are manually tuned using the distances from
the vertices to the associated bone. For convenience, we will use
DDM to refer to DDM variant 0 for the rest of this section.
We run the experiments with the same set of parameters for all

models: the number of non-zero virtual bones per vertex is set to
𝑧 = 8, the LBS weight regularizer (§4) is set to 𝛼 = 0.01, the virtual
bone update skipping threshold (§4.3) is set to 𝜖 = 16𝑐𝑚2, and the re-
initialization threshold (§4.4) is set to 𝜀 = 1. We run the optimization
for a maximum of 500 iterations or until the objective function 𝐸

changes less than 10−5𝐸 in 5 consecutive iterations. However, we
recommend adjusting 𝛼 , 𝜖 , and 𝜀 for models with different sizes or
mesh resolutions than our tested models.
1https://www.mixamo.com
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Table 1. The test models: 𝑛 denotes the number of vertices,𝑚 denotes the
number of (master) bones, and ℎ denotes the height of the model. Each
model was tested with three different numbers of virtual bones 𝑝 . The
root mean squared fitting errors 𝑅𝑀𝑆𝐸𝑓 𝑖𝑡 =

√
𝐸, where 𝐸 is described in

Eq. (11a). Our compression times are reported on a computer with an 8-core
3.00 GHz CPU. Our compression algorithm was implemented in C++ using
the Eigen library2.

Model Test 𝑝 𝑅𝑀𝑆𝐸𝑓 𝑖𝑡 Time

𝑛 = 12465 Ninja100 100 0.406 cm 1.8 mins
𝑚 = 52 Ninja200 200 0.248 cm 2.9 mins
ℎ = 175 cm Ninja500 500 0.159 cm 2.7 mins
𝑛 = 24798 Ortiz100 100 1.060 cm 3.9 mins
𝑚 = 65 Ortiz200 200 0.594 cm 5.8 mins
ℎ = 185 cm Ortiz500 500 0.391 cm 15.2 mins
𝑛 = 13694 Generic200 200 0.250 cm 3.2 mins
𝑚 = 100 Generic500 500 0.130 cm 14.0 mins
ℎ = 151 cm Generic1K 1000 0.073 cm 77.7 mins

For Ninja and Ortiz models, we set the rotation ranges for the hip
and all spine joints to [−𝑟𝛾 ..𝑟𝛾 ] = [−30◦ ..30◦] and rotation ranges
for other joints to [−120◦ ..120◦]. For Generic model, we compute the
rotation ranges from the tested animation. These different settings
are purely for testing purposes. In addition, we set all translation
ranges [−𝑡𝛾 ..𝑡𝛾 ] to 0 because our test models contain a single root
bone.

6.1 Virtual Bones
In this paper, we use red cubes to visualize virtual bones. At the rest
pose, virtual bones are aligned with the coordinate axes, and the
center for each virtual bone is put at the weighted centroid of the
vertices associated with it: c𝑘 =

( ∑𝑛
𝑖=1 𝑎𝑘𝑖

2u𝑖
)
/
( ∑𝑛

𝑖=1 𝑎𝑘𝑖
2) . This

setting is purely for visualization purposes and has no effect on
the quality or the performance of the results. Fig. 5 visualizes the
virtual bones for all tests. This visualization shows the adaptation
of our compression model to different deformation behaviours of
the input DDM models, where highly deformable regions have a
higher density of virtual bones.

6.2 DDM Effects
Our compression can closely approximate DDM, and it can repro-
duce common effects of DDM, such as skin sliding (Fig. 6) or negative
bulging (Fig. 7). For better visibility of these effects in motion, see
our accompanying video. Note that using pre-computed weights
DDM variant 5 for LBS can slightly improve the skinning quality;
however, it comes with the cost of extra skinning weights, i.e. a
denser model. We also include this setup and refer to it as “Dense
LBS” as opposed to “Sparse LBS”, which is the original LBS model
acquired from Mixamo or rigged by our artists.

6.3 Storage
We report the data storage compression in Table 2. Because themulti-
weights of DDM are symmetric, they can be stored in a compact
form using only 10 floats per multi-weight (instead of 16 floats).
The weights are stored in sparse structures with indices to non-zero

Fig. 5. Visualization of virtual bone distributions. Notice how virtual bones
(red) are densely distributed in highly deformable regions, such as shoulders,
hips, arm joints and leg joints.

Fig. 6. Our compression model can closely approximate DDM deformation,
therefore, it can also create skin sliding effects (indicated by the slope of
red lines). Notice how DDM and our model can create a skin sliding effect
while not over smoothing the elbow’s silhouette like LBS. Our method is
shown on Ortiz500 test data.

