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Fig. 1. The skinned model (left) is produced directly from the “unrigged” rigid bind model using our Direct Delta Mush algorithm. DDM can produce equivalent
results to the Delta Mush algorithm but uses a direct local computation rather than the iterated global “mush” runtime smoothing of DM. The DM and DDM
algorithms both provide greatly simplified authoring. They do not have the bulge and cleft artifacts common to other methods, which are prominent in the
under-arm and hip regions (respectively) in this example (red arrows). DDM offers further advantages over DM, as described in the paper.

A significant fraction of the world’s population have experienced virtual
characters through games and movies, and the possibility of online VR
social experiences may greatly extend this audience. At present, the skin
deformation for interactive and real-time characters is typically computed
using geometric skinning methods. These methods are efficient and simple
to implement, but obtaining quality results requires considerable manual
“rigging" effort involving trial-and-error weight painting, the addition of
virtual helper bones, etc. The recently introduced Delta Mush algorithm
largely solves this rig authoring problem, but its iterative computational
approach has prevented direct adoption in real-time engines.

This paper introduces Direct Delta Mush, a new algorithm that simulta-
neously improves on the efficiency and control of Delta Mush while gen-
eralizing previous algorithms. Specifically, we derive a direct rather than
iterative algorithm that has the same ballpark computational form as some
previous geometric weight blending algorithms. Straightforward variants
of the algorithm are then proposed to further optimize computational and
storage cost with insignificant quality losses. These variants are equivalent
to special cases of several previous skinning algorithms.

Our algorithm simultaneously satisfies the goals of reasonable efficiency,
quality, and ease of authoring. Further, its explicit decomposition of rota-
tional and translational effects allows independent control over bending
versus twisting deformation, as well as a skin sliding effect.
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1 INTRODUCTION
Typically characters are the main focus of any movie or game. Major
characters are often humans or animals, and thus are articulated
models with rigid bones underlying deformable flesh and skin. Other
objects in the scene such as trees can deform and may also be
represented with a similar underlying approach. A key focus in all
these cases is getting the deformation right.
A character deformation method suitable for games and inter-

active applications such as animation should have the following
characteristics: (1) speed, (2) quality, (3) simplicity of setup and
authoring. Existing approaches to character deformation can be
very broadly classified into geometric skinning and simulation ap-
proaches. Simulation approaches produce the highest quality but
may be less suitable in terms of criteria (1) and (3). Regarding speed,
simulation effects are not justified when nearly the same effect can
be produced with a cheaper method. It should be remembered that
character deformation is just one of many things that must be com-
puted within the frame interval at typical frame rates of 24fps (movie
animation), 60fps (games) or 120fps (VR). Other tasks include vari-
ous rendering steps, gameplay AI, collision detection, other types
of physics, etc. Simulation approaches are also not ideal in terms of
simplicity. The rig may require constructing additional components
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(such as interior structures) beyond the surface geometry, and when
the simulation does not produce the desired deformation it may not
be immediately obvious what should be changed.
Geometric skinning methods have been the predominant ap-

proach in movies and games to date. These approaches are simple
to implement, very efficient, and map easily to GPU hardware. They
fail on criterion (3) however. Authoring the desired deformation is
difficult because the artist must specify blending weights that are
only indirectly related to the desired deformed shapes. This task is
further complicated in regions such as the shoulder and hips that
are influenced by more than two bones, typically resulting in time-
consuming trial and error exploration. Geometric skinning methods
also have common artifacts, such as the bulges and clefts visible in
Fig. 1, due to blending the potentially large movements resulting
from rotating a vertex about distant joints. Further, there is not nec-
essarily a single set of weights that is optimal for all poses, so the
artist must visualize the results on a range of different poses when
assessing a new set of weights. Lastly, even in a simple one degree
of freedom case such as the elbow, the resulting deformation is not
necessarily realistic, and artists may need to resort to introducing
auxiliary “phantom” bones, a.k.a. helper bones, to better produce
the desired deformation.

Delta Mush (DM) [Mancewicz et al. 2014] fits the bill for (1) and
(3). Since its introduction in 2014, DM has become widely used
in industry and has been incorporated in software such as Maya1.
DM uses the following practical approach to geometric skinning: a)
first start with low quality rig, typically using trivial rigid binding
of geometry (i.e. each vertex moves rigidly with one bone, so all
skinning weights are 0/1), and then b) smooth the geometry, which
also converts the rigid articulation to smooth deformation – thus the
term “mush”. During the smoothing step, surface details are lost, so
c) surface details at the rest pose (specifically the difference between
the original shape and its smoothed version – thus the term “delta”)
are saved and added back on top of the smoothed deformed shape.
DM is immediately suitable for non-real-time applications such

as movies, because it provides an easy way to produce a fairly high
quality rig, free from most of the undesired collapsing and bulging
artifacts occurring in previous skinning algorithms. However, it is
expensive for interactive applications such as games. The reason is
that the smoothing step is an iterative process (Laplacian smoothing)
and this iteration needs to be done at every animation frame. In
the games industry, a common practice is to “bake” the DM to a
traditional skinning model, i.e., use DM to generate training poses
which are then fit by solving for the skinning weights of the classical
linear blend skinning (LBS) model [Le and Deng 2012]. This model
fitting is slow, and the use of different training poses can produce
significantly different results. As a consequence, artists have no
interactive feedback, so DM also fails on criterion (3) when used in
conjunction with a baking procedure to permit real-time use.
This paper introduces the Direct Delta Mush (DDM) algorithm.

DDMaddresses the above problems bymathematically re-expressing
the DM calculation into a per-frame direct (rather than iterative)
form, more analogous to the computation in traditional skeletal
skinning models. Superficially, DDM has the same setup as DM

1https://youtu.be/EaCktzhxbTA

but instead of smoothing the geometry at every frame, DDM only
smooths a set of multi-weights [Merry et al. 2006; Wang and Phillips
2002] at the rest pose in a pre-computation step and caches these
weights (§3.2).

DDM inherits the benefits of DM, in particular, the ability to use
a trivial “rigid bind” rigging, while also offering greatly accelerated
computation. It is thus the first algorithm to approximately satisfy
all criteria (1)-(3). Specifically, DDM has the following advantages
and benefits:

• Speed: DDM computation is in the ballpark of traditional
skinning methods, and has a considerably reduced operation
count relative to DM (Table 1). Our CPU-only implementation
easily runs complex characters in real time.
• Quality: as with DM, DDM provides a somewhat more gen-
eral class of deformations than is possible with traditional
skinning methods (Section 3.3).
• Authoring: as with DM, reasonable results can be obtained
with almost no effort. The time-consuming weight editing
and helper bones required in skinning methods to obtain
quality results is not needed in common cases. Unlike DM,
our formulation also provides easy localized control over the
extent of the smoothing or blending (Fig. 7).
• Generality: a straightforward modification allows DDM to
emulate or specialize to several existing skinning algorithms
(Section 3.5). DDM is thus a framework that generalizes sev-
eral existing approaches.
• Skin sliding: DDM has an explicit decomposition into rota-
tion and translation which enables a simple emulation of a
skin-sliding effect (Figs. 8, 12 and accompanying Video), some-
thing that is not possible with existing geometric skinning
algorithms.

