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Abstract

Thiswork addresses the following research question: Canwe detect videogame
glitches using Convolutional Neural Networks? Focusing in the most common
types of glitches, texture glitches (Stretched, Lower Resolution, Missing and
Placeholder). We first systematically generate a dataset with both images with
texture glitches and normal samples.

To detect the faulty images we try both Classification and Semantic Segmen-
tation approaches, with a clear focus on the former. The best setting in clas-
sification uses a ShuffleNetV2 architecture and obtains precisions of 80.0%,
64.3%, 99.2%, and 97.0% in the respective glitch classes Stretched, Lower
Resolution, Missing, and Placeholder. All of this with a low false positive rate
of 6.7%.

To complement this study, we also discuss how the models extrapolate to dif-
ferent graphical environments, which are the main sources of confusion for the
model, how to estimate the confidence of the network, and ways to interpret
the internal behavior of the models.
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Sammanfattning

Detta projekt svarar på följande forskningsfråga: Kan man använda Convo-
lutional Neural Networks för att upptäcka felaktiga bilder i videospel? Vi fo-
kuserar på de vanligast förekommande grafiska defekter i videospel, felaktiga
textures (sträckt, lågupplöst, saknas och platshållare). Med hjälp av en syste-
matisk process genererar vi data med både normala och felaktiga bilder.

För att hitta defekter använder vi CNN via både Classification och Seman-
tic Segmentation, med fokus på den första metoden. Den bäst presterande
Classification-modellen baseras på ShuffleNetV2 och når 80.0%, 64.3%, 99.2%
och 97.0%precision på respektive sträckt-, lågupplöst-, saknas- och platshållare-
buggar. Detta medan endast 6.7% av negativa datapunkter felaktigt klassifieras
som positiva.

Denna undersökning ser även till hur modellen generaliserar till olika grafiska
miljöer, vilka de primära orsakerna till förvirring hos modellen är, hur man
kan bedöma säkerheten i nätverkets prediktion och hur man bättre kan förstå
modellens interna struktur.
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Extracto

El principal objetivo de este proyecto es responder a la siguiente pregunta:
¿Pueden las redes neuronales convolucionales ser usadas para detectar anoma-
lías gráficas en imágenes de videojuegos? Nuestra atención se centra en er-
rores relacionados con texturas (Estirada, Baja Resolución, Ausente y Prede-
terminada), pues son los que con más frecuencia padecen los videojuegos.
Así, hemos generado tanto muestras normales como anomalías de manera sis-
temática con el fin de entrenar nuestros modelos.

Para esta tarea hemos empleado dos enfoques, clasificación y segmentación
semántica, aunque con especial predilección por el primero. De esta manera,
alcanzamos los mejores resultados mediante la arquitectura ShuffleNetV2 que
obtiene precisiones 80.0%, 64.3%, 99.2% y 97.0% en las clases Estirada, Baja
Resolución, Ausente y Predeterminada respectivamente, todo ello con un ratio
de falsos positivos del 6.7%.

De forma complemetaria, exponemos cómo los modelos permiten extrapolar
y detectar errores en diferentes entornos gráficos, cuáles son las principales
fuentes de confusión en el modelo, así como formas de estimar la certidumbre
de las predicciones obtenidas ymodos de intrepretar el funcionamiento interno
de los modelos
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Chapter 1

Introduction

When developing a new videogame there are many steps starting from the
concept to the final release. Towards the end of the project, one fundamental
part of the process is the testing phase. Here, different quality requirements
should be met ensuring the optimal game experience. Since graphics are one
of the main components of the game, it is mandatory to assure the absence of
glitches or malfunctions that may hinder the experience.

These graphical errors are usually hard to spot and occur in small proportions.
Right now, they are identified by testing the game in a manual way, and, when
detected, they are diagnosed and addressed. Although useful, this process can
be extremely time-consuming due to the scarcity of the glitches, and, since it
is not systematic, many of them might be overlooked.

As a leader company in the videogame industry, EA, is looking forward to
automating these testing processes. All this in order to speed up the developing
stage, while delivering high quality, glitch-free products.

Due to the nature of the problem, taking unexpected forms of graphic failure,
automatizing this process is not an easy task. In spite of being diverse, these
graphical glitches are usually: stretched textures, missing textures, and tex-
tures clipping among others. The objective of this project is to investigate the
development of a tool to detect the most common anomalies in videogames.

Due to its wide range of applications anomaly detection is currently a broad
and essential research branch. In the latest years, surveys like [1] and [2]
have kept compiling the state of the art techniques, adding new and devel-
oping methodologies. The applications of anomaly detection are very diverse,
among others video surveillance [3, 4], medical image [5, 6, 7], or fraud de-
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10 CHAPTER 1. INTRODUCTION

tection [8] have been successful fields.

In parallel, Deep Learning techniques have been drawing a lot of attention in
recent years. After the development of AlexNet [9], many other Convolutional
Neural Networks (CNNs) have excelled at the classification task, like [10] or
[11]. Due to this success, there have been many researchers trying to apply
these methods to anomaly detection [12]. Is this success what motivates our
main research question: Can we detect videogame glitches using CNNs?

The methodology the project will focus on is the use of CNNs, with a classi-
fication problem approach. Different structures and classification settings are
explored. Using artificially generated data the models are tested and assessed
for the described task. The desirable outcome of this project is to obtain an
effective glitch classifier, with a reasonable false positive rate and feasible ex-
ecution time to be implemented in testing.

To address the research question proposed, this project is structured as fol-
lows. First, we present current approaches to similar problems and describe
the techniques to be used, Chapter 2. In Chapter 3 we describe how the data
is generated, and the particularities of this problem that motivate it. How the
models are trained and evaluated is described in Chapter 4, and the outcomes
of these are presented and discussed in Chapter 5. To finish future lines of
research are presented in Chapter 6 with a final conclusion wrapping up in
Chapter 7.



Chapter 2

Theoretical Background

For this section first, we present an overview of the anomaly detection problem
and the most used approaches when handling image data. Then, we introduce
the core method for this project, Deep Neural Networks, going further in depth
with CNNs explaining their components and how they allow for the exploita-
tion of the spatial properties in image data. To finish, we present the state of
the art CNN architectures that are going to be used in this project, together
with techniques that provide a further understanding of their behavior.

2.1 Anomaly detection

Anomaly detection refers to the problem of finding samples in the data that do
not correspond to the expected behavior. These samples are usually denoted
as anomalies or outliers. Solving this problem has use in a broad variety of
applications such as fraud detection [8], fault detection [13], intruder detec-
tion [14] or surveillance [3]. The main challenge to this approach is to define
what the expected behavior is. The definition of an anomaly can sometimes
be imprecise and depend on other elements such as the context, this is the case
when for example dealing with anomalies temporal data.

The importance of anomaly detection lays in the fact that these outliers in
the data can be translated into actionable information. Unexpectedly high vi-
brations may indicate an early fault in a bearing [13] or Abnormal traffic in
a computer may indicate that someone is trying to access or control the de-
vice illicitly [14]. In this project, the focus is on videogame images where
the presence of a graphical anomaly (glitch) usually indicates an error in the

11



12 CHAPTER 2. THEORETICAL BACKGROUND

implementation of the game. For instance, a missing texture often indicates
a texture that has forgotten to be implemented, while a clipped or stretched
texture can indicate that there is some error in the game implementation.

Dealing with images in anomaly detection is complicated, due to the high di-
mensionality of the input, the classical applications were usually reduced to
detecting changes in the images [15], or regions in the image that are abnor-
mal relative to the rest of the image [16]. These methods were designed with
clear heuristics and focused on particular characteristics that would define an
anomaly, due to computational constraints. In recent years, the increase of
computational power allowed for the surge of complex and non linear deep
learning models in computer vision. Consistent with this, new approaches
have been presented for image anomaly detection.

The detection methods used for image are a part of Deep Learning based
Anomaly Detection, which have become increasingly popular greatly surpass-
ing the performance of traditional methods [12]. The success of these meth-
ods is strongly reliant on the availability of big amounts of data. Although,
in anomaly detection, not all kinds of instances are equally common. De-
pending on the problem the anomalous data that we can make use of may be
scarce. Based on the availability of labeled anomalies we find three distinct
approaches to anomaly detection.

2.1.1 Supervised Approach

This method involves the training of a deep supervised binary or multi-class
classifier, with labels for the normal instances as well as for the anomalous
instances. Because of the definition of an anomaly, there is, in general, a lack
of anomalous samples available, which makes these not the preferred methods
in most of the applications. The data can be scarce for several reasons, such as
the direct lack of adequate samples such as in medical research [17], or a very
low proportion and diversity of anomalous samples like in fraud detection [8].

Another thing thatmay happen is that the number of samples can be big enough
but the problem not well defined, which makes the supervised classifier miss
the anomalies for which it was not trained on. This is for instance what hap-
pens in video surveillance since the amount of normal data is very big with
quite some positive examples of anomalies. Although these anomalies have
a lot of variance and representing very distinct situations which may lack a
precedent example. Although in this particular scenario some soft supervised
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approaches such as the one described in [3] have been notably successful, even
detecting situations the model was not trained on.

On the other hand, the supervised approach works well if the dataset is well
balanced and the images trained to follow a clear pattern as seen in [18]. Su-
pervised Deep Anomaly detection translates the problem into a classical clas-
sification problem, which has been one of the most successful applications of
CNNs [9].

To the extent of our knowledge, the application to synthetic images such as
videogames images has not been tested for supervised anomaly detection. But
seems a promising line of research due to the possibility of generating a large
number of training samples with a balanced proportion of classes. As a result,
this is the approach we have selected more suitable for our project.

2.1.2 Semisupervised Approach

Hybrid methodologies towards anomaly detection have been becoming pop-
ular in recent years [19]. Since in many cases obtaining normal instances is
usually simpler than obtaining examples of anomalies, semi-supervised deep
anomaly detection is widely adopted in high dimensional problems [20]. These
techniques use the normal examples to learn the structure of the normal data
distribution, after when a new sample is obtained this is compared to the nor-
mal distribution of data using some criteria to determine whether it is or not
an anomalous instance.

These approaches have been successfully used in applications such as wave-
form analysis for brain waves [21], intrusion detection [22], or clinical obser-
vation data [23]. In computer vision, this has also been a very powerful tool
too. The usual setting includes a generative model such as a Variational au-
toencoder (VAE) [24] or a Generative Adversarial Network (GAN) [25], using
reconstruction error as an anomaly score.

In a more sophisticated approach GANomaly [26] has obtained very interest-
ing results. This technique uses a conditional generative adversarial network
to learn at the same time the generation of high-dimensional image space and
the inference of latent space. Making use of encoder-decoder-encoder sub-
networks in the generator network enables the models to map the input image
to a lower-dimensional vector which is then used to reconstruct the generated
output image. The use of the additional encoder network maps this generated
image to its latent representation. Minimizing the distance between the images
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and the latent vectors and the latent vectors during training aids in learning the
data distribution for the normal samples. As a result, a larger distance metric
from this learned data distribution at inference time is indicative of an outlier
from that distribution.

2.1.3 Unsupervised Approach

Unsupervised anomaly detection techniques detect outliers based only on the
intrinsic properties of the data analyzed, i.e. without any labeled data. These
methods are based on one assumption being that the anomalies are much less
common than the normal instances. This is the classic setting for anomaly
detection where anomalies are solely characterized by their discordance with
the rest of the data.

In particular for highly dimensional data the classical approaches in this setting
include Principal Component Analysis (PCA) [27], Support Vector Machine
(SVM) [28] and Isolation forest [29]. These methods though are now out-
performed by the Unsupervised Deep Anomaly Detection techniques, which
can use different approaches, examples include Restricted BoltzmanMachines
(RBM) [30] or Long Short Term Memory (LSTM) Networks [31].

