
Shiny Pixels and Beyond: 
Real-Time Raytracing at SEED

Johan Andersson & Colin Barré-Brisebois
Electronic Arts





Watch the trailer here: 
https://www.youtube.com/watch?v=LXo0WdlELJk

https://www.youtube.com/watch?v=LXo0WdlELJk


“PICA PICA”
Exploratory mini-game & world

▪ For our self-learning AI agents to play, 
not for humans ☺

▪ Uses SEED’s Halcyon R&D engine

▪ Goals

▪ Explore hybrid raytracing with DXR

▪ Clean and consistent visuals

▪ Procedurally-generated worlds

▪ No precomputation

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Why raytracing?
▪ Flexible new tool in the toolbox

▪ Solve sparse & incoherent problems

▪ Unified API + performance (DXR + RTX)

▪ Simple high quality - easy ground truth

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Self-Learning AI
Using deep reinforcement learning

▪ “Imitation Learning with Concurrent Actions in 
3D Games” [Harmer 2018]

▪ 36 semantic views - 1550 fps

▪ Training with TensorFlow

▪ Future: Inference with WinML

See “Deep Learning - Beyond the Hype” tomorrow

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Hybrid Rendering Pipeline
S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED

Direct shadows 
(raytrace or raster)

Direct lighting (compute) Reflections (raytrace)Deferred shading (raster)

Global Illumination (raytrace) Post processing (compute)Transparency & Translucency 
(raytrace)

Ambient occlusion 
(raytrace or compute)



?
▪ Spawn a Mesh?

▪ DXR: build its bottom acceleration structure
▪ Multiple geometries for multiple materials

▪ Triangles, AABBs, custom
▪ Mesh instances specified in top acceleration

▪ Move a Mesh?
▪ Update the instance’s position/orientation in 

the top acceleration

▪ Spawn [some] Rays?
▪ Multiple Hit and Miss shaders possible

Mesh 1 Mesh 2 Mesh 3

Bottom Acceleration

Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5

Top Acceleration

Shader Table

R R R R M M
…… …

H H H H H H H H H H H H H H H

S E E D //  DirectX: Evolving Microsoft's Graphics Platform



Raytraced Reflections
▪ Rasterize primary visibility
▪ Launch rays from the G-Buffer
▪ Raytrace at half resolution
▪ Reconstruct at full resolution

▪ Spatiotemporal filtering 

▪ Works on both flat and curved
surfaces

Raytraced Reflections

S E E D //  DirectX: Evolving Microsoft's Graphics Platform



Reflection Rays
Let’s launch some reflection rays:
1. Select one of the (2x2) pixels to trace
2. Reconstruct position and vectors
3. Initialize Halton & random number seq.
4. Initialize the payload
5. Prepare a new ray
6. Trace
7. Gather results from ray payload

▪ Reflection Color, Direction, HitT, 1/pdf

Reflections Raytracing HLSL Pseudo-Code

1

2

3

4

5

6

7

S E E D //  DirectX: Evolving Microsoft's Graphics Platform



Reflection Filtering
Inspired by Stochastic Screen-Space Reflections
[Stachowiak 2015]
▪ For every full-res pixel, sample 16 pixels in 

half-res ray results
▪ Blue Noise offsets, decorrelated every 2x2 pixels

▪ Build color bounding box of ray-hit results
▪ Clamp temporal history to bounding box

▪ Followed by a variance-driven bilateral filter
▪ Helps with rough reflections Unfiltered (Top) and Filtered (Bottom) Results

S E E D //  DirectX: Evolving Microsoft's Graphics Platform





Screen-Space Reflections G-Buffer Raytraced Path Tracing Reference



Screen-Space Reflections G-Buffer Raytraced Path Tracing Reference



Materials
Combine multiple microfacet surface layers 
into a single, unified & expressive BRDF

▪ Inspired by Arbitrarily Layered Micro-
Facet Surfaces [Weidlich 2007]

