
A Magic Wand for Motion Capture Editing and Edit Propagation
Christopher J. Dean

Victoria University of Wellington
christopherjosephdean@gmail.com

J.P. Lewis
SEED, Electronic Arts
noisebrain@gmail.com

Andrew Chalmers
Victoria University of Wellington
andrew.chalmers@ecs.vuw.ac.nz

ABSTRACT

This paper introduces a newmethod for editing character animation,
by using a data-driven pose distance as a falloff to interpolate edited
poses seamlessly into a motion sequence. This pose distance is
defined using Green’s function of the pose space Laplacian. The
resulting falloff shape and timing are derived from and reflect the
motion itself, replacing the need for a manually adjusted falloff
spline. This data-driven region of influence is somewhat analogous
to the difference between a generic 2D spline and the “magic wand”
selection in an image editor, but applied to the animation domain.
It also supports powerful non-local edit propagation in which edits
are applied to all similar poses in the entire animation sequence.

CCS CONCEPTS

• Computing methodologies→ Animation;

KEYWORDS

Character Animation, Motion Editing, Motion Retargeting

ACM Reference Format:

Christopher J. Dean, J.P. Lewis, and Andrew Chalmers. 2018. A Magic Wand
for Motion Capture Editing and Edit Propagation. In SIGGRAPH Asia 2018
Technical Briefs (SA ’18 Technical Briefs), December 4–7, 2018, Tokyo, Japan.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3283254.3283268

1 INTRODUCTION

Motion capture (mocap) performances provide detailed and real-
istic animations, but both editing of motion capture and custom
animation are routinely required for retargeting, adjusting motion
to new virtual environments, and other reasons. A typical skeletal
rig may have 150 degrees of freedom (or more) that need to be
specified across hundreds of frames. If changes are needed, editing
these animation sequences is time consuming.

Many existing production techniques rely on spline interpola-
tion of corrections made by the artist across the timeline. These
approaches have two disadvantages: First, the appropriate temporal
region of influence of a spline-based edit differs greatly for different
joints. Thus the splines need to be manually defined on a case-by-
case basis—a cumbersome task for the artist. More fundamentally,
splines always have the same generic smooth shape, and may not
appear natural for realistic motion. Research in motion editing is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SA ’18 Technical Briefs , December 4–7, 2018, Tokyo, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6062-3/18/12. . . $15.00
https://doi.org/10.1145/3283254.3283268

often founded on space-time optimization approaches. In general,
these methods are similarly data agnostic – indeed, an optimization
minimizing an integrated squared derivative is just an underlying
formulation of a spline.

Instead of relying on splines, we propose to let the data “speak
for itself” by basing the falloff directly on the change of pose of
the underlying motion. A data-driven falloff should have these
characteristics:

• It should be proportional to the change in pose and corre-
spond to distance on the manifold of movement.

• it should be smooth if and only if the change in pose is
smooth.

• It should be reasonably efficient to compute, thereby allow-
ing interactive edits.

Unfortunately, defining a distance on poses has well known diffi-
culties: Euclidean distances are not appropriate due to the rotational
nature of an articulated body, while on the other hand, distances
founded on concatenated rotational degrees of freedom (dofs) have
the problem that major joints such as the shoulder have a much
larger influence than the distal joint of a finger. This problem has
been addressed by weighting each dof differently, though (depend-
ing on the underlying representation of rotations) these weights
may need to be recomputed at each pose.

In this paper we instead start from the idea that the Laplacian
reflects the geometry of a signal or manifold [Levy 2006]. With this
in mind, we show that the Green’s function of the Laplacian can be
used to provide a natural similarity measure between poses.

Our data-driven falloff is somewhat analogous to the difference
between a generic spline and the intelligent region selection avail-
able in popular image editing software such as Photoshop (e.g. al-
gorithms such as [Gleicher 1995; Mortensen and Barrett 1995]),
but applied to the animation domain. The result is intelligent in-
terpolation that blends new poses into the existing motion. For
cyclical movement, the data-driven falloff can be applied across all
similar poses (with strength depending on their relative similarity),
providing non-local edit propagation. This is particularly powerful
since human and animal motion often involves cyclical gaits.

