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Watch the trailer here: 
https://www.youtube.com/watch?v=LXo0WdlELJk

https://www.youtube.com/watch?v=LXo0WdlELJk


“PICA PICA”
Exploratory mini-game & world

▪ For our self-learning AI agents to play, 
not for humans ☺

▪ Uses SEED’s Halcyon R&D engine

▪ Goals

▪ Explore hybrid raytracing with DXR

▪ Clean and consistent visuals

▪ Procedurally-generated worlds

▪ No precomputation
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Why raytracing?
▪ Flexible new tool in the toolbox

▪ Solve sparse & incoherent problems

▪ Unified API + performance (DXR + RTX)

▪ Simple high quality - easy ground truth
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Self-Learning AI
Using deep reinforcement learning

▪ “Imitation Learning with Concurrent Actions in 
3D Games” [Harmer 2018]

▪ 36 semantic views - 1550 fps

▪ Training with TensorFlow

▪ Future: Inference with WinML

See “Deep Learning - Beyond the Hype” tomorrow
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Hybrid Rendering Pipeline
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Direct shadows 
(raytrace or raster)

Direct lighting (compute) Reflections (raytrace)Deferred shading (raster)

Global Illumination (raytrace) Post processing (compute)Transparency & Translucency 
(raytrace)

Ambient occlusion 
(raytrace or compute)



?
▪ Spawn a Mesh?

▪ DXR: build its bottom acceleration structure
▪ Multiple geometries for multiple materials

▪ Triangles, AABBs, custom
▪ Mesh instances specified in top acceleration

▪ Move a Mesh?
▪ Update the instance’s position/orientation in 

the top acceleration

▪ Spawn [some] Rays?
▪ Multiple Hit and Miss shaders possible

Mesh 1 Mesh 2 Mesh 3

Bottom Acceleration

Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5

Top Acceleration

Shader Table

R R R R M M
…… …

H H H H H H H H H H H H H H H
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Raytraced Reflections
▪ Rasterize primary visibility
▪ Launch rays from the G-Buffer
▪ Raytrace at half resolution
▪ Reconstruct at full resolution

▪ Spatiotemporal filtering 

▪ Works on both flat and curved
surfaces

Raytraced Reflections
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Reflection Rays
Let’s launch some reflection rays:
1. Select one of the (2x2) pixels to trace
2. Reconstruct position and vectors
3. Initialize Halton & random number seq.
4. Initialize the payload
5. Prepare a new ray
6. Trace
7. Gather results from ray payload

▪ Reflection Color, Direction, HitT, 1/pdf

Reflections Raytracing HLSL Pseudo-Code

1

2

3

4

5

6

7
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Reflection Filtering
Inspired by Stochastic Screen-Space Reflections
[Stachowiak 2015]
▪ For every full-res pixel, sample 16 pixels in 

half-res ray results
▪ Blue Noise offsets, decorrelated every 2x2 pixels

▪ Build color bounding box of ray-hit results
▪ Clamp temporal history to bounding box

▪ Followed by a variance-driven bilateral filter
▪ Helps with rough reflections Unfiltered (Top) and Filtered (Bottom) Results
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Screen-Space Reflections G-Buffer Raytraced Path Tracing Reference



Screen-Space Reflections G-Buffer Raytraced Path Tracing Reference



Materials
Combine multiple microfacet surface layers 
into a single, unified & expressive BRDF

▪ Inspired by Arbitrarily Layered Micro-
Facet Surfaces [Weidlich 2007]

▪ Unified for all lighting & rendering modes
▪ Raster, path-traced reference, and hybrid

▪ Energy conserving & Fresnel

▪ Rapidly experiment with different looks
▪ Bake down number of layers for production
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Objects with Multi-Layered Materials



Materials

Multi-Layered Materials

Standard
▪ Aluminum
▪ Brushed Aluminum
▪ Coated Carbon
▪ Copper
▪ Silver Satin
▪ Shiny / Mat Plastic
▪ Dark Rubber