▪ Unified for all lighting & rendering modes
▪ Raster, path-traced reference, and hybrid

▪ Energy conserving & Fresnel

▪ Rapidly experiment with different looks
▪ Bake down number of layers for production

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED

Objects with Multi-Layered Materials



Materials

Multi-Layered Materials

Standard
▪ Aluminum
▪ Brushed Aluminum
▪ Coated Carbon
▪ Copper
▪ Silver Satin
▪ Shiny / Mat Plastic
▪ Dark Rubber

Exotics*
▪ Glass
▪ Rough Glass
▪ Jade / Marble

* Integrated in BRDF, but built separately

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



BRDF Sampling
▪ General idea: Launch one ray for the whole stack

▪ Stochastically select a layer & sample
▪ When evaluating material, estimate visibility vs other layers

▪ Some energy is reflected, some is refracted:
▪ Microfacet: Fresnel (refracted = 1-Fresnel)
▪ Diffuse:  reflected fraction equal to albedo, 

remaining light absorbed; no refraction

▪ Sample BSDF of selected layer
▪ Attenuated by layer(s) on top

▪ Result is temporally filtered
▪ A single value for many layers requires clever filtering

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED

Multi-Layered Materials [Weidlich 2007]



Transparency & Translucency
Raytracing allows to unify reflections and refractions

▪ Glass
▪ Order-independent (OIT)
▪ Handles multiple IOR transitions

▪ Translucency
▪ Inspired from Translucency in Frostbite

[Barré-Brisebois 2011]
▪ Inner structure scattering based on lighting traveling 

inside the medium

▪ Performance: we do it in texture-space
Glass and Translucency

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Translucency Breakdown
• For every valid position & normal

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Translucency Breakdown
• For every valid position & normal
• Flip normal and push (ray) inside

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Translucency Breakdown
• For every valid position & normal
• Flip normal and push (ray) inside
• Launch rays in uniform sphere dist.

• Alternatively, front + back cosine lobes

• Perf: only do n-rays per frame

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Translucency Breakdown
• For every valid position & normal
• Flip normal and push (ray) inside
• Launch rays in uniform sphere dist.

• Alternatively, front + back cosine lobes

• Perf: only do n-rays per frame

• Compute lighting at intersection
• Sample previous translucency result

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Translucency Breakdown
• For every valid position & normal
• Flip normal and push (ray) inside
• Launch rays in uniform sphere dist.

• Alternatively, front + back cosine lobes

• Perf: only do n-rays per frame

• Compute lighting at intersection
• Sample previous translucency result

• Gather
• Modulate with Beer-Lambert or 

Henyey-Greenstein phase function

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Translucency Breakdown
• For every valid position & normal
• Flip normal and push (ray) inside
• Launch rays in uniform sphere dist.

• Alternatively, front + back cosine lobes

• Perf: only do n-rays per frame

• Compute lighting at intersection
• Sample previous translucency result

• Gather
• Modulate with Beer-Lambert or 

Henyey-Greenstein phase function

• Store new BTDF value

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Translucency Filtering
Result converges over a couple frames

▪ Denoised or temporally-accumulated
▪ Temporal: build an update heuristic

▪ Exponential moving average can be OK

▪ Game-specific threshold to update
▪ Reactive enough for moving lights & objects

▪ Variance-adaptive mean estimation

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Translucency Shadowing
Raytracing allows for globally 
shadowed translucency

▪ Global phenomena
▪ Integration via feedback
▪ Objects occlude each other

▪ Overall more grounded 
and visually-convincing 
translucency

Direct Lighting Self-Shadowed Translucency

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Transparency
Similar approach is used for glass

▪ Launch ray using view’s origin and direction 
▪ Refract based on medium's index-of-refraction (IOR)

▪ Snell’s law: refract(ray, N, iorInput / iorOutput)
▪ DXR: HitKind() to handle IOR transitions (Air ⇔ Glass)