2 RELATEDWORK

Research on motion editing spans several decades, but most of this
work is data agnostic and thus not directly related to our approach.
[Grochow et al. 2004] pioneered research on data-aware motion
editing, drawing on a manifold learning technique. In Section 4
we compare our work to classic [Tenenbaum et al. 2000] and more
recent [Coifman and Lafon 2006] manifold learning methods.

https://doi.org/10.1145/3283254.3283268
https://doi.org/10.1145/3283254.3283268

SA ’18 Technical Briefs , December 4–7, 2018, Tokyo, Japan Christopher J. Dean, J.P. Lewis, and Andrew Chalmers

3 METHOD

Consider a linear differential equation ∆u = c where c expresses
some “forcing function” or constraints, and ∆ is a differential op-
erator (the Laplacian in our case). The Green’s function solution
of the differential equation expresses the unknown solution u as a
weighted sum or integral

u(x) =
∫
M
G(x, x′)c(x′)dM

of the forcing function, where the Green’s functionG(x, x′) between
points x, x′ serves as the weights, that is, it expresses how much
the solution at x is influenced by the forcing function at location
x′. In our application, a sparse set of artist edits play the role of the
forcing function, and G(x, x′) will serve as weights to intelligently
propagate those edits across the motion.

Body poses are represented as a vector containing the concate-
nated rotational degrees of freedom of the skeleton. Our approach
is inspired by the Lie algebra/exponential map idea (see [Anjyo and
Ochiai 2017; Tournier et al. 2009] for details) – the changes to pose
resulting from artist edits are represented using log quaternions
and results are converted back to drive the final poses using the
exponential map [Grassia 1998].

3.1 The Pose Laplacian

Following [Belkin and Niyogi 2002], we use the graph Laplacian
as an approximation to the Laplace-Beltrami operator. We define a
pose adjacency matrix using a kernel

Ki, j = exp

(
−
d(pi , pj)2

2σ 2

)
(1)

where pi , pj are pose vectors that describe a skeletal configuration
(e.g. joint angles). The underlying distance d(pi , pj) between pose
vectors should reflect the editing purpose, for example, it may
be desirable to include the temporal distance between poses. On
the other hand, it is only important that this distance be locally
representative. The width σ should be adjusted so that all large
distances are near zero under the kernel; these will be completed
by the Green’s function (below).

To create the Laplacian, let r be a vector of the row sums of K.
With D = diag(r) the normalized adjacency matrix A is

A = D−1/2KD−1/2, (2)

This results in the Laplacian L = DA − A where DA is the corre-
sponding degreematrix (identity). Next we compute the eigenvalues
and eigenvectors λk , ϕk of L. This computation occurs only once
and requires a fraction of a second for a motion sequence of the
typical length of several hundred frames.

3.2 Green’s function

The Green’s function similarity between poses pi and pj is obtained
in terms of the eigen-decomposition of the Laplacian

G(pi , pj) =
∑
k>0

ϕk (pi)ϕk (pj)
λk

. (3)

We precompute the matrix P of all pose similarities Pi j = G(pi , pj).
Typically only a few terms of the sum (3) are needed since it is
dominated by the smaller eigenvalues. While the kernel (1) also

provides a similarity measure (indeed, the Green’s function matrix
P is a straightforward modification of the eigenvalues of the K),
the Green’s function has a natural interpretation as the effect of
a change at pose pi on pose pj , which is directly related to our
purpose.

3.3 Edited Pose Interpolation

Here we illustrate a simple method for applying the Green’s func-
tion distance from equation (3) as an animation falloff. The artist
has edited frame i , changing the pose from pi to p′i . We wish to
propagate this change to the surrounding motion. The difference
between these poses represented in the log map as the delta-pose

δpi = log(p′i) − log(pi). (4)

Let w denote a copy of the ith row of P that has been scaled to
lie between 0 and 1 across the edited region of the timeline. That is,
the normalized pose distance must be 0 at the edited pose and rise
to 1 at the most dissimilar pose in the region to be edited (Fig. 1).

For all frames j in the editing sequence, the Green’s function-
weighted edit is then computed as

p′j = exp
(
log(pj) +wi j δpi

)
. (5)

At pi , the original location, the weight is maximum and fully ac-
tivates the delta-pose. Further down the timeline, the weight ta-
pers off, eventually deactivating the edit. Note that the weight can
increase after decaying to zero, particularly when the motion is
quasi-periodic. The artist selects the region of the motion to edit,
and they can choose to include such repetition or discard it and
focus only on a single movement.

0 20 40 60 80 100 120
Frame Number

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Green’s function distance from frame 53 in a walk

cycle to all frames in the timeline. We see that the pose dis-

tance is zero at the current frame (yellow bar), as the pose is
compared to itself. Please enlarge figures to see details.

4 RESULTS

We compared the Green’s function distance to two other manifold
learning techniques: ISOMAP [Tenenbaum et al. 2000] and diffu-
sion maps [Coifman and Lafon 2006]. Diffusion maps have not been
historically applied to animation, but yield results of comparable
quality to MDS and ISOMAP in our experiments. In these experi-
ments, we process mocap data from [CMU 2016]. For illustration,
we have chosen animated run cycles due to their comprehensible
and periodic nature.

