
Towards Deep Generative Models in Game
Development

Jorge del Val

Research Engineer / SEED (Electronic Arts)





Agenda

1. Motivation and fundamentals

2. Variational autoencoders (VAE)

3. Generative adversarial networks (GAN)

4. Conditional generative models

5. Some applications to game development



In a sentence…

Models that generate or remix stuff



In a better sentence…

Models that learn the data probability distribution and are able 
to sample from it



But… why in games?



(Thanks A. Opara ☺)





Photo Wake-Up: 3D Character Animation from a Single Photo. Weng et al. 2018



Which is real?

A Style-Based Generator Architecture for Generative Adversarial Networks. Karras et al. 2018 (NVIDIA)



Which is real?

FAKE FAKE

A Style-Based Generator Architecture for Generative Adversarial Networks. Karras et al. 2018 (NVIDIA)

REAL



https://thispersondoesnotexist.com

(A Style-Based Generator Architecture for Generative Adversarial Networks. Karras et al. 2018)



So what do they actually do?











Image credit Animation Mentor





In the end… It’s all numbers

… in particular, M-dimensional vectors in 𝒳 ⊂ ℝ𝑀.



Data is far from random



Do we need M pixels to represent a face?

M=1000000 pixels!



Data is not really M-dimensional

It rather lays on a 
lower dimensional 
manifold!



Manifold?

𝑧2

𝑧1

𝑥 = (𝑥1, 𝑥2, 𝑥3)𝑧 = (𝑧1, 𝑧2)



Latent dimensions of data

Images credit Ward A.D. et al 2007

*Spoiler: Generative models learn both: the intrinsic geometry and the probability distribution! 



Auto-Encoding Variational Bayes. Kingma et al. 2013

𝑧2

𝑧1 𝑧1

𝑧2



A walk through the latent space

A Style-Based Generator Architecture for Generative Adversarial Networks. Karras et al. 2018 (NVIDIA)



And how do they work?



Random variables and generative modelling

For us, each datapoint 𝑥𝑖 is just a realization of an underlying random variable.

𝐱 ∼ 𝑝(𝑥)

● Unsupervised learning is the field which attempts to infer properties of x from samples.

● Generative modelling is a subset of unsupervised learning which attempts to approximate
x as some parametrized combination of “simple” random variables which you can sample.

𝐱 ≈ 𝑓𝜃 𝐳𝟏, 𝐳𝟐, … , 𝐳𝐊 ≜ ො𝐱



Example: Gaussian Mixtures
Here every 𝐳𝑖 is normal (gaussian) 𝒩 𝜇𝑖 , Σ𝑖 and the combination 𝑓𝜃(⋅) is a mixture.  



Latent variable models

𝐳 ∼ 𝑝(𝑧)

ො𝐱

Transformation

Prior distribution



Architectures: neural networks

𝑓𝜃

𝜃 weights



Architectures: neural networks

Neural networks can approximate any function 𝑓(𝑥) to any precision! *

𝑥 𝑓𝜃(𝑥)

𝜃

*G. Cybenko 1989, K. Hornik 1991, Z. Lu et al 2017, B. Hanin 2017

Image credit Sydney Firmin



But to find the right 𝜃 (training)?

You optimize some loss (error) function!

min
𝜃

𝐿 𝜃; data



E.g. Classifier

𝑥
𝑓𝜃 𝑥

𝐿 𝜃; 𝑥, 𝑦 = −𝑦𝑐𝑎𝑡 log 𝑓𝜃 𝑥 − 𝑦𝑑𝑜𝑔 log 1 − 𝑓𝜃 𝑥

𝜃
𝑦𝑐𝑎𝑡 ∈ {0,1}

𝑦𝑑𝑜𝑔 ∈ {0,1}
Cross-entropy

𝑝 𝑐𝑎𝑡
I want it to be…



E.g. Classifier

𝑥
𝑓𝜃 𝑥

𝐿 𝜃; 𝑥, 𝑦 = −𝑦𝑐𝑎𝑡 log 𝑓𝜃 𝑥 − 𝑦𝑑𝑜𝑔 log 1 − 𝑓𝜃 𝑥

𝜃
𝑦𝑐𝑎𝑡 ∈ {0,1}

𝑦𝑑𝑜𝑔 ∈ {0,1}
Cross-entropy

𝑝 𝑐𝑎𝑡
I want it to be…



But to find the right 𝜃 (training)?

You optimize some loss (error) function!

𝜃𝑡+1 = 𝜃𝑡 − 𝛼∇𝜃𝐿min
𝜃

𝐿 𝜃; data

Stochastic Gradient Descent



But to find the right 𝜃 (training)?

You optimize some loss (error) function!

𝜃𝑡+1 = 𝜃𝑡 − 𝛼∇𝜃𝐿min
𝜃

𝐿 𝜃; data

Stochastic Gradient Descent



But to find the right 𝜃 (training)?

You optimize some loss (error) function!