▪ Trace a ray in the scene & sample lighting
▪ Tint the result by glass color + chromatic aberration

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Transparency
Similar approach is used for glass

▪ Launch ray using view’s origin and direction 
▪ Refract based on medium's index-of-refraction (IOR)

▪ Snell’s law: refract(ray, N, iorInput / iorOutput)
▪ DXR: HitKind() to handle IOR transitions (Air ⇔ Glass)

▪ Trace a ray in the scene & sample lighting
▪ Tint the result by glass color + chromatic aberration

▪ Pen: we don’t handle transparent shadows yet

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Transparency
Works for clear and rough glass

▪ Clear
▪ No filtering required

▪ Rough / Blurry
▪ Open cone angle with Uniform 

Cone Sampling [PBRT]
▪ Wider cone →more samples 
▪ Or temporal filtering

▪ Tint with phase function and 
more complex BTDF 

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Global 
Illumination
▪ We want a technique that:

▪ Doesn’t require any precomputation
▪ Doesn’t require parametrization (UVs, proxies)
▪ Works for both static and dynamic scenes
▪ Adaptive & refines itself on-the-fly

▪ Point-based / surfels for a dynamic world
▪ Runtime Monte-Carlo integration

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Surfel Placement
S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED

Surfel Spawning From Camera @ 1% speed



Surfel Placement
S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED

Skinned Surfels for Dynamic Objects



Sampling & Integration
▪ Compute surfel irradiance by PT
▪ When shooting rays/frame

▪ Limit depth and number of paths

▪ Limiting depth != fewer bounces
▪ Reuse results from previous frames 
▪ 1 = radiosity, ∞ = path tracing

▪ Variance-adaptive mean estimator

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED

▪ Application (Binning, culling, half-res apply + upsample)

Progressive Integration (slowed down for clarity)



Shadows
Accumulated and filtered in screen-space
▪ Raygen: Launch a ray towards light

▪ Payload’s miss flag set to true (from Miss Shader) if it doesn’t hit geometry
▪ Penumbra driven by uniform cone sampling [PBRT]

▪ Temporal Reprojection
▪ Accumulates shadow and variance  + TAA-style bounding box clamping

▪ Filter (SVGF-like) [Schied and NVIDIA 2017]
▪ Multipass weighted spatial blur, driven by variance from temporal accumulation

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Hard Raytraced Shadows



Soft Raytraced Shadows (Unfiltered)



Soft Raytraced Shadows (Filtered)



Hard Raytraced Shadows Soft Raytraced Shadows (Unfiltered) Soft Raytraced Shadows (Filtered)



What about texture level of detail?
▪ Mipmapping [Williams 1983] is the standard method to avoid texture aliasing:

▪ Screen-space pixel maps to approximately one texel in the mipmap hierarchy
▪ Supported by all GPUs for rasterization via shading quad and derivatives

Texture Level-of-Detail

Left: level-of-detail (λ), partial derivatives and the parallelogram-approximated texture-space footprint of a pixel. Right: mipmap chain

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Texture Level-of-Detail
No shading quads for ray tracing!
▪ Traditionaly: Ray Differentials

▪ Estimates the footprint of a pixel by 
computing world-space derivatives of the 
ray with respect to the image plane

▪ Have to differentiate (virtual offset) rays

▪ Heavier payload (12 floats) for subsequent 
rays (can) affect performance. Optimize!