Magic Wand for Motion Capture SA ’18 Technical Briefs , December 4–7, 2018, Tokyo, Japan

0 20 40 60 80 100 120 140 160
Frame Number

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Green’s function pose distance for a different an-

imation. In this animation, a character is turning around

mid-walk. It is non-periodic, so there are multiple phases to

the action (reflected by bends in the curve): walk, stop, turn,

and walk.

4.1 Pose Distance

Using the normalized pose distance calculated from Equation 3,
Fig. 1 shows the distance from a control pose to every other pose
in a 130-frame animation. This is periodic motion, as an actor steps
right-left-right-left and so on. Small dents, bends, and plateaus
indicate the prominent characteristics of the skeletal motion.

In Fig. 2, we see the pose distances for a non-periodic motion.
This actor abruptly turns around in the middle of a walk. There
appear to be points of transition in the motion, but the beginning
and end of a falloff is not well defined from this distance measure.
Inflection points and bends serve as good guidelines for falloff
boundaries, but an artist may want customized control over the
falloff scaling for blending their edit into this motion.

We compared our results with those obtained with two alternate
algorithms, ISOMAP and diffusion maps. In these manifold learning
methods, poses lie in an embedded space in which the L2 distance
approximates distance on the manifold of movement. Fig. 3a de-
picts an overlaid comparison of all three distances. Overall, the
three methods detect the same animation characteristics and reveal
periodic motion behaviors across the entire timeline.

Fig. 3b takes a closer look at the distance falloff near the edited
pose. Zooming in, the local pose information is very rounded for
Green’s function, somewhat tapered in the diffusion map result,
while ISOMAP produces a sharp corner. The sharp ISOMAP falloff
results in an undesirable quick “snap” into and out of the edited
pose. This effect is noted in the accompanying video results. A
smooth falloff causes the animation to ease gently through the
targeted pose, demonstrating the effectiveness of Green’s function
weights for animation editing.

4.2 Edited Animation

Fig. 4 demonstrates the edit propagation in practice. For repetitive
actions, a single edited pose and falloff animation can automatically
propagate to all instances of similar poses in the timeline. In Fig. 4,
the artist wishes for the character to lift their knees while running.
With one simple edit, the entire run-cycle is changed.

The efficacy of the animated falloff can be observed in the ac-
companying results video. As seen in Fig. 3b, pose edits using the
Green’s function distance are smoothly incorporated and preserve

the character of the motion. However, large edits or physics-altering
edits introduce inaccuracies in the animation. For example, editing
a foot that is planted on the ground will produce the infamous
’skating foot’ if not treated as a constrained problem.

As seen in Fig. 5, the Green’s function distance changes signifi-
cantly on a global scale for different values of the kernel width σ .
Local information near the edited frame is more stable, but a slight
offset of 2-3 frames is sometimes introduced for bad values. This
parameter should be adjusted by the artist for desired results.

In summary, our approach requires the artist to adjust only σ
and the desired beginning and end of the edit range – and the latter
decision is informed by inspecting the pose distance curves. Thus
our approach requires much less work than manually editing a
number of spline curves, while simultaneously being “data aware”.

4.3 Evaluation

Fig. 6 validates that for a simple low-dimensional case, our method
produces similar results to spline animation. We look at the vertical
movement channel of the ankle in a walk cycle. First, five keyframes
were used to create the motion on a foot using IK. The animation
was “baked” into a mocap-like format with 40 frames. Next, each of
the two animations were edited, forcing the character to lift her feet
higher at one frame. Fig 6 shows the resulting four motion graphs:
the original keyframe animation, the baked ‘mocap’ version of the
animation, the keyframe animation with an edit to raise the foot,
and the Green’s function falloff-edited motion.

Unsurprisingly, the original animations are nearly identical, with
some minor detail loss attributed to the baking from an intricate
IK rig to a simplified FK rig. In this simple case, the spline falloff
matches the Green’s function falloff in both shape and timing extent.
On the other hand, in the case of more complex motion the Green’s
function falloff curves are not “generic” and have interesting detail
that reflects the underlying motion (Figs. 1,2).