2 RELATED WORK
For our purposes deformation can be classified into geometric, data-
driven, and simulation-based methods. Geometric methods in turn
can be described according to whether they use a direct (local) per-
vertex calculation or a global computation involving all vertices,
and according to the type of control parameterization, i.e. skeleton
joint angles, cages, or other schemes. Our survey of related work
will focus on methods suitable for real-time deformation, and in
particular on direct skeleton-driven geometric techniques motivated
by character animation.

Blend skinning methods include LBS [Magnenat-Thalmann et al.
1988], log-matrix blending [Alexa 2002; Magnenat-Thalmann et al.
2004], spherical blend skinning [Kavan and Žára 2005], dual quater-
nion skinning (DQS) [Kavan et al. 2008], and optimized centers
of rotation skinning (CoR) [Le and Hodgins 2016]. These methods
are simple to implement, fast, map conveniently to GPU hardware,
and are implemented in most software packages. Although these
skinning methods have known drawbacks as mentioned in the in-
troduction, they are widely used in games and other interactive
applications
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Linearmulti-weight schemes [Merry et al. 2006;Wang and Phillips
2002] extend classic skinning techniques by providing more than
one weight per transform or “bone”, thus allowing a bone to influ-
ence each coordinate of a vertex differently [Merry et al. 2006], or
further allowing different coordinates to be influenced by different
components of a bone’s movement [Wang and Phillips 2002]. The
resulting schemes have fewer artifacts than LBS, but the weights
are no longer intuitive and must be determined by a fitting process –
which means that some other source of example poses is needed. De-
spite the additional flexibility, these are still linear schemes having
the consequent difficulties in emulating rotational effects.

Special purpose algorithms are used to solve the “elbow” situation,
such as using dedicated twisting and stretching deformers [Jacobson
and Sorkine 2011], joint-based deformers [Kavan and Sorkine 2012],
and using extra helper joints to reduce the deformation artifacts [Le
and Hodgins 2016; Mukai 2015; Mukai and Kuriyama 2016]. These
are hard to generalize to characters with non-hierarchical skeletons
and typically require extra authoring effort to setup the required
extra weights or extra animation on helper joints.
Auto-generated skinning weights [Baran and Popović 2007; Ja-

cobson et al. 2011, 2012b] solve the problem of doing manual weight-
painting that is needed in traditional geometric skinning methods.
This does not solve the collapsing or bulging artifacts found in most
geometric skinning algorithms, however, so to obtain the highest
quality results artists must still resort to introducing additional
helper bones and manual weight adjustment.

Global geometric deformation improves quality by solving for the
deformation of all vertices at once, often using a variant of a Laplace
or Poisson equation [Wang et al. 2007], rather than using a direct
per-vertex computation. This comes at a cost, however – even when
the underlying linear system is pre-factorized, the resulting back
substitution is poorly suited for parallel computation. Nonlinear
effects can be introduced with iterative optimization that alternates
global smoothing and local rotational computations [Sorkine and
Alexa 2007]. The cost of global methods has been addressed with
linear reduced models [Jacobson et al. 2012a; Wang et al. 2015].

Cage deformation methods [Jacobson et al. 2011; Joshi et al. 2007;
Ju et al. 2005; Lipman et al. 2008] provide very general deformation
that can be used on a variety of shapes. The cage provides extra
degrees of freedom compared to a skeletal model parameterized
by only the joint angles. This can be an advantage for cartoon
characters, but is unnecessary for more realistic characters where
the bones do not stretch.
Baking, skinning decomposition, and general regression can au-

tomatically convert animated mesh sequences into skinned models
suitable for real-time playback. A popular pipeline is to use these
methods to bake complex rigs authored offline, fit training data
from motion capture (mocap) [Park and Hodgins 2008], DM (Maya’s
Bake Deformer tool2) or muscle models [James and Twigg 2005;
Le and Deng 2012, 2014; Mukai 2015; Mukai and Kuriyama 2016].
More generally, the approach of approximating training poses from
mocap data or a given rig can be considered as a regression problem
[Anguelov et al. 2005; Feng et al. 2008; Gao et al. 2016; Jones et al.
2016; Loper et al. 2014, 2015; Wang et al. 2007].

2https://youtu.be/5i-gxtXj1Ww

Corrective shapes-based methods such as Eigenskin [Kry et al.
2002] and pose space deformation [Lewis et al. 2000; Sloan et al.
2001] compute the deformed geometry by interpolating example
shapes rather than using algorithmic deformation. These methods
can provide high quality but require additional geometry that must
be sculpted or scanned. For the purpose of body animation, these
methods are orthogonal to our goal, since they are often employed
as a corrective layer on top of algorithmically defined skinning such
as ours.

Implicit skinning [Vaillant et al. 2013, 2014] provides a relatively
cheap solution for local self-collision without requiring a full physics
simulation. At the time of its publication the algorithm was capable
of computing a single high-resolution character in real time, which
is sufficient for animation editing and preview but still too expen-
sive for applications involving many computational tasks beyond
character deformation.
Simulation methods [Hahn et al. 2012, 2013; Ichim et al. 2017;

Kadleček et al. 2016; Li et al. 2013; Liu et al. 2013; McAdams et al.
2011; Rémillard and Kry 2013; Saito et al. 2015; Smith et al. 2018] pro-
vide important additional effects such as collision, volume-preserving
bulging, jiggling, skin sliding and wrinkling , Until recently simula-
tion methods were only suitable for offline production, e.g. Maya
Muscle3 or Weta Digital’s Tissue System4), however thanks to re-
cent methods [Bouaziz et al. 2014; Brandt et al. 2018; Dinev et al.
2018; Liu et al. 2017; Xu and Barbič 2016] certain types of real-time
simulation are now possible. These methods are particularly suit-
able for dynamic effects (jiggling) as well as types of quasi-static
deformation that cannot be produced by cheap skinning methods.