When used in image it is common to encounter VAEs [5] or GANs [6, 7], with
a similar setting to the semisupervised approach. Taking the instances that
the network has more trouble recognizing as anomalies. These methods are
often used in the field of medical image where are used in disease diagnose
and monitoring [5, 6, 7].

2.2 DeepNeural Networks: Convolutional Neu-
ral Networks

In this section, we will introduce the concept of deep neural networks [32]
for classification and regression. First we introduce the feed-forward neural
networks:

Let f : X → R be a composition of functions f (i), i = 1, ...n:

f(x) = f (n) ◦ ... ◦ f (1)(x) (2.1)
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In this schema every f (i) is the transition between hidden layers and f (i) is
often of a simple form:

f (i)(h(i−1)) = g(i)(W (i)h(i−1) + b(i)) = h(i) (2.2)

In this notation h(i) is interpreted as the ith hidden layer of the model, W (i)

is a matrix that denotes the weights of the layer, b(i) a vector, the bias term,
and g(i) is the activation function. Thanks to the activation function the neural
network is able to capture the non linearities present in the data, g(i) have to
be a non linear function, otherwise, the network could be reduced to a linear
function. When fitting the network the activation function plays a big role,
since most times the fitting is done by gradient descent, its derivative has to be
computed. Thus, a common choice for these are the ReLu activation function
where g(i)(z) = max(0, z), having g(i)(z) = Iz>0.

2.2.1 Convolutional neural networks

Equation 2.2 represents the most basic structure of a neural network denoted
fully connected layer or dense layer since each of the elements from the next
layer is dependant on all the elements from the previous one. When working
with structured data, such as images, this structure can be exploited using Con-
volutional Neural Networks. Since the work presented in [9] these structures
have become increasingly popular due to their high performance.

A typical convolutional neural network architecture consists on several blocks
of layers, each of those containing convolutional layers, detection layers, and
pooling layers, which are ended by a or a set of fully connected layers at the
end. Below the three mentioned layers are described:

Convolutional layers

Given a 2D input of dimensions nxxny, I = {Ii,j}nx,nyi,j=0 . And a filter of
dimensions mxxmy W = {Wi,j}mx,myi,j=0 . Will give an output of dimension
nx −mx + 1xny −my + 1 {Hi,j}nx−mx+1,ny−my+1

i,j=0 computed as follows

Hi,j =
mx∑
k=1

mx∑
l=1

Wk,lIi+k,j+l (2.3)
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In contrast with the fully connected layer, the output elements are not depen-
dant on all the input values, instead only to a certain neighborhood of val-
ues. This reduces the dependencies between elements. Also, the filter W is
the same when computing every element Hi,j thus reducing considerably the
number of parameters with respect to a dense layer.

Detection layer

This introduces the non linearity to the network. Is simply an activation func-
tion g(i) applied to every element of the previous layer. Again, having a 2 di-
mensional input nxxny, I = {Ii,j}nx,nyi,j=0 . The output is has dimensions nxxny
and is computed as follows:

Hi,j = g(Ii,j) (2.4)

Again, as in the dense layers, one common activation layer among the literature
is the ReLu activation function.

Pooling layers

These layers reduce the dimension output of a convolutional layer by replacing
the layer with a summary statistic of the nearby locations. Max pooling layers
and average pooling layers are the most common. For instance the output of a
max-pooling layer with sizemxxmy given an input nxxny, I = {Ii,j}nx,nyi,j=0 is:

Hi,j = max
k=0,...,mx;l=0,...,my

(Ii+k,j+l) (2.5)

And similarly for an average pooling layer:

Hi,j =
1

mxmy

∑
k=0,...,mx;l=0,...,my

Ii+k,j+l (2.6)

After the pooling layer, the information is downsampled.

To further reduce the size of the output often some positions are skipped, using
what is denoted as a stride (sx, sy). The output would then be:
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Hi,j =
mx∑
k=1

mx∑
l=1

Wk,lIsx·i+k,sy ·j+l (2.7)

Sometimes the opposite is of interest and the size of the input would be main-
tained. Since the convolutional layers naturally downsample the image is in-
creased in dimension by padding. This means adding in a symmetric way
rows and columns to the input so the output is of the same dimension (Adding
mx − 1 columns and my − 1 rows). Usually, this is done by adding zeros or
reflecting the image.

Tensors

All that we have described refers to two-dimensional data. In particular, when
working with images (except for the black and white images) we represent
them using 3D tensors, with three channels (red, green, and blue). Also of-
ten when training neural networks we work with a mini-batch using an extra
dimension for indicating the sample.

In practice, the convolutional filters used do not only take information for one
channel but instead from all the channels from the image. In essence, every
layer has several filters that produce different channels and at the same time,
each filter takes as input all of the previous channels. The scheme is as follows:

Hi,j,k =
∑
l,m,n

Wi,l,m,nIl,j+m,k+n (2.8)

When dealing with pooling layers or detection layers these are applied to one
filter at a time, keeping always the same number of output filters.

2.2.2 Classification

This is the main problem setting throughout the project. The objective is to
give an input imageXi ∈ X being X the image space determines which is the
class.

Consider first the binary classification problem. Suppose we have training data
in the form of {(xi, yi)}ni=1 that are outcomes of independent pairs {(Xi, Yi)}ni=1,
being Xi the explanatory variables and Yi the corresponding label. We get a
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new sample xn+1 fromXn+1 and want to predict the label Yn+1, that takes val-
ues in {−1, 1}. Let X = (X1, Y1, ..., Xn, Yn, Xn+1) be the observations and
Y = Yn+1 the label to predict. The conditional probabilities are modelled as:

Pr(Yi = yi|Θ = θ,Xi = xi) = σ(yifθ(xi)) (2.9)

Being σ the sigmoid function and fθ a neural network with parameters θ and
a single output. When working with neural networks the usual setting is to
estimate the model parameters using the maximum likelihood estimator, θML.
To maximize the likelihood the log-likelihood is considered:

log pX|Θ(x|θ) = ... =
n∑
i=1

log σ(yifθ(xi)) +
n+1∑
i=1

log pXi(xi) (2.10)

Maximizing the previous expression is equivalent to minimize the function
−
∑n

i=1 log σ(yifθ(xi)) over the parameters θ = {(W (i), b(i))}. The resulting
decision rule will classify δ(x) = 1 if p(1|xn+1, θ

ML) ≥ 1/2. This is the
same as defining the decision rule with the neural network as δθ(xi) = fθ(xi)

providing the label 2Ifθ(xn+1) ≥ 0−1minimizing the empirical risk function
defined as:

R(δθ) =
1

n

n∑
i=1

L(yi, fθ(xi)) (2.11)

where the loss function is L(y, a) = − log σ(ya)

When having a multi class classification problem with classes {1, ..., C}, we
represent the labels as one hot vectors, yi = (y1

i , ..., y
C
i ), meaning that all the

components are zero except for the correspondent to the class c which takes
value yci = 1. In this setting the probabilities for each class are expressed as:

Pr(Yi = ac|Θ = θ,Xi = xi) = softmax(yifθ(xi))c =
ef

c
θ (xi)∑C

c′=1 e
fc

′
θ (xi)

(2.12)

Where ac refers to the one hot vector for class c and fθ is a neural network
with a C-dimensional output. Analogously as in the binary case the parame-
ters of the network are estimated through maximum likelihood. Obtaining the
following minimization problem:
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n∑
k=1

C∑
c=1

−yck log πck =
n∑
k=1

H(yk|πk) (2.13)

Being πci = softmax(f(xi))x, andH referred to as the relative entropy. As in
the binary classification, the same decision rule is obtained if we parametrize
the decision rule as δθ(xi) = softmax(fθ(xi)), choosing the label as the ar-
gument of the maximum element and training the decision rule by minimizing
the empirical risk:

R(δθ) =
1

n

n∑
i=1

L(yi, fθ(xi)) (2.14)

Using the loss functionL(y, a) = H(y|a) usually referred as the cross-entropy
loss.

2.2.3 Regression

In this project, the regression problem is also considered, during the confi-
dence estimation described in the following section a regression framework
is used. Here we describe the general setting of a regression problem using
neural networks.

We consider regression with additive noise. The provided training samples
come in the form {(xi, yi)}ni=1 being outcomes of independent pairs {(Xi, Yi)}ni=1.
HereXi represents the explanatory variables and Yi the response variable. We
get a new sample xn+1 from Xn+1 and want to predict the label Yn+1. Let
X = (X1, Y1, ..., Xn, Yn, Xn+1) be the observations and Y = Yn+1. The re-
gression model is:

Yi = fθ(Xi) + εi (2.15)

Where fθ is a neural network paramterized by θ. Again as in the classification
setting, the parameters are estimated using maximum likelihood obtaining the
probability distribution pY |X,θ(y|x, θML). To obtain an estimator for Y , if the
squared loss is used, then a formal bayes rule is the conditional expectation
E(Y |X = x, θ = θML) = fθML

(x). The likelihood is:



20 CHAPTER 2. THEORETICAL BACKGROUND

log pX|θ(x|θML) =
n∑
i=1

log pε (yi − fθ(xi)) +
n+1∑
i=1

log pXi(xi) (2.16)

Thus maximizing the likelihood is equivalent to minimize the function:

−
n∑
i=1

log pε (yi − fθ(xi)) (2.17)

Which taking ε aGaussian noisewith known variable is equivalent tominimize
the empirical square loss:

1

n

n∑
i=1

(yi − fθ(xi))2 (2.18)

2.2.4 Fitting the model

In the previous sections we have defined the objective functions to minimize
for the problems stated (Equations 2.11, 2.14 and 2.18). Now, we will explain
the core concepts to reach the parameters that minimize this values.

Backpropagation

The most common setting when working with neural networks is using gradi-
ent descent methods to find the network parameters. To do so is necessary to
be able to compute the gradient. Considering the neural network as a directed
computational graph, it is very convenient to use the chain rule as a way to ex-
press the derivatives. This is the core idea of the backpropagation algorithm,
standard in training neural networks.

In a graph with n nodes: h1, ..., hn, being hn a scalar output, the leaf, and
h1, ..., hp are the ancestors. The following algorithm computes the partial
derivatives:

• Initiate the calculation by feeding the values into h1, ..., hp and make a
forward pass to compute the values of h1, ..., hn.

• Put ∂hn
∂hn

= 1 and let L = n
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• For each j ∈ Parent(L) compute:

∂hn
∂hj

=
∑

i:j∈Parent(i)

∂hn
∂hi

∂hi
∂hj

and store the values. Update L = Parent(L) and repeat until L is the
empty set

When training a neural network we represent hn as the scalar loss over a mini-
batch of training examples and hi as the hidden variables. In this case, the
derivatives to be computed are the ones to respect the parameters W (i) and
b(i), weights and biases of the networks, which implies that we will include
the derivatives of the hidden nodes with respect to the parameters as well in
the graph.

Stochastic Gradient descent

One particularity when training neural networks is that this use to be high
computationally demanding both in computational power but also in memory.
When considering classical gradient descent the following scheme is used for
updating the parameters of the model:

θt+1 = θt − λ∇θR
emp(x, y; θt) (2.19)

Where λ is the learning rate. The gradient of the empirical risk is computed
as follows when we have independent samples:

∇θR
emp(x, y; θt) =

1

n

n∑
k=1

∇θL(xk, yk; θ) (2.20)

Here it can be seen that for each gradient update the computation of n different
gradients is required which can be slow. To overcome this the gradient is sub-
stituted by an estimate which selects n′ samples of the dataset and computes
the gradient. This is denoted as mini-batch gradient descent and results in the
following updating equation:

θt+1 = θt − λ
1

n′

n′∑
k=1

∇θL(xk, yk; θ) (2.21)
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When the mini-batch size is 1 this optimization method is known as Stochastic
Gradient Descent(SGD). To compensate for the reduced number of computa-
tions, this method has the inconvenience that the computation of the gradient
has some variance (highest in the case of SGD). An alternative to overcome
this is to introduce a momentum term that controls for the variance of the gra-
dient obtaining the following update scheme:

mt+1 = γmt + λ∇θL(x, y; θt) (2.22)
θt+1 = θ −mt+1 (2.23)

Further methods have been developed in the same gradient descent framework
such as Adam [33] or Adagrad [34]. Adam one of the most commonly used
among fitting neural networks, and it can be seen as a further iteration of SGD
with momentum.