5 SUMMARY

In this research we have introduced the Green’s function similarity
for animation editing. It can be thought of as a data-driven spline,
designed to operate in the animator’s usual workflow. We used the
Green’s similarity as a natural falloff for propagating edits to the
motion. This general idea slightly resembles label propagation in
semi-supervised machine learning [Zhu et al. 2003]. Until now, this
problem has been either solved tediously by hand with splines, or
automated using space-time optimization-based approaches. Both
approaches produce generic smooth/low energy falloff curves Our
method proved to yield better falloff curves than diffusion maps
and ISOMAP. Comparisons against spline editing in a simple case
show that it behaves predictably, while generalizing to nuanced
data-driven falloffs in more complex cases Please see the authors’
websites for additional supplementary material.

ACKNOWLEDGMENTS

JPL acknowledges helpful discussions with Ken Anjyo, Hiroyuki
Ochiai, Eitan Grinspun, and Mathieu Desbrun.

SA ’18 Technical Briefs , December 4–7, 2018, Tokyo, Japan Christopher J. Dean, J.P. Lewis, and Andrew Chalmers

0 20 40 60 80 100 120
Frame Number

0.0

0.2

0.4

0.6

0.8

1.0

Diffusion

Green's

Isomap

(a)

48 50 52 54 56 58
Frame Number

0.00

0.05

0.10

0.15

0.20

0.25

Diffusion

Green's

Isomap

(b)

Figure 3: Comparison of Green’s distance vs. diffusion distance (10 iterations) vs. ISOMAP distance for frame 53 in a run cycle.

Fig. 3b is a zoomed-in comparison of Fig. 3a near the control pose. Note the smoothness of the Green’s function at this point.

REFERENCES

Ken Anjyo and Hiroyuki Ochiai. 2017. Mathematical Basics of Motion and Deformation
in Computer Graphics (2 ed.). Morgan & Claypool.

Mikhail Belkin and Partha Niyogi. 2002. Laplacian Eigenmaps and Spectral Techniques
for Embedding and Clustering. InAdvances in Neural Information Processing Systems
14, T. G. Dietterich, S. Becker, and Z. Ghahramani (Eds.). MIT Press, 585–591.

CMU 2016. CMU Graphics Lab Motion Capture Database. http://mocap.cs.cmu.edu,
Accessed 7 January.

Ronald R. Coifman and StÃ©phane Lafon. 2006. Diffusion maps. Applied and Compu-
tational Harmonic Analysis 21, 1 (2006), 5 – 30.

Michael Gleicher. 1995. Image Snapping. In Proc. 22nd Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’95). ACM, 183–190.

F. S. Grassia. 1998. Practical parameterization of rotations using the exponential map..
In Journal of graphics tools, 3(3), 29-48.

Keith Grochow, Steven L. Martin, Aaron Hertzmann, and Zoran Popovic. 2004. Style-
based inverse kinematics. ACM Trans. Graph. 23, 3 (2004), 522–531.

B. Levy. 2006. Laplace-Beltrami eigenfunctions: towards an algorithm that understands
geometry. IEEE Int. Conference Shape Modeling and Applications (SMI) (2006).

Eric N. Mortensen and William A. Barrett. 1995. Intelligent Scissors for Image Com-
position. In Proc. 22nd Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’95). ACM, 191–198.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. 2000. A global geometric framework
for nonlinear dimensionality reduction. Science 290 (2000), 2319–2323.

M. Tournier, X. Wu, N. Courty, E. Arnaud, and L. Reveret. 2009. Motion compression
using principal geodesics analysis. In Computer Graphics Forum 28(2). 355–364.

Xiaojin Zhu, ZoubinGhahramani, and JohnD. Lafferty. 2003. Semi-Supervised Learning
Using Gaussian Fields and Harmonic Functions. In Int. Conf. Machine Learning.
912–919.

Figure 4: An artist edits the pose only at frame 20 (left), lift-
ing the knees higher. A propagated edit produces a near-

identical pose adjustment in frame 110 (right), which is a

similar pose in the run-cycle. Character model courtesy of

©copyright Blender Foundation | www.sintel.org.

0 20 40 60 80 100 120
Frame Number

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: The Green’s function distance from a control pose

over several different sigma values (lower values are more

blue). The range of choices allows the artist to highlight

different motion features while still respecting the original

character of the data.

0 5 10 15 20 25 30 35
Frame Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

GreenFn Ground Truth

GreenFn Edit

Spline Ground Truth

Spline Edit

Figure 6: In a simple case, our algorithm’s falloff curves re-

semble generic splines. This is a foot’s z motion channel in

a keyframe-animated walk-cycle. The animation was edited

to raise the foot. A similar edit was made using our method,

after converting to a mocap-like dense set of keys.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 The Pose Laplacian
	3.2 Green's function
	3.3 Edited Pose Interpolation

	4 Results
	4.1 Pose Distance
	4.2 Edited Animation
	4.3 Evaluation

	5 Summary
	References