Exotics*
▪ Glass
▪ Rough Glass
▪ Jade / Marble

* Integrated in BRDF, but built separately
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BRDF Sampling
▪ General idea: Launch one ray for the whole stack

▪ Stochastically select a layer & sample
▪ When evaluating material, estimate visibility vs other layers

▪ Some energy is reflected, some is refracted:
▪ Microfacet: Fresnel (refracted = 1-Fresnel)
▪ Diffuse:  reflected fraction equal to albedo, 

remaining light absorbed; no refraction

▪ Sample BSDF of selected layer
▪ Attenuated by layer(s) on top

▪ Result is temporally filtered
▪ A single value for many layers requires clever filtering
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Multi-Layered Materials [Weidlich 2007]



Transparency & Translucency
Raytracing allows to unify reflections and refractions

▪ Glass
▪ Order-independent (OIT)
▪ Handles multiple IOR transitions

▪ Translucency
▪ Inspired from Translucency in Frostbite

[Barré-Brisebois 2011]
▪ Inner structure scattering based on lighting traveling 

inside the medium

▪ Performance: we do it in texture-space
Glass and Translucency
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Translucency Breakdown
• For every valid position & normal
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Translucency Breakdown
• For every valid position & normal
• Flip normal and push (ray) inside
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Translucency Breakdown
• For every valid position & normal
• Flip normal and push (ray) inside
• Launch rays in uniform sphere dist.

• Alternatively, front + back cosine lobes

• Perf: only do n-rays per frame
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Translucency Breakdown
• For every valid position & normal
• Flip normal and push (ray) inside
• Launch rays in uniform sphere dist.

• Alternatively, front + back cosine lobes

• Perf: only do n-rays per frame

• Compute lighting at intersection
• Sample previous translucency result
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Translucency Breakdown
• For every valid position & normal
• Flip normal and push (ray) inside
• Launch rays in uniform sphere dist.

• Alternatively, front + back cosine lobes

• Perf: only do n-rays per frame

• Compute lighting at intersection
• Sample previous translucency result

• Gather
• Modulate with Beer-Lambert or 

Henyey-Greenstein phase function
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Translucency Breakdown
• For every valid position & normal
• Flip normal and push (ray) inside
• Launch rays in uniform sphere dist.

• Alternatively, front + back cosine lobes

• Perf: only do n-rays per frame

• Compute lighting at intersection
• Sample previous translucency result

• Gather
• Modulate with Beer-Lambert or 

Henyey-Greenstein phase function

• Store new BTDF value
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Translucency Filtering
Result converges over a couple frames

▪ Denoised or temporally-accumulated
▪ Temporal: build an update heuristic

▪ Exponential moving average can be OK

▪ Game-specific threshold to update
▪ Reactive enough for moving lights & objects

▪ Variance-adaptive mean estimation
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Translucency Shadowing
Raytracing allows for globally 
shadowed translucency

▪ Global phenomena
▪ Integration via feedback
▪ Objects occlude each other

▪ Overall more grounded 
and visually-convincing 
translucency

Direct Lighting Self-Shadowed Translucency
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Transparency
Similar approach is used for glass

▪ Launch ray using view’s origin and direction 
▪ Refract based on medium's index-of-refraction (IOR)

▪ Snell’s law: refract(ray, N, iorInput / iorOutput)
▪ DXR: HitKind() to handle IOR transitions (Air ⇔ Glass)

▪ Trace a ray in the scene & sample lighting
▪ Tint the result by glass color + chromatic aberration

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Transparency
Similar approach is used for glass

▪ Launch ray using view’s origin and direction 
▪ Refract based on medium's index-of-refraction (IOR)

▪ Snell’s law: refract(ray, N, iorInput / iorOutput)
▪ DXR: HitKind() to handle IOR transitions (Air ⇔ Glass)