2.3 CNNs: State of the art

This section focuses on describing themethodologies considered in this project.
The main focus is in the classification approach since most part of the thesis
will be centered around these networks, the core concepts from Resnet and
ShuffleNet will be described. In contrast to the other approaches, Semantic
Segmentation is just outlined, but the reader is referenced to the original pa-
pers for further information.

2.3.1 Classification

After Alexnet [9] won ILSVRC-2012 competition a lot of focus has been put
on the power of Deep CNNs. With 5 convolutional layers and 3 fully con-
nected layers, the main highlights of the network is the use of ReLu activation
functions, dropout use in the fully connected layers for regularization, and
overlapping pooling layers for reducing the size of the network. Further net-
works came surpassing AlexNet such as VGG16 (13 convolutional layers + 3
dense layers) [35], increasing the number of convolutional layers to 16.

According to the Universal Approximation Theorem [36], a feed-forward neu-
ral network with a single hidden layer containing a finite number of hidden
units can approximate continuous function on compact subsets of Rn under
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certain assumptions on the activation function. This meaning than increasing
the width of a network increases the capacity for approximation. This was also
proven to be true when the width and depth are increased [37]. Based on these
terms, the trend on DCNNs was to increase the complexity of the networks,
in particular, by increasing the depth. Although this seemed to have a limit
in practice since with the existing structures the error started to increase when
reached a certain number of layers.

ResNet

This limitation was overcome when ResNet appeared, the network was pre-
sented for the first time in [38], and presents an innovation that allowed for
substantially deeper networks. This is referred to as residual networks, using
shortcut connections to facilitate the training of the networks. Formally these
shortcuts are expressed as follows:

y = F (x, {Wi}) + x (2.24)

Where x and y are respectively input and output vectors of the block consid-
ered. The function F (x, {Wi}) represents the residual mapping to be learned,
this is a neural network, with at least one layer. In the original paper, the num-
ber of layers of F is explored, but in the final implementations, this varies
between 2 (Figure 2.1) and 3 convolutional layers. The structure of ResNet,
consists of the concatenation of these blocks, with 4 downsampling steps when
the dimension of the network is reduced finished by an average pooling layer
and a fully connected layer in the end. In the case of the downsampling steps,
the shortcuts are expressed as follows.

Figure 2.1: Diagram of the residual structure for a function F (x, {Wi}) con-
sisting of two layers [38]
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y = F (x, {Wi}) +Ws · x (2.25)

Since the output from the function F (x, {Wi}) and x have to match, a matrix
Ws is introduced to enforce the dimensions to be compatible. This structure is
replicated with different variants from ResNet18 to Resnet152, with the num-
ber indicating the number of convolutional layers.

Intuitively, this is motivated by the degradation problem, which in the original
paper is justified saying that the added layers can be constructed as identity
mappings which are harder to approximate by neural networks. The idea then
is to instead approximate the residual F , which translates in the case of having
an identity mapping in F (x, {Wi}) = 0, which is easier to approximate by
driving all the weights to zero.

ShuffleNet

Although powerful theseDCNNs like ResNet or further advances likeDenseNet
[10] are very expensive computationally. Looking into real application further
developments like MobileNet [39] or ShuffleNet [40] were recently presented
as efficient networks for computational tight constrained environments such as
mobile phones.

ShuffleNets main innovations are the use of two new operations, points wise
group convolution and channel shuffle, to reduce computation cost whilemain-
taining accuracy. In a further iteration of ResNet denoted as ResNeXt [41] the
increase in complexity of the network was compensated introducing group
convolutions, which restrict the number of channels every filter size takes as
an input. This means the computation of the filters is modified from Equation
2.8 to:

Hi,j,k =

it+1−1∑
l=it

∑
m,n

Wi,l,m,nIl,j+m,k+n (2.26)

Being i ∈ {it, ..., it+1 − 1} with i0 = 0, it < it+1 and iT = ni, ni the num-
ber of filters from the input channel, T the number of groups. This makes
the network able to keep more information while keeping the same number of
parameters since the filters will have a smaller dimension. The group convolu-
tion is only used in the ResNeXt in the 3x3 filters, in contrast, Shufflenet uses
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Figure 2.2: a) Group convolution without shuffling channels. b) and c) present
the same operation, shuffled convolution c) stating the intermediate step of
shuffling the channels. Shuffling allows the further layers to obtain information
from all the filters in the previous ones. From [40]

also this approach in the 1x1 convolutions. To avoid the features not "sharing"
information the channel shuffle operation is performed (Figure 2.2)

In essence, the final architecture of ShuffleNet is similar to ResNet, with the
repetition of several residual blocks with the particularity of the group con-
volution combined with the channel shuffle operation, finalized with a dense
layer. The model considered in this project is described in [11] which has a
total of 50 layers.

Activation

The classification approach only provides an output regarding whether the in-
put image is an anomaly or not. Taking advantage of the convolutional struc-
ture of the network though, it is possible to provide some information regard-
ing the localization of the anomaly. In [42], some methodologies are provided
to understand which are the regions of the image that trigger the activation of
each class, which can be used as localization information.

In this work, the authors present a procedure to generate class activation maps
using the global average pooling in CNNs. The global average pooling is an
adaptive pooling layer such as the one defined in Equation 2.6, with the partic-
ularity, that it averages the whole layer, this simply gives one output for every
channel of the input.
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H =
1

nxny

∑
i=0,...,nx;j=0,...,ny

Ii,j (2.27)

After this layer, if the network performs a fully connected layer for the desired
output, the importance of the image regions can be obtained by projecting back
the weights of the output layer on to the convolutional feature maps. This is
if the normal setting is that of a fully connected layer we can write in the
following way.

Sc =
∑
k

wck
∑
x,y

fk(x, y) =
∑
x,y

∑
k

wckfk(x, y) =
∑
x,y

M c(x, y) (2.28)

Being Sc the score for class c, wck the weights from the fully connected layer
for class c and fk(x, y) the terms before the average pooling. As it can be seen
the score Sc can be expressed as a sum of a map of scores that identify with
the different regions of the image. In [42] they obtain really interesting results
with this approach, which really showed how the networks "focused" on the
parts of the image that provided the most information regarding classification.

Both networks used in this project (ResNet And ShuffleNet) have a structure
that enables this method to be used, by having a Global Average Pooling layer
followed by a dense layer at the end. Thus, this approach is applicable to both
networks.

Confidence estimation

The final softmax layer of the neural network in the classification problem en-
forces that all the probabilities add to one. Due to its internal structure, the
soft-max layer results in models that usually are very confident about mak-
ing incorrect predictions. This is particularly true when the network is doing
extrapolations, i.e. used in environments which it was not trained in. For
instance, a classifier trained on telling apart the classes cat and dog may be
shown an image of a flower and be 99% confident in that being in class cat.

To provide a better estimate of the confidence of Deep Neural Networks differ-
ent approaches have been proposed [43, 44]. Motivations can vary from being
aware that the Network is working with a different data distribution to protect
against adversarial attacks [45].
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In this project, we have adopted the approach presented in [46]. Here the
authors formally prove the equivalence between softmax based classification
and K-means clustering. Taking the following representation of the neural
network used in the classification problem F (x)

F (x) = softmax(fp(x)TW ) (2.29)

Where fp(x) is the penultimate layer of the network with d components and
W ∈ RdxC the weights form the last dense layer. With this notation:

Theorem 1 (from [46]): Let the dimension of the penultimate layer d be at
least as large as the number of classes: d ≥ c − 1. Given a network whose
predictions are calculated as y = arg maxc fp(x) > W·d, there exist C class
centroids Z·c ∈ Rd, equidistant to the origin, such that every point x is as-
signed to the class whose center is closest in the transformed space:

y = arg min
c
‖fp(x)− Z·c‖2 (2.30)

This theorem and one further are proved in the original paper, yielding from
these results a confidence measure denoted as Gauss-confidence. For every
class c this is defined as :

κ(x)c = exp(−‖fp(x)− C·c‖2) (2.31)

WhereC·c are the centroids mentioned in Theorem 1. These centroids together
with the penultimate layer of the network form what is denoted as a Gauss-
Network that will output a confidence measure for every class classifying each
instance according to the class with the higher confidence. The parameters of
this model are fitted with the algorithm outlined in [46] which has two parts:

• Update the centroids: using the following expressionC = fp(X)Y (Y TY )−1

where Y ∈ Rmxc and x ∈ Rmxn the labels and input data respectively

• Update fp(x): by fitting the parameters of the network minimizing the
expression ‖fp(X)T − Y CT‖
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2.3.2 Semantic Segmentation

Although really efficient, the classification approach provides limited informa-
tion. One label indicating whether the image contains a glitch is output by the
model, but no information is obtained regarding where the anomaly is located.
Exploring the activation before the softmax layer may give us an idea of what
the network may be focusing on but it was not specifically trained on that.

Due to the shortcomings of classification regarding glitch localization, seman-
tic segmentation presents itself as a solution regarding the spatial information.
Semantic segmentation is a fine level classification approach, producing pixel
level output. This meaning that for each pixel we obtain a probability of it
belonging to each of the possible classes.

With the development of deep learning techniques and annotated datasets [47],
several advances have come up in this area [48]. These approaches have shown
successful results in applications such as autonomous driving [49], medical
images [50], pose estimation [51] or satellite images [52].

Figure 2.3: U-Net architecture from [53]. The Encoder Decoder structure is
common in every Semantic Segmentation approach

In this project has focused on three architectures: Deep Lab V3 [54], Fully
Convolutional Networks (FCN) [55] and U-Net [53]. Each focusing in a par-
ticular innovation. In this section, the main ideas of the methods will be out-
lined but not developed in depth. Since they are not the main focus of this
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work.

The structure of Semantic Segmentation is usually divided into twomain parts.
The first is the downsampling part which is the same as a traditional convolu-
tional network after it follows an upsampling part that recovers the informa-
tion of the deep features using deconvolutional layers (essentially a transposed
convolutional layer) to provide an output with the same dimension as the input
image (Figure 2.3). This upsampling part lacks contextual information that
is lost during the first stage of the network, to avoid this, the U-Net architec-
ture [53] proposes a method that combines information from shallow features.
FCN provides a structure that allows the network to take an arbitrary input size,
using also the idea of U-Net, by combining information from the first features.
And DeepLabV3 features the use of Atrous convolution this allows a broader
field of view with similar computational complexity, which is translated in the
network being able to obtain more contextual information.
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Data

When working with Deep Learning a big part of the success of a model can
be linked to having a good dataset. Using artificial images means that the data
used for training does not have to be sourced. Instead, it can be generated in
a controlled environment. This potentially presents a good advantage in front
of other fields where the availability of data is limited

Due to the current unstructured process associated with glitch detection, a lack
of a real application dataset is a problem. Most of the glitches recorded in the
current system are not specifically labeled, and the image might have been cor-
rupted (See Figures 3.1a and 3.2a), whichmake them not adequate for training.

As a first approach to the research question, this though does not present a
big problem. A custom dataset was generated to explore the viability of glitch
detection. The creation of the data is discussed in the section below. First,
some general aspects of the data are explained, the glitches considered, and
similarity with other kinds of data. Then the procedure for the generation of
the data is described in detail.

3.1 General Considerations

In videogames, most of the graphical glitches found in the testing process are
related to textures, which are the digital representation of the surface of an ob-
ject in 3D graphics. Thus, the data used will mainly focus on texture glitches,
as discovering these malfunctions is crucial in testing to ensure the best pos-
sible graphical experience for players.