Fig. 7. Utilizing “negative bulging” effect, DDM (variant 0) and our model
can resolve the collapsing issue near the hip joint. Dense LBS, which is
DDM variant 5, shows less artifacts than Sparse LBS, which is the original
data from Mixamo. Our method is shown on Ninja500 test data.

elements. However, efficient GPU implementations may use more
on-device storage due to memory access and scheduling problems,
e.g. storing full 4 × 4 matrices or denser structures.
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Table 2. Storage cost comparison between our model, DDM and LBS. In
the last two columns: Sparse LBS denotes the original data, and Dense LBS
denotes the LBS generated by DDM variant 5. Model storage uses 32 bit
floats for scalar values and 32 bit integers for indices.

Test DDM Ours Ratio Sparse LBS Dense LBS

Ninja100
7119 KB

590 KB 12.1x
284 KB 697 KBNinja200 740 KB 9.6x

Ninja500 993 KB 7.2x
Ortiz100

21697 KB
1201 KB 18.1x

547 KB 2245 KBOrtiz200 1576 KB 13.8x
Ortiz500 1965 KB 11.2x

Generic200
8245 KB

714 KB 11.5x
623 KB 943 KBGeneric500 1028 KB 8.0x

Generic1K 1508 KB 5.5x

6.4 Run-time Performance
In Table 3, we compare the run-time performance of differentmodels.
For the CPU benchmark, all methods were implemented in C++
using the Eigen library2. For DDM and our model, we store the full
multi-weight matrix (16 floats). For the GPU benchmark, all methods
were implemented by DirectX 12’s HLSL shaders. Each symmetric
multi-weight is stored as 10 floats. For both benchmarks, we used
the 3 × 3 Singular Value Decomposition proposed by McAdams et
al. [2011a] with 4 iterations.
From this table, we can see an approximated performance im-

provement of 2 times when using our compression compared to the
original DDMmodel. In some cases, the performance of our model is
on par with LBS. Note that the performance of LBS also depends on
the sparseness of the skinning weights. Generally, denser weights
produce smoother deformation.

Table 3. Run-time performance comparison between our model, DDM and
LBS. In the last two columns: Sparse LBS denotes the original data, and
Dense LBS denotes the LBS generated by DDM variant 5. The average
skinning time per vertex (in nanoseconds) and the ratio are reported in the
form of 𝑔/𝑐 , where 𝑔 is the performance recorded on an NVIDIA GeForce
RTX 3090 GPU and 𝑐 is the performance reported on a single-core Intel
i7-5960X 3.00 GHz CPU. The average CPU times were calculated on a batch
of 100 characters and the average GPU times were calculated on a batch of
300 characters.

Test DDM Ours Ratio Sparse LBS Dense LBS

Ninja100
1.45/952

0.79/270 1.8x/3.5x
0.81/116 0.83/189Ninja200 0.79/283 1.8x/3.4x

Ninja500 0.83/366 1.7x/2.6x
Ortiz100

1.13/1114
0.48/256 2.4x/4.4x

0.48/110 0.52/310Ortiz200 0.51/320 2.2x/3.5x
Ortiz500 0.54/337 2.1x/3.3x

Generic200
1.44/958

0.73/264 2.0x/3.6x
0.71/198 0.73/255Generic500 0.77/333 1.9x/2.9x

Generic1K 0.86/426 1.7x/2.2x

2https://eigen.tuxfamily.org/

Fig. 8. Plot of reconstruction errors on animation sequences, i.e. the distance
of deformed positions between our model and DDM. x-axes represent time
frames and y-axes represent errors (in cm). At each frame: green lines
indicate median errors of all vertices, light green regions indicate error
values between the first quartile (25th percentile) to the third quartile (75th

percentile), blue lines indicate root mean squared errors of all vertices, red
lines indicate the maximum errors. The length for animations are: 55 frames
(Ninja), 96 frames (Ortiz), and 261 frames (Generic).

Fig. 9. Visualization of reconstruction error on selected poses, i.e. the dis-
tance of deformed positions between our model and DDM.

6.5 Deformation Error
Fig. 8 plots the reconstruction error over test animation sequences
and Fig. 9 shows selected poses in these animations. Please see our
accompanying video for these animations. Because our compres-
sion does not use explicit example poses, all test animations are
considered novel to our model as judged by the common standards
of supervised learning. From this figure, we can clearly see that
our approximations get better as we increase the number of virtual
bones. Because our model solves the least squares problem, maxi-
mum errors are significantly larger than mean errors or root mean
squared errors. But we believe this issue can be improved using a
smaller norm for the objective function, e.g. L1 norm, and the new
function can be optimized with other L1 optimization techniques,
e.g. iteratively re-weighted least squares [Bjorck 1996].