Delta Mush (DM) [Mancewicz et al. 2014] stands out as a particu-
larly simple and artist friendly method. It does not involve indirect
and possibly non-intuitive concepts such as weights on transforms,
but rather considers skinning simply as a problem of smoothing the
low-frequency geometry while preserving detail. It is also versatile,
as it can be applied either to “unrigged” rigidly articulated mod-
els or on top of other deformation. Lastly, DM has the distinction
of being widely used in production. The major limitation of DM
is its iterative computation with required global synchronizations
between iterations, which significantly impacts efficiency.
Our algorithm, DDM, is inspired by DM but takes a different

computational approach. In so doing it unifies and generalizes sev-
eral existing geometric skinning approaches, while simultaneously
improving on DM in several respects. The algorithm is described
next.

3 DDM COMPUTING MODEL AND VARIANTS
The overall idea of our algorithm is, instead of computing the smooth
geometry after applying bone transformations as in DM, we treat
the bone transformations as unknown parameters and substitute
them into the Laplacian smoothing equation. Because Laplacian
smoothing can be represented by a series of linear matrix multi-
plications, it can be combined with linear bone transformations.
Simplifying the equations yields the direct formulation.

3www.autodesk.com
4www.wetafx.co.nz
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Following subsections detail this idea. First, the original DM al-
gorithm is presented using our notation (§3.1). Then, the DDM
formulation is presented (§3.2). A simple extension generalizes the
achievable deformation and provides further control (§3.3). Finally,
the precomputation for DDM is summarized (§3.4) and some vari-
ants are presented to show how our algorithm unifies and general-
izes several existing approaches (§3.5).

3.1 Original Delta Mush Model
This section revises the original DeltaMush (DM)model [Mancewicz
et al. 2014] and presents notations to setup DM on top of a Linear
Blend Skinning (LBS) model [Magnenat-Thalmann et al. 1988].
Assume that our character model is represented by a polygonal

mesh with n vertices. The homogeneous position of vertex i =

1..n at the rest pose is ui ∈ R4, where the 4th component is 1.
For convenience, we concatenate all vectors ui to a matrix U =
[u1, u2, .., un ] ∈ R4×n .
The deformation of U is driven by a LBS model withm bones.

The transformation of bone j = 1..m is Mj ∈ R
4×4. Let wi j be the

weight of bone j on vertex i . The weights are required to be affine,
i.e.

∑m
j=1wi j = 1,∀i . Non-negativity and sparseness have no effect

on our formulation. Note that we use the LBS model for the sake of
generality, but rigid binding is more common in practice, i.e. each
vertex is only assigned to one bone (wi j ∈ {0, 1}). The skinned
geometry V = [v1, v2, .., vn ] ∈ R4×n is computed as:

vi =
m∑
j=1

wi jMjui , i = 1..n (1)

Layered on top of LBS model is a DM deformer with p Laplacian
smoothing iterations, where the step size of each iteration is λ > 0.
pλ controls the amount of smoothness applied on the model and
λ controls the precision of the smoothing. Let L ∈ Rn×n be the
Laplacian matrix of the mesh. L is symmetric, positive semidefinite
with zero row- and column-sums. Let L̄ = LDL

−1 be the normalized
Laplacian, whereDL is the diagonal of L (note that this expression is
transposed with respect to the usual spectral graph theory notation
in order to be consistent with notation used in the remainder of the
paper). The smooth rest pose Ũ = [ũ1, ũ2, .., ũn ] ∈ R4×n and the
smooth skinned pose Ṽ = [ṽ1, ṽ2, .., ṽn ] ∈ R4×n can be computed
with either explicit or implicit schemes [Desbrun et al. 1999]:

Explicit: Ũ = UA , Ṽ = VA , where: A = (I − λL̄)p ,

Implicit: Ũ = UB , Ṽ = VB , where: B = (I + λL̄)−p ,
where I is the identity matrix

(2a)

(2b)

Eq. (2) provides a consistent definition for both implicit and ex-
plicit methods. In practice, Ũ and Ṽ are computed in an iterative
process, i.e. explicitly compute Uk ← Uk−1(I − λL̄) or implicitly
solve Uk (I + λL̄) = Uk−1, where U0 = U and Up = Ũ. The implicit
method is unconditionally stable and it allows using a large step
size λ while the explicit method is only stable with λ ≤ 1. With
small enough step size, both methods produce very similar results.
In this work, we present the formulation and implement the implicit

method. However, the formulation for the explicit method is exactly
the same, with the only exception of using matrix A instead of B.

To recover the surface details lost in smoothing, the delta di ∈ R3

at vertex i is computed as the difference between the original rest
pose U and the smooth version Ũ:[

di
0

]
= ui − ũi (3)

The final deformed position xi is computed by adding the delta
after a local frame transformation Ri ∈ R3×3 to the smooth skinned
vertex:

xi = ṽi +
[
Ridi

0

]
(4)

The local frame transformation Ri is expected to be a rotation
matrix, i.e. RiTRi = I and det(Ri ) = 1. In practice, Ri can be approx-
imated from two surface tangent vectors [Mancewicz et al. 2014].

3.2 Direct Delta Mush Skinning
Because the original DM tries to preserve the delta di in the lo-
cal (orthogonal) coordinate frame, we can directly find the local
rigid transformation Γi to bring that coordinate frame from the rest
pose to the deformed pose. Therefore, Γi should also bring ũi to ṽi .
Mathematically, we have:

xi = Γiui = Γi ũi + Γi (ui − ũi ) = Γi ũi +
[
Ridi

0

]
which matches Eq. (4) if ṽi = Γi ũi

From Eq. (2), we can view ũi and ṽi as the weighted averaging
of non-smooth geometries U and V, i.e. ũi =

∑n
k=1 Bkiuk and ṽi =∑n

k=1 Bkivk . Intuitively, the Laplacian smoothing can be viewed as
a per-vertex weighted averaging operator where the weights for
vertex i are elements of the column Bi .

Fig. 2. The core idea of Direct Delta Mush schemes. The accumulated
affect of iterated Laplacian smoothing is captured in a per-vertex weight
mask (column Bi , red color gradient) that if applied to the undeformed
geometry produces the equivalent of the iteratively smoothed result (inner
blue geometry). These weights are used to solve for the local coordinate
transformation Γi which is defined as the best rigid transformation to align
the local patch (red regions) from the rest pose to the LBS deformed pose,
a.k.a. a form of Weighted Procrustes problem. The delta between ui and
ũi is also transformed and added to the smoothed deformed position ṽi ,
producing the final vertex position xi .

Therefore, the transformation Γi can be seen as the best trans-
formation to bring the set of all vertices U to V with weights Bi
as illustrated in Fig. 2, which can be obtained by minimizing the
objective function:
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minE(Γ) =
n∑

k=1
Bki ∥vk − Γuk ∥

2
2 (5)

To clarify the presentation, wewill only summarize themain steps
in the remainder of this section. Detailed derivations are presented
in the Appendices.