▪ Trace a ray in the scene & sample lighting
▪ Tint the result by glass color + chromatic aberration

▪ Pen: we don’t handle transparent shadows yet
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Transparency
Works for clear and rough glass

▪ Clear
▪ No filtering required

▪ Rough / Blurry
▪ Open cone angle with Uniform 

Cone Sampling [PBRT]
▪ Wider cone →more samples 
▪ Or temporal filtering

▪ Tint with phase function and 
more complex BTDF 
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Global 
Illumination
▪ We want a technique that:

▪ Doesn’t require any precomputation
▪ Doesn’t require parametrization (UVs, proxies)
▪ Works for both static and dynamic scenes
▪ Adaptive & refines itself on-the-fly

▪ Point-based / surfels for a dynamic world
▪ Runtime Monte-Carlo integration
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Surfel Placement
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Surfel Spawning From Camera @ 1% speed



Surfel Placement
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Skinned Surfels for Dynamic Objects



Sampling & Integration
▪ Compute surfel irradiance by PT
▪ When shooting rays/frame

▪ Limit depth and number of paths

▪ Limiting depth != fewer bounces
▪ Reuse results from previous frames 
▪ 1 = radiosity, ∞ = path tracing

▪ Variance-adaptive mean estimator
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▪ Application (Binning, culling, half-res apply + upsample)

Progressive Integration (slowed down for clarity)



Shadows
Accumulated and filtered in screen-space
▪ Raygen: Launch a ray towards light

▪ Payload’s miss flag set to true (from Miss Shader) if it doesn’t hit geometry
▪ Penumbra driven by uniform cone sampling [PBRT]

▪ Temporal Reprojection
▪ Accumulates shadow and variance  + TAA-style bounding box clamping

▪ Filter (SVGF-like) [Schied and NVIDIA 2017]
▪ Multipass weighted spatial blur, driven by variance from temporal accumulation
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Hard Raytraced Shadows



Soft Raytraced Shadows (Unfiltered)



Soft Raytraced Shadows (Filtered)



Hard Raytraced Shadows Soft Raytraced Shadows (Unfiltered) Soft Raytraced Shadows (Filtered)



What about texture level of detail?
▪ Mipmapping [Williams 1983] is the standard method to avoid texture aliasing:

▪ Screen-space pixel maps to approximately one texel in the mipmap hierarchy
▪ Supported by all GPUs for rasterization via shading quad and derivatives

Texture Level-of-Detail

Left: level-of-detail (λ), partial derivatives and the parallelogram-approximated texture-space footprint of a pixel. Right: mipmap chain
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Texture Level-of-Detail
No shading quads for ray tracing!
▪ Traditionaly: Ray Differentials

▪ Estimates the footprint of a pixel by 
computing world-space derivatives of the 
ray with respect to the image plane

▪ Have to differentiate (virtual offset) rays

▪ Heavier payload (12 floats) for subsequent 
rays (can) affect performance. Optimize!

▪ Alternative: always sample mip 0 with bilinear filtering (with extra samples)
▪ Leads to aliasing and additional performance cost

Ray Differentials [Igehy99]

Surface

P(x + ∂x)

D(x + ∂x)P(x)

∂D(x)

∂P(x)

D(x)

D(x)
x

y

R(x)

R(x + ∂x)

∂x
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Texture Level-of-Detail
Together with Research, we 
developed a texture LOD technique for raytracing:

▪ Heuristic based on triangle properties, a curvature 
estimate, distance, and incident angle
▪ Similar quality to ray differentials with single trilinear lookup
▪ Single value stored in the payload for subsequent rays

▪ Upcoming publication by:
▪ Tomas Akenine-Möller (NV), Magnus Andersson (NV), Colin 

Barré-Brisebois (EA), Jim Nilsson (NV), Robert Toth (NV)
Ground Truth, Ray Differentials, Ours, Mip0
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Summary
▪ Just the beginning – important new tool going forward