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.
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Fig. 10. The effect on using different range of motions (ROMs). Left: rotation
ROMs for every joints are uniformly set to [−120◦ ..120◦ ]. Right: rotation
ROMs are computed from the tested animation. With a good approximation
for ROMs, our method can find a better distribution of virtual bones, e.g.
using more virtual bones on shoulders, arm joints and leg joints and less
virtual bones on the body, resulting lower compression error as visualized
at the bottom.

Fig. 11. Setting translation sampling range for a model with unorganized
bones can generate slightly better approximation near the bones. The result
on the left was generated with fixed bone translations (zero range) while the
result in the middle was generated by setting the bone translation sampling
ranges to [−2..2], where the height of the bar is 1. In both tests, we set the
number of virtual bones to 10 and rotation sampling ranges to [−90◦ ..90◦ ].

7 VALIDATION AND DISCUSSION
In this section, we break down the algorithm to show the effect of
individual steps. Generally, we compare the results when running
our method with or without each formulation. We test our method
with an extra example (a bar) with 𝑝 = 20 virtual bones using the
same parameters as we mentioned previously. This model is shown
in Fig. 2.

7.1 Range of Motion Map
Fig. 10 shows a comparison between setting the same range of
motions (ROMs) and setting different ROMs for every joint. From
the continuous sampling maps in Eq. (10), we can see that using the
same ROMs is equivalent to multiplying all terms in the objective
function with the same constant, which is the same as omitting
this map in the formulation. We can see that omitting this map
significantly affects the quality of the result, as shown in Fig. 10.
In Fig. 11, we demonstrate the effect of setting the translation

range [−𝑡𝛾 ..𝑡𝛾 ] (in §3.6) for a model with unorganized bones. This
setup only provided a small improvement on the approximation
error for poses with large bone translations and small bone rotations.
The improvement is more noticeable on vertices that are closer to the
bones. One possible reason is that rotating bones around their center
of rotation moves vertices further from the bones more significantly,
which can overcome the effect of translating bones in example poses.

Fig. 12. Our result with hierarchical map (bottom left) is significantly better
than the result without hierarchical map (bottom right) due to proper exam-
ple poses, e.g. top left. The example poses generated without hierarchical
map might not be in the proper animation range, e.g. top right. Both exam-
ple poses here are generated by rotating the red joint by 90◦. The ground
truth (DDM) is shown in the middle.

7.2 Hierarchical Map
In Fig. 12, we show an example of running our algorithm with-
out hierarchical map (Eq. (6)). This is equivalent to discarding the
skeleton structure so the transformation on one bone will not prop-
agate down the stream when sampling the pose space. As the result,
the set of training examples will include poses that do not appear
in the valid range of motion, which will bias the compression to
sub-optimized models.

7.3 Coordinate Changing Map
Fig. 13 shows an example of discarding both coordinate changing
map (Eq. (8)) and hierarchical map from our formulation. As shown
in the figure, the result gets worse than discarding hierarchical map
alone. This is because the training data deviates further from the
valid range of animation.

Fig. 13. The result without coordinate changing map and without hierar-
chical map (left) is worse than the one with coordinate changing map (as
shown in Fig. 9). The example poses generated without coordinate changing
map only rotate bones around the origin as the example showed on the
right.

Fig. 14. The result of only LBS weights update for 𝑝 = 4 virtual bones
(same as number of master bones) shows that our mapping, including the
linearization map, works reasonably well.
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7.4 Linearization Map
Theoretically, our linearization (Eq. (3)) is not optimized for non-
linear operators in DDM. However, it works reasonably well for our
purpose. In Fig. 14, we show a test where we generate only 𝑝 = 4 vir-
tual bones, which is the same as the number of master bones𝑚 = 4.
We manually initialize each virtual bone to the group of vertices that
mostly follow the rigid transformation of one master bone. Then,
we update LBS weights for the second layer without any smooth-
ness regularizer (𝛼 = 0) and without any multi-weight update. The
deformation of the output model in Fig. 14 is smooth and fairly esti-
mates the DDM deformation. Because the virtual bones are sparsely
distributed in this test, we can see that all mappings (Eq. (11b) and
Eq. (11c)) work well. Combining with the tests in the previous sec-
tions (§7.2 and §7.3), we can reason that our linearization map also
works.

7.5 Multi-weights (Δ) Update
In Fig. 15 we show the difference in approximation errors of models
generated with and without multi-weights update (§4.3), where
we see that our multi-weights update can noticeably improve the
quality.

Fig. 15. Left: approximation error on the model generated without perform-
ing multi-weights Δ update. Right: result of the same pipeline but with
multi-weights update.