3.2.1 Expanding and Regrouping. The objective function (5) is the
sum of per-vertex quadratic terms with respect to vertex index
k . Substituting vk from the LBS equation (1) and expanding the
function using the trace notation tr(•) yields a sum of quadratic
terms with respect to vertex index k and bone index j. Regrouping
terms by the bone transformationsMj yields (please see more details
in Appendix A):

E(Γ) = tr ©«Γ
m∑
j=1

Ψi j Γ
Tª®¬ − 2 tr ©«

m∑
j=1

MjΨi j Γ
Tª®¬ + const. ,

where: Ψi j =
n∑

k=1
Bkiwk jukuk

T

(6a)

(6b)

This regrouping allows pre-computing and caching matrices
{Ψi j ∈ R

4×4 | j = 1..m} from the rest pose (vertices uk ) and scalar
weights (Bkiwk j ), which are constants with respect to bone transfor-
mations. During animation, when the skeleton pose is determined
by all bone transformations {Mj | j = 1..m}, we can compute E by
pre-multiplyingMj to Ψi j . This regrouped function is much faster
than the original function (5) because the calculation does not de-
pend on the number of vertices n, but only depends on the number
of bonesm << n.
Note that the block matrix Ψ is sparse, i.e. many Ψi j are zero

matrices as they correspond to pairs of (i, j) with
∑n
k=1 Bkiwk j = 0.

3.2.2 Decoupling Rotation and Translation. Similar to a Procrustes
problem [Kabsch 1978; Wahba 1965], we need to separate the rota-
tion and translation. Let:[

Pi pi
piT 1

]
=

m∑
j=1

Ψi j ,

[
Qi qi
piT 1

]
=

m∑
j=1

MjΨi j ,

where: Pi ∈ R3×3,Qi ∈ R
3×3, pi ∈ R3, qi ∈ R3

(7)

Next, performing Eigen decomposition of the symmetric, positive
definite matrix Pi − pipiT gives:

Pi − pipiT = ZiΛiZiT ,
where: Zi is an orthogonal matrix, Λi is a diagonal matrix

(8)

Letting Γ =

[
Φ τ
0 1

]
, where Φ ∈ R3×3 is the rotation matrix and

τ ∈ R3 is the translation vector, then substituting Eq. (7) and Eq. (8)
into Eq. (6) yields (please see details in Appendix B):

E(Γ) =
ΦZiΛi 1/2 − (Qi − qipiT)ZiΛi−1/2

2

F

+ ∥(qi − Φpi ) − τ ∥22 + const. (9)

Finally, comparing Eq. (5), we have the solution:

Ri = arg min
Φ

ΦZiΛi 1/2 − (Qi − qipiT)ZiΛi−1/2
2

F
,

ti = qi − Ripi

(10a)

(10b)

Solving Eq. (10) provides the transformation
[
Ri ti

]
for vertex

i . Eq. (10a) is a Procrustes problem which can be solved by Singular
Value Decomposition [Kabsch 1978; Wahba 1965]. We will further
discuss cheaper approximated solutions in §3.5. Note that Pi ,Qi , pi ,
and qi can be quickly computed from the bone transformations
{Mj | j = 1..m} given the precomputed Ψi j in Eq. (6b). We will also
recap this precomputation step in §3.4.

3.3 Extension

Fig. 3. None of the previous skinning methods, even LBS, is free of the
“bulging” artifact. Each column visualizes deformation with different weight
diffusion. The bulging is more visible with higher weight diffusion (right
column). Notice how the center curves of the bars is offset from the bone
segments (yellow).

DM provides an additional form of control not found in previous
methods that we call “negative bulging”. In all other direct skeletal
skinning methods, if the joint position is inside the undeformed
shape it will necessarily remain inside the final deformed shape
(Fig. 3). DM does not have this restriction (Fig. 4, lower right). While
the behavior of the other methods is often what is desired, par-
ticularly in cases where the “bones” and joints are anatomically
inspired, the flexibility afforded by DM effectively provides a type
of level of detail for the skeletal control. For example, this type of
deformation can allow deforming the hip joint without needing a
corrective shape (Fig. 10, §4.0.3).
Combining the characteristics of both DM and other methods

would givemore control, in particular, this canmimic the skin sliding
effect (Figs. 8 and 12), where the DM deformer configured with
high smoothness creates strong influence while skeletal skinning
configured with low smoothness (i.e. low weight diffusion) keeps

ACM Trans. Graph., Vol. 38, No. 4, Article 113. Publication date: July 2019.
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the center line close to the bone segments and the joint. This can
be done without any extra computing or storage cost at run time
by altering the precomputed Ψi j matrices so that they change the
translation ti but not the rotation Ri in Eq. (10).

Fig. 4. Our extension: the original DM uses a single control for smoothness,
which can only produce deformations similar to figures on the diagonal
(with pλ = pκ). Our extension allows blending different rotation smooth-
ness (controlled by pλ) and translation smoothness (controlled by pκ).
This unique translation blending does not affect rotation (proven in Appen-
dix C) which makes authoring less challenging. In the last row, changing
pκ does not change the twist deformation. The bottom left corner with
pλ = 500, pκ = 10 is a good pattern for elbow deformation, which mimics
the skin sliding on top of a knuckle.

Let 0 ≤ α < 1 be the blending weight between DM and skeletal
skinning models. We can prove that for arbitrary affine skinning
weights: w ′i j , where

∑m
j=1w

′
i j = 1∀i , using the convex combi-

nation Ωi j (Eq. (11)) instead of Ψi j does not change Ri (Appendix
C).

Ωi j = (1 − α)Ψi j + αw ′i j
[
pipiT pi
piT 1

]
(11)

We can utilize Laplacian smoothing, similar to Eq. (2), to construct
the skinning weights:

w ′i j =
n∑

k=1
Ckiwk j , where: C = (I + κL̄)−p (12)

We use the same number of iterations p for convenience of imple-
mentation, although we could theoretically use a different number.
The step size κ should be set to κ < λ to keep the optimization of
Ri in Eq. (10a) well defined.
We also use a set of per-vertex weights to locally control the

strength of smoothing. Let Dλ ,Dκ ,Dα ∈ Rn×n be diagonal weight
matrices, where each diagonal element represents the local strength
at each vertex. We multiply these per-vertex weight matrices by
the corresponding global parameters, i.e. replacing λ in Eq. 2 by

λDλ , replacing κ in Eq. 12 by κDκ , and replacing α in Eq. 11 by
αDα . Although this local control was not mentioned in the original
paper [Mancewicz et al. 2014], it is implemented in Maya’s Delta
Mush weights tool.