▪ Alternative: always sample mip 0 with bilinear filtering (with extra samples)
▪ Leads to aliasing and additional performance cost

Ray Differentials [Igehy99]

Surface

P(x + ∂x)

D(x + ∂x)P(x)

∂D(x)

∂P(x)

D(x)

D(x)
x

y

R(x)

R(x + ∂x)

∂x

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Texture Level-of-Detail
Together with Research, we 
developed a texture LOD technique for raytracing:

▪ Heuristic based on triangle properties, a curvature 
estimate, distance, and incident angle
▪ Similar quality to ray differentials with single trilinear lookup
▪ Single value stored in the payload for subsequent rays

▪ Upcoming publication by:
▪ Tomas Akenine-Möller (NV), Magnus Andersson (NV), Colin 

Barré-Brisebois (EA), Jim Nilsson (NV), Robert Toth (NV)
Ground Truth, Ray Differentials, Ours, Mip0

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Summary
▪ Just the beginning – important new tool going forward

▪ Unified API – easy to experiment and integrate

▪ Flexible but complex tradeoffs - noise vs ghosting vs perf

▪ Can enable very high quality cinematic visuals

▪ Lots more to explore – perf, raster vs trace, sparse 
render, denoising, new techniques

S E E D S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



SEED @ GDC 2018
▪ DirectX: Evolving Microsoft's Graphics Platform (presented by Microsoft)

▪ Johan Andersson and Colin Barré-Brisebois
▪ Content will be available online soon at www.ea.com/seed

▪ Deep Learning - Beyond the Hype
▪ Magnus Nordin
▪ Room 2016, West Hall, Thursday, March 22nd, 11:30am - 12:30pm

▪ Creativity of Rules and Patterns: Designing Procedural Systems
▪ Anastasia Opara
▪ GDC Show Floor, Thursday, March 22nd, 12:30PM-1:00PM and 

Friday, March 23rd @ 11:00AM-11:30AM

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Thanks
S E E D //  DirectX: Evolving Microsoft's Graphics Platform

▪ SEED
▪ Joakim Bergdahl
▪ Ken Brown
▪ Dean Calver
▪ Dirk de la Hunt
▪ Jenna Frisk
▪ Paul Greveson
▪ Henrik Halen
▪ Effeli Holst
▪ Andrew Lauritzen
▪ Magnus Nordin
▪ Niklas Nummelin

▪ Anastasia Opara
▪ Kristoffer Sjöö
▪ Tomasz Stachowiak
▪ Ida Winterhaven
▪ Graham Wihlidal

▪ Microsoft
▪ Chas Boyd
▪ Ivan Nevraev
▪ Amar Patel

▪ Matt Sandy

▪ NVIDIA
▪ Tomas Akenine-Möller
▪ Nir Benty
▪ Jiho Choi
▪ Peter Harrison
▪ Alex Hyder
▪ Jon Jansen
▪ Aaron Lefohn
▪ Ignacio Llamas
▪ Henry Moreton
▪ Martin Stich



References
▪ [Harmer 2018] Jack Harmer, Linus Gisslén, Henrik Holst, Joakim Bergdahl, Tom Olsson, Kristoffer Sjöö and 

Magnus Nordin“ Imitation Learning with Concurrent Actions in 3D Games”.  available online
▪ [Barré-Brisebois 2011] Barré-Brisebois, Colin and Bouchard, Marc. “Approximating Translucency for a Fast, 

Cheap and Convincing Subsurface Scattering Look”, available online.
▪ [Barré-Brisebois 2017] Barré-Brisebois, Colin. “A Certain Slant of Light: Past, Present and Future 

Challenges of Global Illumination in Games”, available online.
▪ [Igehy 1999] Igehy, Homan. “Tracing Ray Differentials”, available online.
▪ [PBRT] Pharr, Matt. Jakob, Wenzel and Humphreys, Greg. “Physically Based Rendering”, Book, 

http://www.pbrt.org/.
▪ [Schied 2017] Schied, Christoph et. Al. “Spatiotemporal Variance-Guided Filtering: Real-Time 

Reconstruction for Path-Traced Global Illumination”, NVIDIA Research, available online.
▪ [Stachowiak 2015] Stachowiak, Tomasz. “Stochastic Screen-Space Reflections”, available online.
▪ [Weidlich 2007] Weidlich, Andrea and Wilkie, Alexander. “Arbitrarily Layered Micro-Facet Surfaces”, 

available online.
[Williams 1983] Williams, Lance. “Pyramidal Parametrics”, available online. 