7.6 Comparison with Helper Joint Rig
In Fig. 16, we show a comparison with a LBS model equipped with
helper joints. Note that this comparison is neither fair nor scientifi-
cally accurate. Themodel with helper joints is setup and animated by
professional artists with a well-known pipeline. Conversely, DDM
model is quite new and there is not much knowledge about the
setup. Visually, we can see some correspondences between our vir-
tual bones and helper joints. We also notice that our model tends
to put no virtual bone at biceps or triceps. The possible reason is
that DDM does not handle muscle bulging, and therefore out model
cannot resolve this information.

7.7 Comparison with Elasticity-Inspired Skinning
In this section, we compare our DDM-based skinning with the
elasticity-inspired skinning method [Kavan and Sorkine 2012]. This
technique computes good skinning weights for classical skinning
methods such as LBS or DQS by decomposing the rotation at joints
into independent components (swing and twist) and computing sep-
arate skinning weights for these components. The final deformation
combines the best of both worlds where LBS is applied on swing
motions and spherical blending is applied on twist motions, thus
avoiding both candy-wrapper artifacts (for twisting) and bulging
artifacts (for swinging), as shown on the left of Fig. 17.

Fig. 16. A subjective comparison between our model and the professional
rig with helper joints. We can see some correspondences between our virtual
bones and helper joints that add non-linear correction for LBS. Subjectively,
our model can produce more features of the professional rig compared to
the pure LBS model setup on the master bones.

Fig. 17. Left: elasticity-inspired skinning [Kavan and Sorkine 2012] with
different setups: directly using computed skinning weights for LBS (Elas-
tic LBS), for DQS (Elastic DQS), or for the combined deformer (Elastic
Swing/Twist). Right: our DDM-based skinning with different setups by
changing the global rotation and translation smoothness. Each setup shows
a group of three poses in order: bending (swinging), twisting, and both
bending+twisting.

By combining different levels of smoothness for rotation and
translation, DDM and our proposed model can achieve a similar
effect, as shown on the right-hand side of Fig. 17. Compared to
elasticity-inspired skinning, DDM-based methods provide better
customization as rotation smoothness and translation smoothness
can be controlled at both global and local levels. However, elasticity-
inspired skinning can completely eliminate volume loss on twisting,
where DDM-based methods can only reduce it to a certain level.

Another advantage of DDM-based methods is the ability to mix
in the “negative bulging” effect [Le and Lewis 2019], which allows
DDM and our proposed model to approximate different deforma-
tion behavior, including as-rigid-as-possible (ARAP) deformations
[Sorkine and Alexa 2007] as shown in Fig. 18.

A limitation of swing/twist deformers [Kavan and Sorkine 2012]
is the gimbal lock issue [Baerlocher 2001], which prevents the ex-
traction of unique twist rotation and leads to deformation artifacts
(Fig. 19). This issue can be handled by explicitly specifying twist
angles as the first component in the joint rotation order. However,
this solution can potentially limit practical setups in production.
Also, it does not work for models with unorganized bones (Fig. 18).
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Fig. 18. The deformation space of elasticity-inspired skinning [Kavan and
Sorkine 2012] is constrained to a combination of linear blending and spher-
ical blending. Because the middle part of the bar is always assigned the
skinning weight of (0.5, 0.5), it protrudes outward from the bend and cannot
approximate the behavior of ARAP deformation [Sorkine and Alexa 2007]. In
addition, swing/twist motion cannot be extracted from unorganized bones,
so Kavan and Sorkine’s model [2012] is dominated by the joint-based de-
former, which is LBS with joint handle-based bounded biharmonic weights
[Jacobson et al. 2011].

Fig. 19. The gimbal lock issue when decomposing the joint rotation to swing
and twist motions causes deformation artifacts for elasticity-inspired skin-
ning near rotations at multiple of 90◦ where the decomposed swing/twist
can be flipped.

8 CONCLUSION
In this paper, we have presented a compression method to convert
an expensive DDM model into a cheaper skinning model with two
layers: a smaller DDMmodel on top of a large but sparse LBS model.
This compression can significantly reduce the storage cost and
improve run-time performance.

The compressed model is automatically computed from the DDM
multi-weights. We have formulated a novel continuous example-
based problem for optimizing model parameters. Our problem for-
mulation is simple and elegant while still offering high-level controls
such as using the skeleton hierarchy or controlling the range of
motions for sampling. We have also introduced practical techniques
to optimize our DDMmulti-weights in the first layer and a fix for the
floating-point cancellation issue of the original DDM. Our extensive
analysis showed that the proposed model offers similar deformation
quality to DDM and comparable run-time performance with LBS.
In the future, we would like to target some existing issues and

explore new directions, such as using different norm for the objective
function to reduce the maximum compression error and mixing
continuous examples with traditional discrete examples.
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