𝜃𝑡+1 = 𝜃𝑡 − 𝛼∇𝜃𝐿min
𝜃

𝐿 𝜃; data

Easy to gradient descent any 
function with current frameworks!! ☺

Stochastic Gradient Descent



Latent variable models

𝐳 ∼ 𝑝 𝑧

ො𝐱

Prior distribution

Transformation



Deep latent variable models

𝐳 ∼ 𝑝 𝑧

ො𝐱 = 𝐺𝜃(𝐳)

𝐺𝜃(⋅)
Prior distribution



Training

We want to approximate 𝐱 as ො𝐱 = 𝐺𝜃(𝐳). How do we find the optimal θ?

Maximize the likelihood of the data!

max
𝜃

log ℒ(𝜃|𝑥𝑡𝑟𝑎𝑖𝑛) = max
𝜃



𝑖=1

𝑁

log 𝑝𝜃(𝑥𝑖)

max
𝜃

ℒ(𝜃|𝑥𝑡𝑟𝑎𝑖𝑛) = max
𝜃

ෑ

𝑖=1

𝑁

𝑝𝜃(𝑥𝑖)

But… we need 𝑝𝜃 𝑥 explicitly!

Probability that the model would generate 𝑥𝑖

Image credit: Colin Raffel



What about deep latent variable models?

𝑝(𝑧) 𝑝𝜃(𝑥|𝑧)

𝐺𝜃(⋅)𝐳 ො𝐱

𝑝𝜃 𝑥 = න𝑝𝜃 𝑥 𝑧 𝑝 𝑧 𝑑𝑧

What’s the total probability 
of generating 𝑥?

𝑝𝜃(𝑥)??



Different models – different methods

1. We have 𝑝𝜃( ො𝑥) explicitly: maximize the likelihood.

2. 𝑝𝜃 ො𝑥 is intractable: we can approximate it instead

● Markov Chain Monte Carlo (MCMC) methods

● Variational methods (e.g. Variational Autoencoders)

3. We don’t need 𝑝𝜃 ො𝑥 ; it’s implicit.

● Adversarial methods (e.g. GANs)



Goodfellow. 2016



Variational autoencoder (VAE)

𝑝(𝑧) 𝑝𝜃(𝑥|𝑧)

𝐺𝜃(⋅)𝐳 ො𝐱

𝑝𝜃 𝑥 = න𝑝𝜃 𝑥 𝑧 𝑝 𝑧 𝑑𝑧



Variational autoencoder (VAE)

𝑝(𝑧) 𝑝𝜃(𝑥|𝑧)

𝐺𝜃(⋅)𝐳 ො𝐱

𝑞𝜙(𝑧|𝑥)

𝐸𝜙(⋅)𝐱



Variational autoencoder (VAE)

𝐺𝜃(⋅)𝐳 ො𝐱𝐱 𝐸𝜙(⋅)

𝑞𝜙(𝑧|𝑥)

𝑝(𝑧) 𝑝𝜃(𝑥|𝑧)

log 𝑝𝜃 𝑥 ≥ 𝔼𝑧∼𝑞𝜙(𝑧|𝑥) log 𝑝𝜃 𝑥 𝑧 − KL 𝑞𝜙 𝑧 𝑥 ∥ 𝑝 𝑧

Encoder (inference) Decoder (generation)

Maximize this 
instead!



True likelihood

Lower bound

Iterations



Pros:

● Efficient inference for free!

o Great tool for modelling the hidden structure of data.

● Stable to train.

● Good theoretical ground.

Cons:

● Not very good samples.

Variational autoencoders



Generative adversarial networks (GANs)

𝑝(𝑧)

𝐺𝜃(⋅)𝐳 ො𝐱

Why not just sample a bunch of 
data and see if they look real?

𝐱

Sample

𝑥1, 𝑥2, … , 𝑥𝐵

ො𝑥1, ො𝑥2, … , ො𝑥𝐵

Objective:
Looks similar!



But… how do we measure similarity between groups of samples?



How to measure similarity of samples

One solution: train a classifier 𝐷𝜙(𝑥) to discriminate!

● If the classifier can not tell if a sample is real or fake, both distributions are close.

● Trained with the standard cross-entropy loss:

max
𝜙

𝐿𝑑(𝜙) = max
𝜙

𝔼𝑥𝑟∼𝑝𝑟𝑒𝑎𝑙 log 𝐷𝜙 𝑥𝑟 + 𝔼𝑥𝑓∼𝑝𝑓𝑎𝑘𝑒 log 1 − 𝐷𝜙 𝑥𝑓

It can be shown that the optimal classifier performance 𝐿𝑑(𝜙
∗) is related to the closeness 

between both distributions (JS divergence).



The GAN game

We want to minimize “closeness” between the generated and real samples, as measured by 

the discriminator loss:

min
𝜃

"closeness"

= min
𝜃

max
𝜙

𝔼𝑥𝑟∼𝑝𝑟𝑒𝑎𝑙 log 𝐷𝜙 𝑥𝑟 + 𝔼𝑥𝑓∼𝑝𝑓𝑎𝑘𝑒 log 1 − 𝐷𝜙 𝑥𝑓

It’s formally a two-player minimax game!!