3.4 Precomputation Summary
Eq. (11 rev.) precomputes all Ωi j ∈ R

4×4 matrices for the extended
version of our algorithm (Section 3.3). Matrix B in Eq. (2b rev.)
and matrix C in Eq. (12 rev.) are computed by implicit Laplacian
smoothing of the mesh on multiple channels, where the channels
at a vertex i are the 16m elements of {wi juiuiT | j = 1..m} (for
computing B) orm elements of {wi j | j = 1..m} (for computing C).

Ωi j = (1 − α(Dα )ii )Ψi j + α(Dα )iiw ′i j
[
pipiT pi
piT 1

]
,

where: Ψi j =
n∑

k=1
Bkiwk jukuk

T ,

B = (I + λL̄Dλ)
−p ,[

Pi pi
piT 1

]
=

m∑
j=1

Ωi j ,

w ′i j =
n∑

k=1
Ckiwk j , C = (I + κL̄Dκ )−p

(11 rev.)

(6b rev.)

(2b rev.)

(7 rev.)

(12 rev.)

Note that matrices Ψi j and Ωi j are symm c by construction.
Therefore, they can be stored with only 10 instead of 16 floats.

3.5 Run Time Variants
Our algorithm encompasses or emulates several previous methods
as special cases. Fig. 5 demonstrates the effects of different variants
using non-hierarchical bones. Note that the differences are less
noticeable with a hierarchical skeleton setup. Table 1 summarizes
storage and computation cost for different variants. Also note that
the storage cost reflects the artistic design of the character (i.e. how
many bones are used to influence each vertex) and has nothing to
do with sparseness.

Table 1. Storage and computation cost of different variants. Numbers in
parenthesizes [ ] denote the number of floats per stored element. Stored
matrices are symmetric so we only need to store upper (or lower) triangles.

Variant Storage Special
Per-weight Per-vertex Computation

v0 Ωi j [10] ui [3] SVD 3 × 3
v1 Ωi j [10] ui [3], Pi − pipiT[6] Inverse 3 × 3
v2 χi j [3], ωi j [1],ψi j [1] ui [3], pi [3] Quaternion blend
v3 χi j [3], ωi j [1],ψi j [1] ui [3], pi [3] -
v4 ωi j [1],ψi j [1] ui [3], pi [3] Quaternion blend
v5 ωi j [1] ui [3] -
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Direct Delta Mush Skinning and Variants • 113:7

3.5.1 Variant v0 (full model). We can directly solve for the rotation
Ri in Eq. (10a) using Singular Value Decomposition (SVD) [Everson
1997]. Note that matrices Zi and Λi cancel out so we only need to

compute
[
Qi qi
piT 1

]
:

Ri = UiVi
T ,

where:UiSiVi
T = (Qi − qipiT)ZiΛi−1/2(ZiΛi 1/2)T

= Qi − qipiT ,[
Qi qi
piT 1

]
=

m∑
j=1

MjΩi j (7 rev.)

3.5.2 Variant v1 (no SVD). Performing SVD for every vertex is
costly. Instead, we can first solve Eq. (10a) without the orthogonal
constraint:

R′i = (Qi − qipiT)ZiΛi−1/2(ZiΛi 1/2)T
(
ZiΛi 1/2(ZiΛi 1/2)T

)−1

= (Qi − qipiT)(Pi − pipiT)−1

The rotation matrix can be approximated by taking the inverse
transpose followed by determinant normalization, which is equiva-
lent to transforming two orthogonal tangent vectors at i using R′i
[Tarini et al. 2014], and thus, it is equivalent to the implementation
of the original DM [Mancewicz et al. 2014]. The final rotation at
vertex i is computed as:

Ri =
1

det((R′i )
−T)
(R′i )
−T

=
det(Qi − qipiT)
det(Pi − pipiT)

(Qi − qipiT)−T(Pi − pipiT) ,

where:
[
Qi qi
piT 1

]
=

m∑
j=1

MjΩi j ,

[
Pi pi
piT 1

]
=

m∑
j=1

Ωi j (7 rev.)

Because v1 does not compute an exact rotation matrix, the defor-
mation is distorted. In the extreme case, the deformation is inverted
if detR′i < 0 as shown in the second pose (S shape) of DDM v1 in
Fig. 5.
Note that det(Qi − qipiT)(Qi − qipiT)−T is the cofactor matrix

of Qi − qipiT. The determinant det(Qi − qipiT) cancels out in this
calculation. The constant matrix Pi−pipi T

det(Pi−pipi T)
can be cached for

better runtime performance.

3.5.3 Variant v2 and v3. Let ψi j be the [4, 4]-element of matrix
Ψi j . ψi j is the homogeneous component that corresponds to the
contribution of each bone to the rotation. We can directly compute
Ri by blending the rotation components of bone transformations,
either in quaternion space (v2) or in linear space (v3). Let MR

j ∈

R3×3 andMt
j ∈ R

3 be the rotation part and translation part ofMj ,
respectively. Let Mq

j ∈ R
4 be the corresponding unit quaternion of

Mt
j ∈ R

3. Let
[
χi j

T ωi j
]T be the 4-th column of matrix Ωi j , where

χi j ∈ R
3 and ωi j ∈ R. The transformation

[
Ri ti

]T for vertex i is:

Ri =


rotationMatrix

(∑m
j=1ψi jM

q
j

)
(DDM v2)

1
det

(∑m
j=1ψi jM

R
j

) ∑m
j=1ψi jM

R
j (DDM v3) ,

ti =
m∑
j=1

[
MR
j Mt

j

] [
χi j
ωi j

]
− Ri

m∑
j=1

χi j

The benefit of directly blending the rotation is that it only requires
storing a singleweightψi j instead of 6 numbers (in the top left corner
of the symmetric matrix Ψi j ). However, this representation cannot
propagate changes from bone translations to the local skin rotation.
This limitation is illustrated in the first and second pose (S shapes)
of DDM v2 and v3 in Fig. 5. In these poses, we only lift, i.e. translate,
one joint. For a skeletonwith hierarchical bones, this manipulation is
typically not allowed. In the third pose (C shape), DDM v3 produces
a deformation artifact due to the linear interpolation of rotation
matrices.