30
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The two main types of texture glitches in which the data is centered are the
corruption of the textures andmissing textures. The causes can be traced easily
in both cases, corruption can be due to some logical error such as the stretch
of an object or a resolution error. Missing texture is also a known issue usually
due to the lack of a texture file or an error when loading.

(a) Stretched texture (b) Placeholder texture

Figure 3.1: Two images that show texture glitches like the ones that are ana-
lyzed in the project. The images are taken from real glitch reports when testing
Battlefield V

Other examples of glitches involve T-pose which is due to a lack of animation
of the object, or clipped objects or total visual corruption (Figure 3.2). There
are several other common graphical glitches, but the focus was oriented to
textures since they are easy to generate, common and usually have a known
cause.

Videogames allow the player to immerse into a wholly interactive experience
where his decisions and actions, make him or her an essential part of the game.
To do so videogame studios create environments that resemble reality and
where the line between what is a real image and what is a videogame image is
blurred, allowing players to deeply engage.

This fidelity to natural images is something to account for when developing
our models. Adapting the methodologies from natural images or even using
models pretrained on those seems to be justified due to these similarities.

3.2 Training data: Unity

To develop a dataset to train a model Unity was the main tool used to do so.
Unity is a game engine developed by Unity Technologies. The aim of this
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(a) Clipped object (b) Visual corruption

Figure 3.2: Two images with glitches that will not be analyzed in this project.
Figure 3.2a shows quite a common glitch in videogames, although this is not
trivial to deal with, because of how the objects are defined. Some degree of
intersection between objects is usually accepted but is complicated to draw the
line, which also complicates generating adequate samples. The visual corrup-
tion example takes place when the whole render crashes, these are very critical
in videogame testing although we will not address it in this project.

product was to democratize game development. Giving the ability to create
both 3D and 2D games. Due to its widespread among game developers, it was
considered a good choice to generate data for this project. Also it is easy and
quick to learn interface made it a reasonable choice for a first approach to the
problem.

The data used to train the model was generated with 5 distinct classes that
attend to the type of glitch in the image. The classes are described below:

• 0: Normal. No glitch in the image, Figure 3.3

• 1: Stretched texture. The texture is stretched anisotropically, different
magnitudes in different directions, Figure 3.4a

• 2: Lower Resolution texture. The texture is stretched isotropically,
which makes it appear blurry, Figure 3.4b

• 3: Missing texture. The object completely lacks texture, this shows by
having a plain color where the object is located, Figure 3.4c

• 4: Placeholder texture. The object does not have its correspondent
texture, instead they are replaced by a white texture, Figure 3.4d. In
practice a striking texture is used to draw attention to this and be able to
locate this mistakes.
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Also, these classes admit a grouping. Classes 1 and 2 are glitches where the
texture itself is rendered but it was somehow corrupted, these can be catego-
rized under the same category of corrupted textures. Classes 3 and 4 on the
other side happen when the texture is not rendered at all, which can be because
the texture is not yet developed, usually the case with the placeholder glitch,
or when there has been another kind of error with the object to be rendered.
Both types can be grouped into one missing texture group.

The general approach to generate glitches is object centered. Since most of
the glitches are linked to an object (asset) in particular, the images taken were
centered in objects that would later be modified applying the correspondent
glitch. Figure 3.3 illustrates that several camera views centered on the object
form the dataset.

(a) (b)

(c) (d)

Figure 3.3: Normal samples with different camera positions for the same ob-
ject. The positions were assessed individually for every object so there are
no other objects occluding the view. Then we can ensure that a glitch will be
visible when we modify the object

To generate different datasets for use cases with different styles and compo-
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(a) 1: Stretched (b) 2: Low Resolution

(c) 3: Missing (d) 4: Placeholder

Figure 3.4: The four classes of glitches generated for the view in Figure 3.3a

nents in videogames three environments were used to generate a dataset for
training: Natural, Stylized, and Objects.

3.2.1 Natural Environment

It is a constantly developing area in the videogame industry to increase the
fidelity of the graphics, generating more realistic environments like forests
mountains or cities that may even be mistaken as real to the human eye. This
may be the case in videogames such as Battlefield V [56].

This environment represents a forest, here we try to mimic a real situation
where some elements of the terrain may crash such as a tree, a bush, or a rock.
Samples can be seen in Figure 3.3. The data is obtained from an available
environment in Unity [57]. To generate the following procedure was followed.

• Object selection. One object from the natural environment is chosen.
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This object has to be selected located in an area where the images look
realistic (There are some objects that are only used for background pur-
poses).

• Camera setting. An available set of camera positions is defined. This
process is donemanually attending to the placement of the object (Avoid
occlusions with other objects), and to their size (The object is visible)

• Glitch generation. The glitch is generated by modifying the objects
textures as it was described before in the previous section. An image
with a glitch is generated by taking a snapshot of the scene, the same
camera position is used for obtaining all the different kind of glitches
(Figure 3.4). The samples from unity were always obtained with a res-
olution of 800x800 pixels. This size provides a good balance between
game resolution (high resolution ), and the design size for the networks
used (200 - 300).

Following this procedure, we assure that the images generated contain at most
one glitch per image. This is important to avoid confusing the model when
several anomalies are presented the model may predict two labels being an
ambiguous answer to the question the network is responding to.

This environment was the only one to be used for the semantic segmentation
approach. In order to train such a model, the corresponding labels had to be
generated, which means a mask indicating which pixels contain an anomaly
and which are normal. This is not straightforward using the unity software.
To produce the mask the texture colors were changed attending to the object
rendered. Using a green texture for the object for the anomaly object and
red textures for all the remaining objects the pixels with higher values in the
green channel were denoted as anomalous. In Figure 3.5 an example for one
stretched texture is provided. Figure 3.6 shows the final mask obtained for
training with white pixels indicating anomalous points and black pixels in-
dicating normal points. Theses anomalous pixels were labeled according to
the mentioned glitch classes. In total 12.700 samples were obtained from this
environment, using 127 different objects.

3.2.2 Stylized Environment

In some videogames generate real-looking images is not the main goal. In-
stead, providing a stylized environment is quite common in videogames genres
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(a) Original Glitch (b) Mask

Figure 3.5: Glitch sample together with its corresponding image for generating
the mask. The tree is seen green while the background is seen red, this means
in a pixel level that the image is represented with higher values in the green
channel for the tree and higher values in the red channel for the other pixels

Figure 3.6: Mask obtained from the image 3.5b. As can be seen, the darker
part of the glitch is not highlighted in this mask. This is due to the construction
of the mask as some trade-offs had to be taken. The rendering of the red and
green image is far from perfect and also there is some noise in the image.
Thus, the red and green channels could not be directly compared, in addition,
a gaussian filter was used to reduce noise to soften the edges of the mask,
providing a more regular label

such as First Person Shooters like Apex [58]. This environment was consider-
ing this other genre of videogames, using the assets provided in [59]. In Figure
3.7 some of the images without glitches from this dataset are presented.

These renderings present their own challenges, most of the time they do re-
semble things we are familiarized in reality, but since the theme is specific
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for every game, the stylizing can be very different between two games. The
main implication of this is the lack of generalization between different stylized
games, meaning that different themes may need models trained independently
in their correspondent scene.

To generate the dataset with this environment the procedure is exactly the same
as in the previous one (Natural environment), being the only difference is the
environment chosen. The total number of samples generated in this dataset is
10.000 sampled from 100 different objects.

(a) (b)

Figure 3.7: Two images without glitches that show how the stylized environ-
ment looks like. It also looks realistic but some elements. such as the plants
are not detailed as in the Natural environment.

3.2.3 Object centered Environment

This environment was motivated by the actual way how videogames are devel-
oped. There are several objects, assets, that are placed in different parts of the
game environment, and can be as well moving around the scene. Examples
of these are weapons, characters, or rocks. As a result, it may be interesting
to obtain a model that can recognize if the quality of an object is adequate in
front of a neutral background.

This set is generated in a different way as in with the others. Both a set of
objects and locations is defined. To generate the images, the objects are moved
to these positions, placed in a random orientation and the camera is placed
randomly focusing on the object.

The objective of this environment is to train the network in a more structured
with a scalable way to generate data. In this sense, the objects are placed in
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a particular location that has been assessed to not encounter occlusion prob-
lems. With this setting, objects can just be dropped in the environment and no
particular configuration is needed for each object The objects used for gener-
ating this dataset were taken from [60]. In Figures 3.8 a sample of the dataset
is presented. In total for this dataset 51 different objects were used generating
a total of 11.550 samples.

(a) (b)

Figure 3.8: Two images without glitches that show how the setting of the ob-
jects environment. The objects are placed in different locations without ob-
stacles, so that occlusions are avoided. As a result, simpler backgrounds are
generated but the objective is for the network to get familiarized to how the
objects look like when they have a glitch

3.3 Testing data

During the training of the models, we will validate our training by splitting
the dataset and evaluating datapoints that were not used in the training phase.
This approach ensures that the model trained does not only fit the trained data
but that it also works with data from the same distribution that was not trained
in. In order for the approach to be useful, we would like to know how does the
trained model performs not only to the environment where it was trained on
but also in a different environment, these ways we expect to draw conclusions
about how it may generalize.
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3.3.1 Unity

Since the data used for trainingwas generated in Unity it makes sense to use the
same engine to provide a test dataset. This data will contain elements from the
previous environments but with some changes. This aims to determine which
use cases would be approachable in a production scenario.

Here we will deal with two environments that respond to different use cases.
The first one corresponds to the objects scenario, different objects to the ones
used on training were placed in different positions but the same environment.
This will help to determine if there is a possible application of these method-
ologies for new objects introduced in an established environment. In that
sense, this data will simply be the validation set from the objects environment.

The other environment combines the natural environment with the objects
from the object environment. The objective here is to asses whether the model
trained separately in both environments can recognize glitches for one in the
other. In Figure 3.9 a sample of the environment is shown. On top of that, the
data generated has a low proportion of glitch samples, with only 10% of the
samples with glitches and being 2.5% for every glitch class.

(a) (b)

Figure 3.9: Images from the test environment combining both natural and ob-
ject environments

For both use cases, a video has been generated. The video consists of a flying
camera that focuses on particular objects in the scene. The objects aremodified
on the go and here the performance of the model can be assessed in a more
intuitive way.
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3.3.2 Frostbite

In order to produce extremely realistic graphics videogame companies develop
their own high performance graphical engines. As a leading player in the in-
dustry EA has Frostbite as its own videogame engine. This project’s final goal
is to investigate the viability of a glitch detector’s use in these high perfor-
mance engines, thus it would be interesting to test the model with such tools.

The data from Frostbite currently available corresponds only to very particular
scenes where a glitch has beenmanually detected, because of this, the provided
dataset is not well structured. Right now, after presenting results to the team,
steps are taking place for integrating this into the process, this branch is yet to
be explored and corresponds to future work on this line. See Chapter 6



Chapter 4

Methodology

This section presents how the different methods are assembled with the data to
explore the main research question: Can we detect videogame glitches using
CNNs?

The answer to this question lays in understanding how these methods perform
in front of graphical anomalies. Whether they are able to recognize them learn-
ing from the training data provided, how they fail, and why they fail.

Neural Network models are of high complexity and non-linear, in addition,
the representation of images consists of tensors containing high dimensional
numerical data. As a result, understanding the processing of the data inside
our model is not a trivial task. Through modifying different aspects of how the
networks are trained: data, network architecture, batch size, learning rate... A
better understanding of the model’s behavior in front of the problem.

This Chapter will first present the metrics defined for assessing the perfor-
mance of the models, the following sections will describe how the models
were trained and what were the aspects modified together with their purpose.
The main approach taken was the classification approach, for which aspects
like data, hyperparameters, or initialization were discussed. Semantic Seg-
mentation was also explored but in a much lower scope.