Generative adversarial networks

𝑝(𝑧)

𝐺𝜃(⋅)𝐳 ො𝐱

Why not just sample a bunch of 
data and see if they look real?

𝐱

Sample

𝑥1, 𝑥2, … , 𝑥𝐵

ො𝑥1, ො𝑥2, … , ො𝑥𝐵

Objective:
Looks similar!
𝐷𝜙(⋅)

Objective:
Fool 𝐷𝜙!





GANs

● Pros:

▪ Awesome samples

● Cons:

▪ Unstable training

▪ No explicit probability density

▪ No direct inference

Large Scale GAN Training for High Fidelity Natural Image Synthesis. Brock et al. 2018



Bonus: autoregressive methods

𝑝𝜃 𝑥 =ෑ

𝑡=1

𝑇

𝑝𝜃 𝑥𝑡 𝑥1, … , 𝑥𝑡−1

Generate little by little!

Wavenet: A Generative Model for Raw Audio. Van den Oord et al. 2016.



OK!



OK! I can generate stuff.



OK! I can generate stuff.

But how do I influence what I generate?



OK! I can generate stuff.

How do I remix existing stuff??



Conditional generative models

What if I have information 𝐜 to condition the generation/inference, e.g., class 
labels?

● Just introduce them in the networks!

𝐺𝜃(⋅)𝐳 ො𝐱𝐱 𝐸𝜙(⋅)

𝑞𝜙(𝑧|𝑥)

𝑝(𝑧) 𝑝𝜃(𝑥|𝑧)

Encoder 
(inference)

Decoder 
(generation)

Variational 
Autoencoder



𝑞𝜙(𝑧|𝑥, 𝑐)

𝑝𝜃(𝑥|𝑧, 𝑐)

Conditional
Variational 
Autoencoder

Conditional generative models

What if I have information 𝐜 to condition the generation/inference, e.g., class 
labels?

● Just introduce them in the networks!

𝐺𝜃(⋅)𝐳 ො𝐱𝐱 𝐸𝜙(⋅)

𝑝(𝑧)

Encoder 
(inference)

Decoder 
(generation)

𝐜 𝐜



Conditional generative models

What if I have information 𝐜 to condition the generation/inference, e.g., class 
labels?

● Just introduce them in the networks!

GAN

𝑝(𝑧)

𝐺𝜃(⋅)𝐳 ො𝐱

𝐱

Sample

𝑥1, 𝑥2, … , 𝑥𝐵

ො𝑥1, ො𝑥2, … , ො𝑥𝐵

𝐷𝜙(⋅)



Conditional
GAN

Conditional generative models

What if I have information 𝐜 to condition the generation/inference, e.g., class 
labels?

● Just introduce them in the networks!

𝑝(𝑧)

𝐺𝜃(⋅)𝐳 ො𝐱

𝐱

Sample

𝑥1, 𝑥2, … , 𝑥𝐵

ො𝑥1, ො𝑥2, … , ො𝑥𝐵

𝐷𝜙(⋅)

𝐜

𝐜



Conditional GMs are very important!

Pix2Pix: Image-to-Image Translation with Conditional Adversarial Networks. Isola et al.



Conditional GMs are very important!

Pose Guided Person Image Generation. Ma et al. 2017.



Some applications to game dev so far?



Generation of terrain

Interactive Example-Based Terrain Authoring with Conditional Generative Adversarial Networks. Guérin et al. 2017.



3D Content Generation

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation.
Park et al. 2019.

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling.
Wu et al. 2016



Face generation

GANFIT: Generative Adversarial Network Fitting for High Fidelity 3D Face Reconstruction. Gecer et al. 2019 (FaceSoft.io)



Procedural placement

Deep Convolutional Priors for Indoor Scene Synthesis. Wang et al. 2018.



Generation of behaviour policies

Variational Discriminator Bottleneck: Improving Imitation Learning, Inverse RL, and GANs by Constraining Information Flow. Peng et al. 2018.



Generation of behaviour policies

Imitation Learning with Concurrent Actions in 3D Games. Harmer et al. 2018 (SEED)



Learn and accelerate physics

Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow. Wiewel et al. 2018





Thanks for inspiration and insightful 
conversations ☺

Anastasia Opara

Camilo Gordillo

Colin Barré-Brisebois

Hector Anadón León

Henrik Johansson

Jack Harmer

Joakim Bergdahl

Johan Andersson

Kristoffer Sjöö

Ken Brown

Linus Gisslen

Martin Singh-Blom

Mattias Teye

Mark Cerny

Mónica Villanueva Aylagas

Magnus Nordin

Olivier Pomarez

Paul Greveson

Roy Harvey

Tomasz Stachowiak



S E E D   / /    S E A R C H   F O R   E X T R A O R D I N A R Y   E X P E R I E N C E S   D I V I S I O N

S T O C K H O L M – L O S A N G E L E S – M O N T R É A L – R E M O T E

S E E D . E A . C O M

W E ‘ R E H I R I N G !

Jorge del Val Santos
jdelvalsantos@ea.com