For DDM v3, normalization with determinant det
(∑m

j=1ψi jM
R
j

)
can be avoided by normalizing the transformed difference vector
Ridi in Eq. (4). By construction, Eqs. (2b), (6b) and (7) result in

ũi = pi and ṽi = qi =
∑m
j=1

[
MR
j Mt

j

] [
χi j
ωi j

]
. Substituting into

Eq. (4) yields a direct calculation of the deformed vertex position:

xi =
m∑
j=1

[
MR
j Mt

j

] [
χi j
ωi j

]
+
∥di ∥2
∥Ridi ∥2

Ridi ,

where: Ri =
m∑
j=1

ψi jMR
j , di = ui − pi

3.5.4 Variant v4. Similarly, ωi j , the [4, 4]-element of matrix Ωi j ,
is the homogeneous part that corresponds to the contribution from
each bone to the translation. We can directly blend the translation
and compute the transformation for vertex i:

Ri = rotationMatrix ©«
m∑
j=1

ψi jM
q
j
ª®¬ ,

ti =
m∑
j=1

ωi j
[
MR
j Mt

j

] [
pi
1

]
− Ripi ,

where: pi =
m∑
j=1

χi j is cached

Note that if ψi j = ωi j , i.e. λ = κ or α = 0, v4 is equivalent to
skinning with optimized centers of rotation (CoR) [Le and Hodgins
2016], where pi is the center of rotation of vertex i .

3.5.5 Variant v5. ωi j can be directly used as a single skinning
weight for LBS or DQS. The practical application of this variant
is replacing the skinning weight solver (bake skinning) using the
original DM as the training data5, which produces more robust
results with instant feedback.

5https://youtu.be/5i-gxtXj1Ww
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Fig. 5. Different variants of our DDM. The bar’s deformation is controlled by two disconnected bones (yellow). Variants with higher number use less resources
and produce more deformation artifacts. Run time deformations of some DDM variants are equivalent to previous skinning models: DDM v1 is equivalent to
the original DM, DDM v4 is equivalent to CoR, and DDM v5 is equivalent to LBS.

4 RESULTS AND COMPARISONS
This section presents our results and compares themwith the results
from four other methods: Linear Blend Skinning (LBS) [Magnenat-
Thalmann et al. 1988], Dual Quaternion Skinning (DQS) [Kavan et al.
2008], Skinning with Optimized Centers of Rotation (CoR) [Le and
Hodgins 2016], and Delta Mush (DM) [Mancewicz et al. 2014]. We
acquired two models with skinning weights from Mixamo6 and
subdivided them using Maya to further distinguish the quality of
different methods on high resolution models. We used two sets of
skinning weights for the first three methods compared: the subdi-
vided skinning weights from Mixamo (MW), and Bounded Bihar-
monic Weights (BBW) [Jacobson et al. 2012b]. DM and our Direct
Delta Mush (DDM) both use a rigid bind, in which each vertex is
associated to only the single bone with the largest skinning weights
from Mixamo’s models.

Table 2. The test models, parameters, and pre-computation time of our
method. Test models are shown at their rest pose with color coded smooth-
ing weights. n denotes the number of vertices,m denotes the number of
bones. Per-vertex smoothing weights Dλ and Dκ are set proportional to the
distance from the vertex to the bone to approximately represent the radius
of each body part. Per-vertex blending weights Dα of vertices on the hip
area are set to lower values than on other vertices.

Pumpkin Hulk Brute

n = 20604,m = 65 n = 55886,m = 67
Global parameters: p = 20, λ = 20, κ = 1, α = 0.9

precomputation time = 2.2s precomputation time = 9.7s

6https://www.mixamo.com

Table 2 shows statistics of the models, our parameters and pre-
computation times. Pre-computation times are on the order of sec-
onds for our C++, CPU-only implementation using the sparse LU
solver provided by Eigen7. The Laplacian matrix calculation and
matrix factorization are done in serial, while each iteration of the
implicit step is solved in parallel. Better precomputation perfor-
mance can be achieved by more powerful solvers or careful GPU
implementation.

The input models with disconnected geometry pieces were han-
dled by adding edges that connect nearby vertices with considera-
tion to the binding bones (Fig. 6).

Fig. 6. Our trivial solution to handle models with multiple geometry parts.
From left to right: (1) visualization of multiple parts of our character model,
(2) the model at rest pose, (3) applying per-part mesh Laplacians breaks
the deformation at boundaries of parts, (4) our fix by adding entries to the
Laplacian matrix connecting close vertices associated to the same bone.

Table 3 shows a simple performance benchmark on different
DDM variants. Note that the storage memory layouts of v2, v3
and v4 (Table 1) pose a major challenge for effective optimization
because the computation includes mixed size matrices, vectors, and
scalars. The compiler and the numerical library (Eigen) might not
be able to take advantage of vectorization and parallelism such
as SIMD instructions in these cases, so the presented results may
include significant overhead that would need to be investigated
with low-level programming. In contrast, the simple 4 × 4 matrix
blocks in the storage layout of v0 and v1 can take full advantage
7http://eigen.tuxfamily.org

ACM Trans. Graph., Vol. 38, No. 4, Article 113. Publication date: July 2019.

https://www.mixamo.com
http://eigen.tuxfamily.org


Direct Delta Mush Skinning and Variants • 113:9

of special implementations for small size matrices. We also believe
that the benchmark on Brute model is more reliable because the size
of this model is larger, i.e. 55K vertices versus the 20K vertices of the
Pumpkin Hulk model. The relative compute times shown in Table 3
are surprisingly lightweight compared to vanilla LBS skinning. This
could be explained by the fact that on modern architectures (both
CPU and GPU) compute times are dominated by memory access
rather than FLOPS [Seo et al. 2011].

Table 3. Runtime performance comparison between variants. Numbers in
this table show the average time to deform one vertex. Time is measured in
microseconds on a single-threaded CPU. Note that v5 is equivalent to LBS.

v0 v1 v2 v3 v4 v5
Pumpkin Hulk 5.5 4.7 7.1 7.3 5.9 3.3

Brute 3.2 2.3 2.9 3.2 2.6 1.6

4.0.1 Local Control. Using per-vertex smoothing weights Dλ and
Dκ allows handling parts with different scales in the same model,
for example small fingers versus the larger arms or legs, as shown
in Fig. 7. In general we expect that body parts with larger radii
should deform more smoothly due to the larger amount of flesh and
tissue. This principle is used to automatically calculate Dλ and Dκ
as shown in Table 2. Fine tuning of the weights by skilled artists
could further improve the skinning deformation quality, however all
the results shown in the paper required no manual weight tuning.

Fig. 7. Local control for different body part sizes. Left: DDM with five itera-
tions and a global step size of 0.5 did not produce smooth deformation on
the elbow. Middle: DDM with 100 iterations and a global step size of 0.5
produced good elbow deformation but it over-smoothed the finger defor-
mations. Right: DDM with per-vertex weights (with parameters showed in
Table 2) produces pleasing deformation for both elbow and fingers.