4.1 Metrics

First of all, we define and motivate the statistics that have been used to un-
derstand the performance of the network, this is important to avoid the biases
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corresponding to each particular metric, providing the most clear vision of the
output of our model [61]. Although there are defined 4 classes of glitches we
can simplify the problem to a 2 class problem obtaining the Contingency Table
4.1. The metrics defined will take into account both the two class problems
and the number of classes that the model was trained in.

Predicted Condition
Normal Glitch

True
Condition

Normal True Negative (TN) False Positive (FP)
Glitch False Negative (FN) True Positive (TP)

Table 4.1: Contingency table 2 class problem

• Accuracy: The simplest metric, it states the fraction of datapoints that
were correctly predicted.

• Recall: Measures how sensitive the model is to the positive instances
(glitches). It is the fraction of the true positives with respect to all the
relevant elements i.e. Recall = TP

TP+FN

• Precision: Indicates how many of the elements marked are actually rel-
evant. It is computed as Precision = TP

TP+FP

• False positive rate: Measures how many of the normal instances are
computed as glitches: False Positive Rate = FP

FP+TN

• Confusion Matrix: The contingency table indicated in Table 4.1 ex-
tended to all the classes predicted by the model. All the confusion matri-
ces will be presented adimensionalized by the total number of instances
from one class, this will allow to extrapolate the results to different pro-
portions of glitch classes.

• Cross Entropy Loss: The loss function used in the training of classifi-
cation models, already defined in Equation 2.14

• Intersection over Union (IoU) This metric (also referred to as Jaccard
index) is used in localization tasks, particularly we used it in the Seman-
tic Segmentation approach. Is defined as the intersection divided by the
union of the prediction and original label. Since we are dealing with
pixel wise classification the metric is computed as:

IoU = #Intersection Pixels
#Union Pixels
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Accounting for this metric we can say an object (glitch) was detected
when this metric exceeds a threshold, accounting for that we have es-
tablished two criteria 0.3 IoU and 0.5 IoU for considering an object de-
tected.

Note that in the case of having no pixels in the original label we would
either get IOU 0 or 0/0 which we identify as 1.

The different measures indicate different properties in which we are interested.
The cross-entropy loss and the accuracy give us a general idea of how the
model is performing. In a balanced dataset, the accuracy itself is a good first
indicator.

Measures like Recall, Precision, and False positive rate give us a better idea
of how the model is performing. For example, when having an imbalanced
dataset with only a few glitches, predicting everything as normal will give us
a high accuracy measure but will have zero recall and the precision would
directly no exist since none instance would be marked as positive.

In this problem, we are interested in particular in high precision (low false
positive rate) although we would like ideally high recall as well. In a real-life
application the glitch detector should be a reliable tool and if the precision is
too low it may result in unfeasible for use in practice.

The confusionmatrix will give us better insight into how themodel is working.
In particular, it will give us an understanding of which are the classes that the
network has more trouble telling apart, and the ones that the model learns to
identify right away.

When working with semantic segmentation the concepts of IoU and detection
are broadly used to provide a better understanding of the performance of the
algorithms, presenting a more understandable metric than the cross entropy
loss used while training.

4.2 Classification

This section discusses the methods regarding the analysis of the classification
approach. First, in Section 4.2.1 general considerations regarding the imple-
mentation are explained. Section 4.2.2 approaches decision of factors like
the batch size, learning rate or network complexity. Different data configu-
rations are examined in Section 4.2.3, followed by Class groupings 4.2.4 and



44 CHAPTER 4. METHODOLOGY

the initialization of the network 4.2.5. To finish the methods to acquire extra
information from the network are discussed (Section 4.2.6)

4.2.1 General Implementation

As an industry standard Python was used to implement and train the models, in
particular with help of the Neural Network focused framework Pytorch and its
library Torchvision (Oriented to computer vision and CNNs) the models were
implemented and trained. The classification approach was the main approach
followed in this project being ShuffleNet and ResNet were the main architec-
tures used (Section 2.3.1). Themodels ResNet and ShuffleNet were taken from
Torchvisionand trained using a graphics cardGeForce GTX 1080 Ti. With this
setting, ShuffleNetV2 x1.0, which was the main network used, performed at a
rate of 60 frames per second, with an input resolution of 800x800.

To train the models one part of the data was separated to use as a validation set.
The split was done so no objects have datapoints in both training and testing
sets ensuring the results can be extrapolated to new data. The usual setting
was to consider 20% of the objects in the validation set.

The models are trained for 100 epochs by default. After every epoch, the met-
rics mentioned in the previous section are computed. For the training set, the
predictions are the ones obtained during training, in contrast, the validation
set is evaluated after each epoch. This decision was taken to avoid repeating
computations to evaluate the training set at the end of the epoch. In practice,
this may produce unexpected results, particularly during the first epochs, such
as that the validation loss could be lower than the training loss.

The Training is done using the Adam optimizer (Section 2.2.4). As a default
the learning rate was set to λ = 10−3, while the rest of the parameters of the
optimizer were used as the one predetermined in theTorchvision implementa-
tion. The models were trained using a batch size of 8. Both the batch size and
learning rate were chosen arbitrarily, based on commonly used values when
training neural networks.

4.2.2 Networks parameter exploration

This Section discusses the exploration done regarding network complexity, hy-
perparameters, and the loss function used. The different configurations trained
are stated as well as the possible outcomes and what these would imply.
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Network complexity

The network most used among this project was ShuffleNet V2 x1.0, although
several versions of ResNet were tested as well (Section 2.3.1) all in order to
asses the performance of different architectures.

In order to experiment with networks of different depth and complexity, dif-
ferent versions of Resnet and ShuffleNet were trained. For Resnet the versions
Resnet18, Resnet34, Resnet50 provide different depths of the same structural
blocks, while or ShuffleNet four versions ShuffleNetV2 0.5x, 1.0x, 1.5x and
2.0x vary the number of filters for every layer of the network. All the men-
tioned versions of the networks were already implemented and sourced from
the Torchvision library.

Training different model architectures, as well as different complexities from
the same structure, will give us an insight on how dependent are the results in
the network chosen, which is the most adequate network for our problem and
what are the limitations of each architecture.

Hyperparameter tunning

The twomain hyperparameters to do an exploration of, after checking the com-
plexity of the network, are the batch size and the learning rate. The exploration
was done only for the ShuffleNet V2 x1.0 architecture.

For the learning rate, a logarithmic exploration was considered taking values
from 10−2 to 10−5. It is important to choose a value that gives us the correct
trade off, to provide the model with a fast convergence but to avoid ending up
at a suboptimal solution.

The batch size is the number of examples that are fed to the network with every
iteration of the optimizer. When the mini-batch is too small, then a high vari-
ance is involved when computing the gradient of the function. Nevertheless,
this is usually limited in practice by the hardware used for training the network.
In our case the maximum batch size admitted for the graphics card to not run
out of memory was 32 for ShuffleNetV2 x1.0. The batch sizes explored were
powers of two ranged from 22 to 25.
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Loss function

The Loss function used in classification was always the cross-entropy loss
which was already described in Section 2.2.2. Although this loss was some-
times modified adding some weighting. This forces the network to avoid miss
classifying classes with higher weight. This was used in cases where the
dataset became imbalanced such as when grouping classes 4.2.4.

4.2.3 Data

Being data the fundamental part of fitting the Deep CNN models it is very
important to choose an adequate dataset to feed to the network during training.
In this section, we describe how we analyze the influence of the data on the
model performance.

During the project, the development of a dataset was done in parallel to the
fitting of the models. In Section 3.2 we described the generation of the train-
ing and validation data to be used. Three different environments were imple-
mented. Since the Natural environment was the first implemented the dataset
from this environment has been used in most of the trainings.

Size

One of the main factors for the success of Deep Convolutional Neural Net-
works is using a big amount of diverse data for training the models. In this
project, the creation of data has been a relatively manual process where the
degree of scalability is limited by the environments used in our graphical en-
gine.

To investigate the potential of the models used we considered training with
different sizes for the training set. This allows us to asses how the models
react to more data and whether there is room for further improvement with
additional data. The performance remaining constant with different sizes of
data would mean that more data would likely not influence the performance of
the model, and on the opposite case, a bigger and more diverse dataset would
likely improve the performance.
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Mixing Data

Different combinations of data were fed to the networks to asses how this influ-
ences their performance. The assessment of data was done for all the environ-
ments, for every environment, the split between training and validation was
kept constant and the whole dataset generated from the other environments
was added to the training data.

Addingmore diverse data was considered in order to investigate the capacity of
the network to generalize to different environments. In this sense, the models
trained with more diverse datasets would not be expected to perform better
with data from the same distribution but with data from a different distribution.
If this is the case then it would mean that the models are able to model very
different kinds of data.

Cleaning Data

One of the main obstacles encountered during this project was the availability
of suitable data. In particular, stretched and low resolution textures present a
challenge. These were generated by deforming the texture file, although this
deformation presents no problem at all, but when rendered into the object it
may be the case that the output is not the expected. This is exemplified in
Figures 4.1

These glitches are not desirable in our training set because they may induce
confusion to the network. In the case of an object disappearing the network
should not flag a glitch since there is actually nothing in the image. It would
not be adequate either to spot glitches that cannot be recognized by a human
since this would not be needed to address in a real use case when testing, the
focus overall is to locate the errors that hinder the videogame experience.

To asses how the quality of the data used to train the models the data has
been manually cleaned. To do so, all the classes were visually inspected for
every object, discarding all the images of one class for the object at a time
if considered that these were not to be recognized by a human. The models
were then trained in this dataset and the performance compared with the ones
trained using the full dataset.
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(a) Stretched (b) Red and Green Mask from 4.1a

(c) Low Resolution (d) Red and Green Mask from 4.1c

Figure 4.1: 4.1a and 4.1c show two examples of samples to be filtered. These
are hard to spot for a human, to help visualizing the glitches 4.1b 4.1d show
in a green tone where the glitches are located. In the case of 4.1a the object
modified is grass, in some cases this objects may even disappear altogether
when the texture is modified, in contrast what happens in 4.1d is that the texture
is quite plain and thus deforming it generates a glitch which is hard to spot to
a human eye

Placeholder Texture

As a preliminary approach, a plain white texture was used to simulate the
case of a placeholder texture error. In a real use case, placeholder textures are
usually made of very recognizable patterns which makes them easier to spot,
since these are critical errors that should be acted on.

In a later stage of the project, we had access to a placeholder texture used at
DICE. Using this texture a new Natural Environment dataset was generated,
and the models trained in this new data. Using a plain white texture has the
disadvantage that the model will identify white with the placeholder glitch. In



CHAPTER 4. METHODOLOGY 49

contrast, a more recognizable pattern should help with this confusion.

4.2.4 Classes

When formulating the problem, although helpful, detecting which kind of
glitch is present in the image is not a fundamental part, as long as the net-
work can flag which are the anomalous instances, it will be useful in a real
use case. As a result, different settings were presented grouping the glitches
according to similarity.

In the main setting throughout the project, the models were trained with the
five classes described in Chapter 3. Since the classes could be grouped in
corrupted textures (i.e. Stretched and Lower Resolution) and missing textures
(i.e. Missing and Placeholder), this training setting was explored, but also the
binary setting i.e Normal/Glitch.

To compare the different groupings themodels with a finer classificationwould
group the anomalies predicted, and the performance compared referenced to
the coarser level. In the case of both approaches performing the same on the
broader classification, the finer one would be deemed the best one since more
information can be obtained.

4.2.5 Network Initialization

Because of fitting Convolutional Neural Networks is not a convex optimization
problem, the initialization of the weights can play a big role when reaching
a good local optima. The networks were initialized with the standard layer
initialization provided by torch, which is a random initialization.