▪ Unified API – easy to experiment and integrate

▪ Flexible but complex tradeoffs - noise vs ghosting vs perf

▪ Can enable very high quality cinematic visuals

▪ Lots more to explore – perf, raster vs trace, sparse 
render, denoising, new techniques
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SEED @ GDC 2018
▪ DirectX: Evolving Microsoft's Graphics Platform (presented by Microsoft)

▪ Johan Andersson and Colin Barré-Brisebois
▪ Content will be available online soon at www.ea.com/seed

▪ Deep Learning - Beyond the Hype
▪ Magnus Nordin
▪ Room 2016, West Hall, Thursday, March 22nd, 11:30am - 12:30pm

▪ Creativity of Rules and Patterns: Designing Procedural Systems
▪ Anastasia Opara
▪ GDC Show Floor, Thursday, March 22nd, 12:30PM-1:00PM and 

Friday, March 23rd @ 11:00AM-11:30AM
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Thanks
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▪ Paul Greveson
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▪ Effeli Holst
▪ Andrew Lauritzen
▪ Magnus Nordin
▪ Niklas Nummelin

▪ Anastasia Opara
▪ Kristoffer Sjöö
▪ Tomasz Stachowiak
▪ Ida Winterhaven
▪ Graham Wihlidal

▪ Microsoft
▪ Chas Boyd
▪ Ivan Nevraev
▪ Amar Patel

▪ Matt Sandy

▪ NVIDIA
▪ Tomas Akenine-Möller
▪ Nir Benty
▪ Jiho Choi
▪ Peter Harrison
▪ Alex Hyder
▪ Jon Jansen
▪ Aaron Lefohn
▪ Ignacio Llamas
▪ Henry Moreton
▪ Martin Stich
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Questions?



Bonus
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Ambient Occlusion
Ambient Occlusion (AO) [Langer 1994] [Miller 1994] 
maps and scales directly with real-time ray tracing:

▪ Integral of the visibility function over the 
hemisphere Ω for the point p on a surface with 
normal ොn with respect to the projected solid angle

▪ Games often approximate this in screen-space 
▪ With RT, more grounded & improves visual fidelity!

▪ Random directions ෝw
▪ Can be temporally accumulated or denoised
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Screen-Space AO



Raytraced AO



Screen-Space AO



Raytraced AO 
(Same Radius as SSAO)



Raytraced AO 
(Far-field)



mGPU

Ray 

Generation

Copy Sub Regions

Copy Sub Regions

GPU1 GPU2 GPU3 GPU4
Explicit Heterogenous Multi-GPU
▪ Parallel Fork-Join Style
▪ Resources copied through system 

memory using copy queue
▪ Minimize PCI-E transfers
▪ Approach

▪ Run ray generation on primary GPU
▪ Copy results in sub-regions to other GPUs
▪ Run tracing phases on separate GPUs
▪ Copy tracing results back to primary GPU
▪ Run filtering on primary GPU

Trace 

GPU 2

Trace 

GPU 1

Trace 

GPU 3

Trace 

GPU 4

Filter
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Ray Tracing Gems

▪ A new book series with focus on real-time and
interactive ray tracing for game development
using the DXR API.

▪ We invite articles on the following topics:
Basic ray tracing algorithms, effects (shadows, reflections, tec), non-graphics applications, reconstruction, 
denoising, & filtering, efficiency and best practices, baking & preprocessing, ray tracing API & design, 
rasterization and ray tracing, global Illumination, BRDFs, VR, deep learning, etc.

▪ Important dates

o 15th of October 2018: submission deadline for full papers

o GDC 2019: publication of Ray Tracing Gems (paper version + e-book)

▪ Tomas Akenine-Möller will lead the editorial team
http://developer.nvidia.com/raytracinggems/

Call for Papers