4.0.2 Independent Rotation and Translation Smoothness Control.
Fig. 8 shows realistic elbow deformations produced by our DDM.
Our extension (§3.3) allows simultaneously combining high rotation
smoothness (pλ) with low translation smoothness (pκ). By changing
the global parameters < λ,κ,α >, we can quickly explore different
deformation behavior and pick the most suitable set of parameters.
Note that this is a much smaller space of parameters to explore
than in traditional skinning algorithms, which require painting and
adjustment of per-vertex skinning weights to obtain reasonable qual-
ity results. Thanks to the independence of rotation and translation

smoothness, we do not need to try combinations of them. Notice
how DDM keeps the same twist deformation while fixing pλ and
changing pκ or α . More importantly, this independence removes
the need to sacrifice good bending deformation in order to improve
twisting deformation, as shown with other three skinning methods.

Fig. 8. Our DDM with different configurations (top row): using higher rota-
tion smoothing step size λ produces smoother deformation when twisting
the joint, while using lower translation smoothing step size κ produces
more rigid deformation when bending the joint, similar to other skinning
methods. Adjusting the blending weight α results in simultaneous rigid
bend and smooth twist and mimics the sliding and stretching of skin on top
of a knuckle. Notice how DDM with α = 0.5 or α = 0.9 produces more uni-
form skin stretching. Because our translation blending (§3.3) does not affect
rotation, the smoothing effect on twisting does not change with different
translation smoothing step size or blending weight (last three figures on the
top row). Comparisons with other methods are shown in the bottom row.
Without the independent control provided by DDM, other methods have to
compromise between bending deformation quality or twisting deformation
quality, typically resulting in suboptimal quality for both.

4.0.3 Hip Joint Deformation. Hip region is extremely difficult to
handle using only geometric skinning, since unnatural “clefts” or
creases extending into the torso commonly occur (Fig. 10). As a
result corrective shapes have traditionally been added to fix this
problem. Because the special negative bulging of DM is very similar
to desired hip deformation (§3.3), we blend more of this effect in the
hip region, or equivalently, blend less of translation, i.e. lowering
Dα at the hip region as shown in Table 2. For a quick setup, we
implemented an interface that allows setting a blending value at
each joint which is then automatically propagated to associated
vertices. The results shown in Fig. 10 clearly show that our blending
has fixed the cleft problem.
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Fig. 9. Further comparison of DDM and other methods on the upper body
of a detailed character. DDM is the first direct skinning method that can
avoid the indicated bulging artifacts. Also see the accompanying video.

Fig. 10. A comparison of deformation at the hip joint: DM-based methods,
including original DM and four variants of our DDM (v0, v1, v2, and v3),
produce no clefts or fold-over due to the negative bulging. The clefts of other
methods are indicated by red arrows. Notice that DDM v4 has only one
single weight for translation so it “cheats” by expanding the inner thigh
(purple arrow) as happens in quaternion-based methods (DQS and CoR).
The bends of DQS and CoR are more extreme so they create budges (purple
arrows). The original DM is setup with 100 iterations and step size of 0.5.

4.0.4 Surface Detail Preservation. Detail preservation is important
for preserving the look and feel of the character. This generally
requires locally rigid transformation in order to minimize shearing

and differential scaling. DQS and CoR achieve this by performing
interpolation in quaternion space, thereby keeping transformation
in SO(3), but this can result in bulging artifacts (Fig. 9). This is
easiest to notice in the chest area while raising the arm and clavicle,
because the arm/shoulder rotation carries over to chest, causing
outward motion. Because DM is bulge-free, this property can be
easily incorporated with DDM by appropriate parameter choices.

4.0.5 Volume Preservation. In general terms, the volume preser-
vation of DDM is better than LBS, but not as good as DQS. The
situation can be analyzed by considering the separate effects of the
“delta” and “mush” components of DM and DDM. The deformation
of the deltas applies locally rigid transformation, thus the mesh de-
tails do not lose volume. On the other hand, the mush deformation
is linear, and so volume loss can result. However, consider the effect
of the Laplacian smoothing that shrinks the mesh to the mush. With
a large shrinkage, i.e. high smoothness, the mush may already have
low volume in the rest pose, i.e. a rod-like geometry, in which case
the volume cannot reduce much further under deformation (Fig. 11).
Volume will be approximately preserved in this case. This behavior
is very similar to the shrinkage from the mesh to the centers of
rotation that reduces the volume loss [Le and Hodgins 2016]. In
more critical cases, volume loss can be compensated using additional
joints.

Fig. 11. Volume preservation behavior of the model (gray wireframed) de-
pends on the volume of the mush (color shaded) at the rest pose. Leftmost:
with low smoothness pλ, the mush does not shrink much, but some of this
remaining volume can be lost with deformation. Middle and right: with
high smoothness pλ, the mush shrinks to a rod-like shape with near zero
volume and this cannot be further reduced by deformation. Bending defor-
mation can be controlled by changing the translation smoothness pκ and
its blending weight α .

4.0.6 Skin Sliding. Consider the arm and upper back as shown in
Fig. 12. Raising the arm above the shoulder should pull the skin on
the back upward, causing a small upward movement extending even
to the lower mid back8 In classical skinning approaches however,
such long-range interaction has to be limited to avoid the bulging
artifact – the large rotational motion of a vertex about a distant joint
is exactly the cause of this artifact. As seen in Figs. 9 and 12, DDM
can simulate long-range skin sliding without bulging artifacts.

8This can be verified by pressing (for example) your right hand on your left mid-back
and then raising your left arm straight above your head.
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Fig. 12. DDM can produce a skin sliding effect on the mid-lower back
without the accompanying bulges caused by long-range weights in other
methods.

5 DISCUSSION AND CONCLUSION
This paper introduced Direct Delta Mush, the first geometric skin-
ning algorithm that simultaneously provides reasonable quality
and easy authoring while having computational costs in the same
ballpark as existing geometric skinning methods. Our algorithm
provides the same simplicity and quality as Delta Mush, an algo-
rithm widely used in industry, and in particular produces reasonable
results with virtually no manual “rigging” effort. However, DDM
introduces a direct calculation analogous to that in traditional skin-
ning algorithms rather than the iterative computation required in
DM. The computation and storage requirements are similar to that
in multi-weight geometric skinning approaches, plus an additional
3 × 3 SVD or matrix inverse.

The extended DDM algorithm further provides a general skinning
framework that encompasses several previous algorithms as special
cases. An explicit separation of rotation and translation allows sim-
ple skin-sliding effects to be produced, something not possible in
previous geometric skinning approaches.

DDM shares the common limitations of most geometric skinning
methods. These include the inability to handle self-collision, the lack
of secondary effects, and insufficient volume preservation. Though
the weights in DDM are sparse, there are somewhat more weights
than in classic methods such as LBS. In practice, we found factors of
between 2-10x more weights on the models we used. This relatively
modest increase has been more than compensated by the massive
improvements in computing power since the times when geometric
skinning methods were first introduced. An additional limitation is
the need for a short precomputation step, typically on the order of
several seconds.