In relation to the similarity of videogame images with natural images, the
model was trained using different pretrainedweights on ImageNet. Thismeans
using weights from an already trained as a starting point. Torchvision provides
the networks weights for some versions of ShuffleNet and ResNet.

The models were also trained using as a starting point the weights from a
different glitch dataset. This was done in order to asses how easy it is for
the network to transfer knowledge from one model trained into a particular
environment to a new game or a new scenario.
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4.2.6 Confidence Network and Activation Map

Based on the structure of the network we can exploit the model in order to
provide extra information.

In order to reduce false positives, the Gauss network was trained to investi-
gate the confidence of the network outputs. After training the network for
100 epochs the centroids were computed and the Gauss network fine tuned for
different numbers of epochs.

To visualize the behavior of the network, the Activation map was generated
by removing the Adaptive Average pooling layer from the Torchvision imple-
mentations of ShuffleNet and ResNet. No performance test was taken since
this approach only provides information on which region is triggering most
the network classification.

4.2.7 Data Aggregation

One of the main advantages of working with synthetic data is that its gener-
ation can be controlled to some degree. When testing whether the objects in
the videogame scene are correctly rendered. To better asses the scene several
images can be taken focusing on an object providing more input information
to the network.

In order to asses how the number of images fed to the network influences the
performance on classification, we have used from 1 to 20 images to classify
a particular object. The final output considered for the classification consists
on the average probability. The data used is the same as in the previous cases,
having 20 images per object and class, to obtain one group of data for classifi-
cation we select one object and class and randomly sample with replacement
the corresponding number of images. This is done 100 times for every object
and class to obtain a stable result

4.3 Semantic Segmentation

Although not extensively explored as in the classification approach, semantic
segmentation was considered for the glitch detection problem. The main ad-
vantage of this methodology is that provides extensive information regarding
where the graphical anomalies are located. In doing so, it also consumes a
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lot of computational resources, being extremely slow to train with long eval-
uation time would arguably be too demanding and inconvenient for a real use
case application.

For this approach the metrics mentioned before can be applied to this problem,
we will mainly focus on the mentioned Intersection Over Unionmetric (IOU),
together with the is detection criteria based on it.

One of the challenges of this approach also lays in the data provided for the
algorithm. To train this it is necessary to provide a segmentation mask as a
label. To do this there is not a straightforward approach to generate the mask.
This process was explained in detail in section 3.2

4.3.1 Training

The Implementation of the Semantic Segmentationmodels was done in Python
as with the classification approach, the model implementation was taken from
the Torchvision library in the case of FCN and DeepLabV3 and from [62] in
the case of U-Net. The models were trained with two GeForce GTX 1080 Ti
graphics card. In this setting, the models evaluate are able to evaluate a dataset
at a rate of 10, 7.2, and 6 frames per second for respectively UNet, FCN, and
DeepLabV3.

Due to the demanding computational cost of both training and evaluating the
models, no evaluation was done during the training. Instead, the only metric
provided was the loss function, on the other hand, the models were specifically
evaluated at the end of the training. As a default, the models were trained for
10 epochs.

Regarding the trainings, the optimization was done using the Adam optimizer
with a learning rate λ = 10−3. The high complexity of the model limited the
batch size used which was fixed as 2 for all the models.

Two settings were explored for Semantic Segmentation, both a binary segmen-
tation, providing classification for the pixels for glitch and normal as output.
And a multi-class setting that specified the type of glitch (Stretched, Low Res-
olution, Missing, or Placeholder texture).



Chapter 5

Results

This section presents the results of the trainings performed. This chapter is
divided equivalent to the sections in the previous Methodology chapter.

5.1 Classification

Under this chapter, we present the results for the main approach taken on the
project. The results are presented with three structures to visualize the data:
Graphics, Confusion Matrices and Tables

TheGraphics present the evolution of one particular metric through the train-
ing process. The dotted line indicates the metric when the model is evaluated
in the training set and the continuous line indicates the model is evaluated in
the validation set. To facilitate the interpretation of the result an exponential
average has been done, which filters the noise and eases seeing which is the
graphs trend. Both the filtered and the unfiltered data are presented in the
graph with a solid and a light line respectively.

The metrics are presented in Tables, which compile the statistics for the last
20 epochs (81 - 100) unless advised otherwise. Two statistics are presented
with the structureMEAN(STD). It was a general observation that the networks
have already reached convergence with that number of epochs. The mean is
presented to asses the average magnitude of the metric and the standard devia-
tion the variability of the metrics in convergence, been able to asses significant
differences with different approaches.

To give a more clear insight into how the network is performing Confusion
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Matrices are presented in very particular cases. Since in some cases the val-
idation sets are not perfectly balanced, and to ease the interpretability of the
matrix the values presented are fractions of the total instances in the original
class. The matrices are computed averaging the 20 last epochs just as with the
information in the Tables. To improve the readability of the matrices higher
values were presented with brighter colors and lower values with darker colors.

5.1.1 Hyperparameter Tunning

Batch Size

In order to asses how the batch size influences the training batch sizes from
22 to 25 were used for training. The metrics for the trainings are compiled in
Table 5.1.

Batch Size 4 8 16 32
Accuracy 0.791 (0.012) 0.804 (0.012) 0.805 (0.011) 0.819 (0.006)
False Positive Rate 0.103 (0.034) 0.087 (0.020) 0.097 (0.027) 0.129 (0.032)
Precision 0.971 (0.009) 0.975 (0.005) 0.972 (0.007) 0.966 (0.008)
Recall 0.838 (0.031) 0.845 (0.020) 0.848 (0.024) 0.877 (0.017)

Table 5.1: Metrics table for different Batch Sizes. The models trained were
ShuffleNetV2 x1.0 with using the Natural Environment Data and with a learn-
ing rate of λ = 10−4

The outcome of this exploration is that the models increase performance over-
all when increasing the batch size. Thus, a large batch size is recommended,
although, we cannot guarantee that this trend will continue indefinitely. It is
likely that the capacity of the hardware used for training is reached before a
bigger batch size starts to become inefficient.

Learning Rate

The learning rate parameter λ in the Adam optimizer used was explored to
investigate which is the better configuration for the problem given. Themetrics
obtained in the training are summarized in Table 5.2

The results indicate a clear trend regarding the variance of the metrics. These
become more stable as the learning rate becomes smaller. But is also interest-
ing to see that we have an optimal learning rate regarding performance. All the
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Learning Rate 10−2 10−3 10−4 10−5

Accuracy 0.715 (0.015) 0.767 (0.014) 0.801 (0.012) 0.791 (0.007)
Loss 1.635 (2.126) 1.408 (0.166) 1.072 (0.122) 0.813 (0.067)
False Positive Rate 0.270 (0.078) 0.116 (0.041) 0.085 (0.028) 0.090 (0.021)
Precision 0.928 (0.017) 0.967 (0.010) 0.975 (0.007) 0.974 (0.005)
Recall 0.859 (0.046) 0.825 (0.036) 0.835 (0.025) 0.834 (0.018)

Table 5.2: Metrics Table for different Learning rates. The models trained were
ShuffleNetV2 x1.0 with using the Natural Environment Data and with a Batch
Size of 8

metrics are optimal when λ = 10−4. Although the difference is not significant
with respect to a smaller learning rate (10−5) we can see why is of our interest
to choose the bigger learning rate when looking at the Graph in Figure 5.1

Figure 5.1: Graphics for the accuracy with different values for the learning
rate λ during training. All models were trained with ShuffleNetV2, the Natural
Environment data, and a batch size of 8

In the graph, we see that both λ = 10−5 and λ = 10−4 reach roughly the same
accuracy level, but the main difference lays on when this accuracy reached.
The higher learning rate reaches this performance almost after the first epoch,
in contrast, we have to wait to around epoch 25 to get the same performance
with the smaller one. Having a smaller learning rate means reaching the op-
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timal weight configuration later thus, and this can be clearly seen with the
accuracy in the training set as well.

We can also see how bigger learning rates lead to the network not reaching
an optimal minimum and having quite some difficulties doing so, when the
learning rate is too high (λ = 10−2) the convergence is unstable. This can be
noticed when looking at Table 5.2 where the variability of the loss is very high
compare with the other learning rates.

In conclusion, for our problem, the most adequate learning rate was found to
be λ = 10−4

5.1.2 Complexity Exploration

Another aspect of the network architecture we would like to investigate is the
influence of the complexity in the performance. In Figure 5.2 it can be seen
how the complexity influences the ShuffleNet V2 performance.

Figure 5.2: ShuffleNet Complexity exploration on not pretrained models

Note that the trainings to which the graph in Figure 5.2 correspond to are
initialized randomly, instead of using the weights resulting from training in
ImageNet as a starting point. This was due to the lack of pretrained models for
higher complexities. More details issue with pretrained models is discussed
in depth in the next Section 5.1.5.
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When looking at the training curve (dashed line), it is seen that more com-
plex models perform better in the training set. In contrast, when tested in
the validation set the more complex models perform worse. This behavior
is explained through the concept of overfitting. The more complex models
are able to model better the intricacies of the training data reaching very high
performance in that dataset. As a result, since the modeled is tailored to one
particular set of data it will fail to generalize when new data is provided, the
validation set. On the other hand, the less complex the model, the less it can
particularize to a given datset, thus having worse performance on the training
set. But, since this model does not particularize is able to generalize better,
which translates into higher performance in the validation set.

Figure 5.3: ResNet Complexity exploration. All the models were trained on
the Natural Environment with batch size 8 and learning rate λ = 10−3

In the same setting, the different complexities for ResNet were trained from
a random initialization, the results for the accuracy are presented in Figure
5.3. The behavior, in this case, is the opposite as in the ShuffleNetV2. It has
to be noted that the models have still not converged at epoch 100, and this
is particularly visible with ResNet50 where both the training and validation
accuracies have increasing trends. In the graph, we see how the simpler models
converge faster in the training set, but we do not see any particular pattern
regarding the validation accuracy and the complexity. Slower convergence
makes sense since the number of layers is the parameter modified in this case,
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in contrast with the width (i.e. the number of filters) which was incremented
with ShuffleNetV2.

Since the pretrained models are only available for the versions x0.5 and x1.0
of ShuffleNet, the complexity was not explored for pretrained models in this
architecture. Although, ResNet does provide weights for all the models pre-
trained in ImageNet. In Figure 5.4 the accuracy for different complexities of
ResNet is displayed for models trained for 100 epochs. In the graph, the ac-
curacy is plotted with respect to the elapsed time to illustrate also how does
the computational time demand increases with the complexity of the network.
For ResNet with pretrained models it is shown that the increase of complexity
just implies a longer time to fit the model but does not imply an increase in
performance. In Table 5.3 it is seen how for the accuracy reached for all the
ResNet architectures is the same (around 72%). This accuracy though is still
significantly lower than the one reached by ShuffleNet V2.

Figure 5.4: ResNet Complexity exploration on pretrained models. Note that in
this case the x axis indicates the total time elapsed. All the models were trained
on the Natural Environment with batch size 8 and learning rate λ = 10−3

Network Architecture ResNet18 ResNet34 ResNet50 ShuffleNetV2
Accuracy 0.721 (0.014) 0.719 (0.017) 0.724 (0.031) 0.767 (0.014)

Table 5.3: Accuracy for the last 20 epochs for the plot in Figure 5.4
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The main conclusion from this complexity study is that it does not modify
the performance when using pretrained models, but it does when the models
are randomly initialized. This could be linked to our dataset having a too
small size and diversity. ShuffleNetV2 both performs better and is faster than
ResNet, which makes it our network of choice for this problem.

5.1.3 Data

In this section, we show how different characteristics of the data used, such as
size, diversity, or quality may influence the results.

Size

Different sizes for training set were used for training the model in the Natural
Environment. The performance metrics for this are summarized in Table 5.4.
As expected, when increasing the size of the dataset used in training the per-
formance of the model increases, this indicates that there is still a margin of
improvement by adding more data to the training set.