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED

https://www.ea.com/seed/news/seed-imitation-learning-concurrent-actions
https://www.slideshare.net/colinbb/colin-barrebrisebois-gdc-2011-approximating-translucency-for-a-fast-cheap-and-convincing-subsurfacescattering-look-7170855
https://www.ea.com/news/seed-siggraph2017-global-illumination
https://graphics.stanford.edu/papers/trd/trd.pdf
http://www.pbrt.org/
http://research.nvidia.com/publication/2017-07_Spatiotemporal-Variance-Guided-Filtering:
https://www.ea.com/frostbite/news/stochastic-screen-space-reflections
https://www.cg.tuwien.ac.at/research/publications/2007/weidlich_2007_almfs/weidlich_2007_almfs-paper.pdf
https://web.archive.org/web/20140414134825/http:/staff.cs.psu.ac.th/iew/cs344-481/p1-williams.pdf


S E E D   / /    S E A R C H   F O R   E X T R A O R D I N A R Y   E X P E R I E N C E S   D I V I S I O N

S T O C K H O L M – L O S A N G E L E S – M O N T R É A L – R E M O T E

W W W . E A . C O M / S E E D

W E ‘ R E H I R I N G !



Questions?



Bonus

S E E D  //  Shiny Pixels and Beyond: Rendering Research at SEED



Ambient Occlusion
Ambient Occlusion (AO) [Langer 1994] [Miller 1994] 
maps and scales directly with real-time ray tracing:

▪ Integral of the visibility function over the 
hemisphere Ω for the point p on a surface with 
normal ොn with respect to the projected solid angle

▪ Games often approximate this in screen-space 
▪ With RT, more grounded & improves visual fidelity!

▪ Random directions ෝw
▪ Can be temporally accumulated or denoised

S E E D //  DirectX: Evolving Microsoft's Graphics Platform

ො𝑛

𝑝

𝐴𝑝 =
1

𝜋
න
Ω

𝑉𝑝, ෝ𝑤( ො𝑛 ⋅ ෝ𝑤)𝑑𝜔



Screen-Space AO



Raytraced AO



Screen-Space AO



Raytraced AO 
(Same Radius as SSAO)



Raytraced AO 
(Far-field)



mGPU

Ray 

Generation

Copy Sub Regions

Copy Sub Regions

GPU1 GPU2 GPU3 GPU4
Explicit Heterogenous Multi-GPU
▪ Parallel Fork-Join Style
▪ Resources copied through system 

memory using copy queue
▪ Minimize PCI-E transfers
▪ Approach

▪ Run ray generation on primary GPU
▪ Copy results in sub-regions to other GPUs
▪ Run tracing phases on separate GPUs
▪ Copy tracing results back to primary GPU
▪ Run filtering on primary GPU

Trace 

GPU 2

Trace 

GPU 1

Trace 

GPU 3

Trace 

GPU 4

Filter

S E E D //  DirectX: Evolving Microsoft's Graphics Platform



Ray Tracing Gems

▪ A new book series with focus on real-time and
interactive ray tracing for game development
using the DXR API.

▪ We invite articles on the following topics:
Basic ray tracing algorithms, effects (shadows, reflections, tec), non-graphics applications, reconstruction, 
denoising, & filtering, efficiency and best practices, baking & preprocessing, ray tracing API & design, 
rasterization and ray tracing, global Illumination, BRDFs, VR, deep learning, etc.

▪ Important dates

o 15th of October 2018: submission deadline for full papers

o GDC 2019: publication of Ray Tracing Gems (paper version + e-book)

▪ Tomas Akenine-Möller will lead the editorial team
http://developer.nvidia.com/raytracinggems/

Call for Papers