While DDM is attractive in terms of both versatility and efficiency,
it has not been incorporated in real game engines. We leave this
important evaluation for future work. In principle this integration
may not pose major challenges, since DM is well known and the

run-time computational form of DDM has similarities to LBS and
DQS skinning. On the other hand, real-world game engines are
extremely complex (consisting of millions of lines of code) and in
some cases historical assumptions can appear in many places in the
whole animation pipeline.9
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column i of B, i.e. (∆i )kk = Bki ,∀k . | | • | |F denote the Frobenius
norm and tr(•) denote the trace of the matrix. With these conven-
tions Eq. (5) becomes:

E(Γ) =
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F
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As the first term tr(V∆iVT) is a constant (with respect to Γ), we
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• The second term tr(V∆iUTΓT): substituting vk from the skin-
ning equation (1) and regrouping terms by bone transforma-
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V∆iUT =

n∑
k=1

vkBkiuk
T =

n∑
k=1

( m∑
j=1

wk jMjuk
)
Bkiuk

T

=

m∑
j=1

Mj

( n∑
k=1
Bkiwk jukuk

T
)
=

m∑
j=1

MjΨi j (14)

• The third term tr(ΓU∆iUTΓT): using the affinity
∑m
j=1wk j =

1,∀k yields:

U∆iUT =

n∑
k=1

ukBkiuk
T ©«

m∑
j=1

wk j
ª®¬︸     ︷︷     ︸

1

=

m∑
j=1

( n∑
k=1
Bkiw jkukuk

T

)
=

m∑
j=1

Ψi j (15)

Substituting Eq. (14) and Eq. (15) to Eq. (13) yields Eq. (6).

B DECOUPLING ROTATION AND TRANSLATION

Substituting Eq. (7) into Eq. (6) and expanding Γ =

[
Φ τ
0 1

]
yields:

E(Γ) = tr

([
Φ τ
0 1

] [
Pi pi
piT 1

] [
Φ τ
0 1

]T)
− 2 tr

([
Qi qi
piT 1

] [
Φ τ
0 1

]T)
+ const.

= tr
(
ΦPiΦT

)
+ 2 tr

(
Φpiτ T

)
+ tr

(
ττ T

)
+ 1

− 2
(
tr

(
QiΦ

T
)
+ tr

(
qiτ T

)
+ 1

)
+ const.

= const. − 2 tr
(
QiΦ

T
)

+ tr
(
ΦPiΦT

)
− 2 tr

(
(qi − Φpi )τ T

)
+ tr

(
ττ T

)
Adding and subtracting tr

(
(qi − Φpi )(qi − Φpi )T

)
= tr

(
qiqiT

)
−

2 tr
(
qipiTΦT

)
+ tr

(
ΦpipiTΦT

)
yields:

E(Γ) = const. − 2 tr
(
QiΦ

T
)
− tr

(
qiqiT

)
+ 2 tr

(
qipiTΦT

)
− tr

(
ΦpipiTΦT

)
+ tr

(
ΦPiΦT

)
+ tr

(
(qi − Φpi )(qi − Φpi )T

)
− 2 tr

(
(qi − Φpi )τ T

)
+ tr

(
ττ T

)
= const. − 2 tr

(
(Qi − qipiT)ΦT

)
+ tr

(
Φ(Pi − pipiT)ΦT

)
+ tr

(
(qi − Φpi − τ )(qi − Φpi − τ )T

)
= tr

(
Φ(Pi − pipiT)ΦT

)
− 2 tr

(
(Qi − qipiT)ΦT

)
+ ∥(qi − Φpi ) − τ ∥22 + const.

Substituting Eq. (8) into the above equation yields Eq. (9) as fol-
lows:

E(Γ) = tr
(
ΦZiΛiZiTΦT

)
− 2 tr

(
(Qi − qipiT)ZiΛi−1/2Λi

1/2ZiTΦT
)

+ ∥(qi − Φpi ) − τ ∥22 + const.

=

ΦZiΛi 1/2 − (Qi − qipiT)ZiΛi−1/2
2

F

+ ∥(qi − Φpi ) − τ ∥22 + const.

C PROOF: USING Ωi j DOES NOT CHANGE Ri
Wedenote symbols that are computed fromΩi j with asterisks. Using
the affinity

∑m
j=1w

′
i j = 1 and substituting Ωi j in Eq. (11) for Ψi j in

Eq. (7) and Eq. (10) yields:[
P∗i p∗i
p∗i

T 1

]
=

m∑
j=1

Ωi j = (1 − α)
m∑
j=1

Ψi j + α
m∑
j=1

w ′i j

[
pipiT pi
piT 1

]
= (1 − α)

[
Pi pi
piT 1

]
+ α

[
pipiT pi
piT 1

]
=

[
(1 − α)Pi + αpipiT pi

pTi 1

]
⇒ p∗i = pi , P

∗
i = (1 − α)Pi + αpipi

T

⇒ P∗i − p
∗
i p
∗
i
T
= (1 − α)Pi + αpipiT − pipiT = (1 − α)(Pi − pipiT)

= Zi ((1 − α)Λi )ZiT

Letting
[
Ξ ζ
0 1

]
=

∑m
j=1w

′
i jMj , substituting Ωi j for Ψi j in Eq. (7)

and Eq. (10) yields:[
Q∗i q∗i
p∗i

T 1

]
=

m∑
j=1

MjΩi j

= (1 − α)
m∑
j=1

MjΨi j + α
m∑
j=1

w ′i jMj

[
pipiT pi
piT 1

]
= (1 − α)

[
Qi qi
piT 1

]
+ α

[
(Ξpi + ζ )piT Ξpi + ζ

piT 1

]
=

[
(1 − α)Qi + α(Ξpi + ζ )piT (1 − α)qi + α(Ξpi + ζ )

piT 1

]
⇒ Q∗i − q

∗
i p
∗
i
T
= (1 − α)Qi + α(Ξpi + ζ )piT

− (1 − α)qipiT − α(Ξpi + ζ )piT

= (1 − α)(Qi − qipiT)

Substituting P∗i −p
∗
i p
∗
i
T and Q∗i −q

∗
i p
∗
i
T in Eq. (10) yields the new

objective function:

R∗i = arg min
Φ

(1 − α)1/2 (
ΦZiΛi 1/2 − (Qi − qipiT)ZiΛi−1/2

)2

F

which differs from the objective function in Eq. (10a) only by the
constant scale (1 − α)1/2, therefore, R∗i = Ri .
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