Fraction in training 0.9 0.7 0.5 0.3
Accuracy 0.836 (0.012) 0.809 (0.011) 0.784 (0.013) 0.757 (0.012)
Loss 0.676 (0.127) 0.778 (0.117) 1.073 (0.173) 1.162 (0.095)
False Positive Rate 0.100 (0.056) 0.112 (0.051) 0.165 (0.066) 0.211 (0.058)
Precision 0.972 (0.014) 0.969 (0.013) 0.954 (0.016) 0.942 (0.013)
Recall 0.863 (0.027) 0.851 (0.029) 0.839 (0.036) 0.851 (0.032)

Table 5.4: Metrics when varying the fraction of the dataset used for training
the model.

The environment used is relatively small in comparison with those used in real
videogames. Analyzing the influence of adding extra data allows us to induce
that in a real use case the performance reached could be higher than the one
reached in this study.

Cleaning data

When the model was trained with better quality data, the performance in-
creased significantly. Table 5.5 shows the metrics for the last 20 epochs. All
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the metrics improve, which was to expect since the glitches in the images were
mean to be easier to recognize. Except for the False Positive Rate metric all
the other metrics would naturally increase when samples are removed from
one particular class, even if the algorithm would perform exactly the same.

Data All Clean
Accuracy 0.767 (0.014) 0.847 (0.015)
Loss 1.408 (0.166) 1.343 (0.560)
False Positive Rate 0.116 (0.041) 0.090 (0.028)
Precision 0.967 (0.010) 0.971 (0.008)
Recall 0.825 (0.036) 0.904 (0.024)

Table 5.5: Metrics comparing the models trained with the whole dataset and
with the clean data for the last 20 epochs (81-100)

As a result, we display also the average confusion matrix for the last 20 epochs.
In Figure 5.5 it can be seen that when filtering the data, the proportions shift to
the diagonal which indicates that more samples are classified correctly. This
is noticeable in both stretched and low resolution textures since were the ones
filtered. In the other cases, the performance stays the same.

(a) (b)

Figure 5.5: Cleaning data has a clear positive impact in the performance of
the classification. The values showed indicate which fraction of the number
of the real example falls into which spot.

From this, we can interpret that better quality data may further increase the
performance of the model. Since the filtering done either removes the whole
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class for one object or keeps it, much finer filtering could be done. In a real use
case, it is recommended to generate good quality data, with clearly noticeable
glitches to a human eye.

Environments

Validating on Natural, environment the model was trained in using data from
different environments. The results from this training are displayed in Table
5.6. Regarding most of the metrics, we cannot see much influence of adding
more data. The only exception being the false positive rate, which increases as
the data gets more diverse. This is not desirable, especially in an imbalanced
dataset, which will be the ultimate application. The interpretation from this
is that more data implies more patterns of failure are recognized, and, since
these may be specific to one environment, in other environments may trigger
false alarms. One thing to highlight is that these correspond mostly to samples
classified as corrupted textures instead of normal.

Datasets Used Natural, Object, Stylized Natural, Object Natural
Accuracy 0.769 (0.008) 0.777 (0.009) 0.767 (0.014)
Loss 1.358 (0.137) 1.249 (0.139) 1.408 (0.166)
False Positive Rate 0.210 (0.061) 0.186 (0.051) 0.116 (0.041)
Precision 0.943 (0.014) 0.950 (0.012) 0.967 (0.010)
Recall 0.859 (0.032) 0.868 (0.028) 0.825 (0.036)

Table 5.6: Metrics table for different Environments. The metrics in this table
result from evaluating the models in the validation set from the Natural data

This analysis was also done with the objects environment, whose results are
presented in Table 5.7. In this case, we observe small changes that may not be
completely significant but that indicate that the addition of more data slightly
improves the performance. This could be thought of with the diversity of the
objects data, since there are a lot of different objects seeing how new objects
fail may help the model recognize what does one kind of glitch imply. In
contrast in the Natural Environment, we had not a diverse set of objects, with
a few main categories (tree, bushes, rocks. and logs) which had similar ways
of crashing.

The last dataset we tried was the Stylized environment. The results from train-
ing are compiled in Table 5.8. When dealing with the stylized data we clearly
see a big decrease in performance. This can be in part because the environ-
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(a) (b)

Figure 5.6: Two different missing textures in the Stylized environment

Datasets Used Object, Natural, Stylized Object, Natural Object
Accuracy 0.776 (0.009) 0.788 (0.007) 0.764 (0.013)
Loss 1.078 (0.106) 1.057 (0.074) 1.300 (0.118)
False Positive Rate 0.350 (0.064) 0.331 (0.060) 0.385 (0.055)
Precision 0.902 (0.014) 0.907 (0.014) 0.892 (0.012)
Recall 0.876 (0.023) 0.884 (0.019) 0.870 (0.019)

Table 5.7: Metrics table for different Environments. The metrics in this table
result from evaluating the models in the validation set from the Object data

ments are quite different, but, if this was the case, we should observe a similar
phenomenon with the previous environments. One hypothesis to explain this
asymmetry can be explained by observing the dataset from the stylized envi-
ronment. In Figure 5.6 we see two examples of a missing texture glitch in the
Stylized environment. In contrast with the other datasets, where the images
with a missing texture always looked a certain way. Is this diversity that could
be responsible for this asymmetry observed.

Placeholder texture

Aiming for a more realistic use case another dataset for the Natural Environ-
ment was generated using the same procedure described in Chapter 3, but us-
ing a placeholder texture with a recognizable pattern. One sample can be seen
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Datasets Used Stylized, Natural, Objects Stylized, Natural Stylized
Accuracy 0.776 (0.016) 0.781 (0.014) 0.828 (0.020)
Loss 1.286 (0.172) 1.104 (0.127) 0.815 (0.111)
False Positive Rate 0.117 (0.025) 0.148 (0.033) 0.070 (0.024)
Precision 0.970 (0.006) 0.963 (0.008) 0.982 (0.006)
Recall 0.939 (0.027) 0.965 (0.016) 0.983 (0.006)

Table 5.8: Metrics table for different Environments. The metrics in this table
result from evaluating the models in the validation set from the Stylized data

in Figure 5.7b.

In Figure 5.7a we see the performance of ShuffleNetV2 in this dataset, here
we used the best hyper parameters of obtained in Section 5.1.1. With this set-
ting, we obtain the best performance in the report. The main effect of using
the placeholder texture has been the improvement regarding images misclas-
sified as placeholder glitches. Using a plain white placeholder texture made
the model recognize white elements as glitches, providing false positives with
objects that used white color. In average at convergence, the accuracy with
this configuration was 86.8% with a false positive rate of 6.7% and a recall of
88.1%

(a) (b) Placeholder texture used

Figure 5.7
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5.1.4 Classes

The assessment of how the grouping of classes influence the performance was
done using the Natural Environment data, and with the standard training con-
figuration. In Figure 5.8 the confusion matrices are presented when using both
5 and 3 classes for training. No difference is observed between the matrices
which allows us to say that is preferable to train with the 5 original classes
since more information is provided. Since we are using a very complex neural
network this result seems natural, especially with a small dataset as it is this
case.

(a) (b)

Figure 5.8: Performance training with different groupings.

The binary problem (normal or glitch) was also considered and for discussing
the results all the class groupings are compiled in Table 5.9. This table also
shows the performance when the classes were weighted to correct for class im-
balance when grouping. We observe that no significant differences are present
in the metrics of False positive Rate Precision and Recall, note that the Accu-
racy metrics improve with coarser grouping but this is misleading since they
cannot be directly compared because of the different number of classes.

5.1.5 Network Initialization

In the previous section 5.1.2, we viewed how pretrained models performed.
We justified using these models due to the similarity of the videogames images
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Classes in training 5 3 3 (Weighted) 2 2 (Weighted)
Accuracy 0.767 (0.014) 0.805 (0.015) 0.810 (0.016) 0.856 (0.016) 0.834 (0.022)
False Positive Rate 0.116 (0.041) 0.144 (0.047) 0.143 (0.065) 0.213 (0.044) 0.165 (0.047)
Precision 0.967 (0.010) 0.959 (0.011) 0.960 (0.015) 0.943 (0.010) 0.953 (0.011)
Recall 0.825 (0.036) 0.842 (0.030) 0.845 (0.038) 0.873 (0.027) 0.834 (0.036)

Table 5.9: Metrics for the different groupings in training. In this table we do
not include the loss metric

with natural images, and we could see that the difference between pretrained
models and the ones trained from scratch was a significant better performance
in the former setting.

In addition to using models pretrained in ImageNet we used as initialization
the weights of models trained in other environments. In particular, we used
a model trained in the Natural Environment and used it as a starting point for
training with the other datasets, Objects, and Stylized environment. The re-
sults are seen in Table 5.10. These results have a similar trend as in the previous
section when we trained mixing different datasets. The stylized environment
experiments a negative effect from using a model pretrained in the natural en-
vironment in comparison with the objects environment that does not see any
difference. This could be interpreted as the pretrained guiding the weights to a
specific region in the parameter space far from the local optima that is reached
otherwise with the other initialization.

Environment (Pretraining) Object (IN) Object (NE) Stylized (IN) Stylized (NE)
Accuracy 0.764 (0.013) 0.765 (0.008) 0.828 (0.020) 0.771 (0.020)
Loss 1.300 (0.118) 1.363 (0.134) 0.815 (0.111) 1.570 (0.228)
False Positive Rate 0.385 (0.055) 0.325 (0.044) 0.070 (0.024) 0.132 (0.026)
Precision 0.826 (0.022) 0.837 (0.017) 0.802 (0.025) 0.752 (0.020)
Recall 0.806 (0.016) 0.790 (0.011) 0.802 (0.026) 0.747 (0.026)

Table 5.10: Table of metrics for different pretrained configurations: IN (Model
pretrained on ImageNet), NE (Model pretrained on Natural Environment)

One fact that is observed when looking at the convergence using the pretrained
weights in the Natural Environment is that for the case of the Objects Envi-
ronment the convergence is faster. This makes sense since both have similar
glitches and scenes, in contrast with the stylized environment. For a real ap-
plication, this may come in useful when a model will be transferred to work
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(a) Glitch: Missing (b) Activation map from 5.9a

(c) Glitch: Placeholder (d) Activation map from 5.9c

(e) Glitch: Stretched Texture (f) Activation map from 5.9e

Figure 5.9: Images with glitches and their correspondent activation map.

with similar data, using the training from a previous model would not increase
the performance but it would be trained faster, although, defining how similar
must the datasets be could be a bit complicated.
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5.1.6 Activation Maps

In this section, we present some results from the activation layer visualization.
We do not present a detailed analysis of how this method can help to locate the
anomalies. In Figure 5.9 we see several examples where the activation map
highlights regions in the image that correspond to the region where the glitch
is in the image.

5.1.7 Confidence estimation

The Gauss Network aims to model the confidence of the network, to do so
trains it was trained in a loop using the training scheme provided in the original
paper [46]. In Figure 5.10 themetrics consideredmost relevant confidence and
accuracy are presented.

Figure 5.10: Mean Confidence and Accuracy on training and validation sets

Since the original work, where this method is presented, does not provide spe-
cific guidelines on how to apply the approach or what to expect during the
training, we have decided to take the state of maximum accuracy, which cor-
responds to the first epochs. It also makes sense to take a state early on since
otherwise, it seems we are overfitting the network, towards always having con-
fidence close to one, which seems to indicate that the network degenerates to
bring all the samples to one single point.
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5.1.8 Data Aggregation

In Figure 5.11 it can be seen how the accuracy is influenced by the number
of images provided for object and class. We can see a clear increasing trend,
having the biggest increase in the smaller numbers.

Figure 5.11: Accuracy for different number of images provided to the network

This indicates that in a real use case a limited increase of performance can be
achieved by increasing the number of images fed to the network. Although, it
has to be considered the considerable computation overhead since the number
of computations will scale linearly with the number of images provided to the
network.

5.1.9 Testing Data

New Objects

The performance of the model when looking into new objects can be under-
stood through the confusion matrix, shown in Figure 5.12a. Here it can be
seen that as in the Natural environment 5.5a the main confusion is within the
corrupted textures: Stretched and Lower resolution.

When looking into some examples such as the one shown in Figure 5.12b We
see that the textures are really similar to the original texture, thus it makes
sense for the model to get confused between the three classes. In fact, the
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(a) Confusion matrix for new objects (b) Sample of stretched textures

Figure 5.12

actual stretched textures should also deform the object, since this was not ac-
complished in Unity, with our limited knowledge, we could not use samples
as the one in Figure 3.1a

Natural environment + Objects

The models from the previous sections were applied to the testing data ob-
tained from combining both the Natural and objects environment. As men-
tioned in Section 3.2 the proportion for glitches in the data is low, to simulate
a real use case.

Both the model trained only on the Natural Environment and the one Trained
in all environments were used with this data. Figure 5.13 shows the confusion
matrices for both cases.

As it was to expect the model trained in all the environments performed bet-
ter. It is important also to consider that the objects were input for training the
networks in the objects environment. This means that even if they were fed in
a different environment the model "learns" the way how the objects fail thus
increasing the performance with the test dataset.

When evaluated with the model trained in all the environments, the model
reaches a precision of 24%whichmeans that in a real use case when reviewing
the samples marked as faulty one in every four does contain a glitch, which is
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(a) (b)

Figure 5.13: Confusion matrices relative to the total number of samples from
one class.

a reasonable proportion if these were to be reviewed manually.

To further reduce the number of false positives the confidence measure for
the network becomes quite useful. In Figure 5.14 the mean probability (direct
output from the network) and confidence for every cell of the confusion matrix
is compiled, zero is displayed when there are no samples in the correspondent
cell. When we look at these measures, the mean probability is distributed
with high values through the whole matrix, while the confidence shows a clear
distinction between the upper tree rows, with lower confidences. And we can
see how the confidence does correspond to the intuition built in the project
that the network does have trouble classifying corrupted textures. Potentially
the confidence would be useful to filter out false positives, although this would
come at a cost of a lower recall.

5.2 Semantic Segmentation

This approach achieves pixel-level classification, providing a label for each of
the pixels in the image. Three models were tested for this approach although
many shortcomings were encountered starting from the definition of the tar-
gets. The Semantic Segmentation used two settings, binary segmentation and
multiple label segmentation. The first one only provides information about
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(a) Mean Probability (b) Mean Confidence

Figure 5.14: Confusion matrices relative to the total number of samples from
one class.

whether the pixel is part of a glitch or not, and the second states which kind of
glitch does it correspond to.

Training Validation
IoU

(Mean/Median)
Detection

(0.3 IoU / 0.5 IoU)
IoU

(Mean/Median)
Detection

(0.3 IoU / 0.5 IoU)
UNet 0.316/0.002 0.281/0.269 0.323/0.002 0.278/0.266
FCN 0.499/0.502 0.525/0.431 0.503/0.523 0.531/0.441
DeepLabV3 0.486/0.535 0.651/0.557 0.483/0.533 0.659/0.559

Table 5.11: Metrics for semantic segmentation, with one class classification
configuration

In Table 5.11 the performance metrics for the binary segmentation are pre-
sented. The metrics correspond to the anomalous class and are stated for both
the training set and validation set. In both networks no overfitting is observed,
the performance is better in the case of DeepLabV3, which we also should
mention is slower that FCN. In the case of UNet the network is faster due to its
simpler structure but the performance is greatly reduced. When looking at the
mean and Median IoU it can be induced that this metric takes extreme values
either close to 0 or to 1, explaining the disparity between these metrics.

In Figure 5.15 we see the output for the samples seen in Figure 5.9. We can
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(a) Anomaly Heatmap from 5.9a (b) Anomaly Heatmap from 5.9c

(c) Anomaly Heatmap from 5.9e

Figure 5.15: Anomaly probability maps form the samples in 5.9

using DeepLabV3. It can be seen that the performance is good in the classes
Placeholder and Missing, but does a bad job with the image with a stretched
texture. This can be understood greatly due to the quality of the target gen-
erated for training, in the case of the stretched and Low Resolution textures,
the masks obtained could vary in quality depending on the object. Also, an-
other factor is that missing texture glitches seem easier to recognize as seen
in the classification approach. When analyzed, most of the glitches detected
correspond to these two glitch types.

This ease for the network to detect certain kind of glitches is clearly seen in
Tables 5.12 and 5.13. Here it is interesting to see how misleading can actually
be the mean IoU. In this case, since most of the images are negative examples
(there is no anomalous pixel in the sample for 80% of the images) the value
of the metric is quite high but, in contrast, the detection rate is low for both
networks regarding the stretched and low resolution glitches. It is also inter-



72 CHAPTER 5. RESULTS

esting to observe that neither method excels in the task of detecting missing
textures. Both UNet and FCN detect almost all the missing textures but ignore
completely the placeholder glitches, while in the case of DeepLabV3 detects
both kinds of glitches, but certainly not most of them. The surprising part is
how the setting of the problem made UNet perform relatively better compared
to the one class classification problem.

Mean IoU Stretched Low Resolution Missing Placehholder
UNet 0.825 0.829 0.973 0.785
FCN 0.581 0.697 0.975 0.789
DeepLabV3 0.735 0.788 0.900 0.787

Table 5.12: Mean IoU metric for each of the anomaly classes on the validation
set. Note that as in the case of binary segmentation the results did not present
signs of overfitting.

Detection (0.5 IoU) Stretched Low Resolution Missing Placehholder
UNet 0.106 0.081 0.967 0.097
FCN 0.060 0.081 0.980 0.097
DeepLabV3 0.143 0.083 0.576 0.611

Table 5.13: Detection rate with the 0.5 IoU criteria for each of the anomaly
classes on the validation set. Note that as in the case of binary segmentation
the results did not present signs of overfitting.

We have not performed an extensive analysis of the possibilities of Semantic
Segmentation for this problem, but we do not discard the idea of this being an
interesting approach when some difficulties are overcome. The main obsta-
cle was regarding data, certainly, the targets regarding the corrupted texture
glitches were not adequate, and this may have driven down the performance in
these classes. On the other hand, the data is not diverse enough, it corresponds
to object centered images, where the glitches are always placed in the center.
This makes the Semantic Segmentation approach a waste of computational
resources since the information regarding where the glitch is located can be
deemed as redundant. In an environment were glitches are placed uniformly
across the image this approach may be better made use of.
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Future Work

In this chapter, we discuss the main limitations of the project and how these
could be addressed in future projects.

6.1 Data

One of the main limitations of this project was the data provided. Unity pro-
vided us with data good enough to do a proof of concept on using CNNs to
detect graphical glitches. But more diverse and better quality data would be
needed for obtaining a better performing model or to deal with different use
cases.

6.1.1 Glitch quality

The generated glitches like stretched textures or lower resolution textures were
deemed hard to identify even for a human eye in some of the samples used in
this project. On top of that we had seen that the stretched textures would have a
very different appearance in a real scenario (Compare Figures 3.1a and 3.4a).
Thus, generating a more accurate dataset in relation to what is seen in real life
is required for a better model.

The setting used refers to a very diverse set of objects where the glitch takes
place. When developing videogames there are particular objects that may be of
interest to model. For instance, if provided a model specific to detect glitches
in weapons or vehicles. Exploring generating and training a particular class
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of objects may improve the results, obtaining a very specific model but with
much higher performance

6.1.2 Other use cases

The current setting for capturing glitches is limited by the unity framework
we used. In order to generate glitches in a systematic way, the object was
purposely centered in the image, thus guaranteeing that the samples generated
as glitch would always present a glitch in the image.

As a result, the use case for the models trained with this data is limited to cap-
tures where the object is centered in the image. When looking for graphical
malfunctioning in videogames this is one of the settings, but other configura-
tions like flying cameras or character cameras are also used. The data gener-
ated would then have to account for glitches not being centered, and even the
possibility of several types of glitches in the same image

6.2 Methods

Both classification and Semantic Segmentation were used in this work. Al-
though classification was the way to go due to the high computation require-
ments of Semantic Segmentation, other approaches could also be realizable
for detecting glitches.

6.2.1 Object Detection

Linked to detecting glitches in different settings object detection is presented
as an interesting solution when we consider the possibility of a glitch not cen-
tered in the image, or several glitches in the same image.

The object detection problem deals with identifying and locating objects of
certain classes in an image, by creating a bounding box around the object and
indicating which class this belongs to. From the first real-time human face
detector [63] during the last 20 years extensive research has been done in this
area [64].

In the current state of the art, methods are divided in one stage detectors that
directly output both bounding boxes and a label, and two stage, which first



CHAPTER 6. FUTURE WORK 75

provide box proposals and then a classification for the object. In both ap-
proaches real-time state of the art methods are currently developed, highlight-
ing YOLOV3 in one stage [65] and Faster RCNN in two stage [66]

6.2.2 Non Supervised

The current approach focuses on using a supervised configuration, account-
ing for very common glitches whose mechanisms are well known and that
are critical enough to require actions from the developing teams. This set of
glitches though does not comprise many other common glitches that occur on
videogames.

Accounting for the glitches being unexpected and diverse, another kind of ap-
proach is necessary to address the problem, one that is able to detect unex-
pected failures that the model has not seen before. In this setting Section 2.1.2
and 2.1.3 already discussed the availability of several methods that work with
image and are able to detect unexpected samples. Applying unsupervised and
semisupervised approaches to this problem, although not a straightforward
task could be an interesting line of research.
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Conclusions

This study presents a simple yet effective approach for detecting graphical
anomalies in videogames images. Making use of a supervised approach with
a CNN we were able to detect 88.1% of the glitches with a false positive rate
of 6.7% and a classification accuracy of 86.8%. Such results allow us to an-
swer affirmatively the research question stated in the beginning: Can we detect
videogame glitches using CNNs?

On top of that several considerations regarding data, architecture, hyperpa-
rameters and network initialization are discussed providing general guidelines
for future methods addressing the problem. Additionally, different ways to
exploit the internal architecture of the networks were presented allowing to
better understand the behavior of the model (Activation maps) and obtaining
a measure of confidence for the networks, these having potential uses in local-
izing the glitch and filtering out false positives respectively. Taking advantage
of the particularities of the problem we describe how controlling the camera
allows us to provide more information to the network, thus increasing the per-
formance on classification.

The fundamental implication of this study is that CNNs can be used in a pro-
duction environment to improve the testing process in videogames, partially
automating a currently complete manual process. The architecture used was
able to evaluate images at a rate of 60 frames per second, being computa-
tionally light enough to be running in parallel with the videogame rendering
allowing for real-time assessment on the video quality.

Furthermore, since the methods presented are trained directly in the images
from the game, glitch detection is presented as an independent block, provid-
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ing high versatility when used in the actual testing pipeline. This will allow
for diverse uses like processing all the images during gameplay, focusing only
on particular objects or running completely separated from the game using
recorded images.

Nevertheless, one of the main limitations of the method presented is being su-
pervised which means that specific data exemplifying both normal and anoma-
lous images have to be provided. Although some level of extrapolation was
displayed by the model, this approach would be useless during the first stages
of game development, since no data is available. These methods prove useful
only later stages of the development when operations like migrating to a new
version (another console platform / graphical engine updates) or adding new
objects to the game, both cases in which sample data is available.

On the other hand, in this work, we have only explored one of many possible
approaches to the problem, by restricting ourselves to a very particular subset
of glitches. Further research is needed to asses whether other problems in
testing could also be addressed, focusing on other kinds of glitches and not
only limited to static images but also including video sequences.
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