
● Good morning everyone and thanks for making it so early! ☺

● My name is Colin Barré-Brisebois and today I would like to talk to you about some

of the state of the art in real-time ray tracing for games

● I also want to discuss some open problems several of us in the games industry

see, that’s well need some help with and hopefully tackle together with you

● Who is SEED? For those of you who don’t know, we’re a technical and creative

research division inside Electronic Arts.

● We are a cross-disciplinary team whose mission to explore the future of interactive

entertainment, with the goal to enable anyone to create their own games and

experiences.

● We have offices in Stockholm, Los Angeles and Montréal.

● One of our recent projects was an experiment with hybrid real-time rendering, deep

learning agents, and procedural level generation.

● We presented this at this year’s GDC. In case you haven’t see it, let’s check it out!

● PICA PICA is a mini-game that we built for AI agents rather than humans.

● Using reinforcement learning, the agents learn to navigate and interact with the

environment. They run around and fix the various machines, so that conveyor belts

keep running efficiently. If you are interested in the AI part, do check out our paper

in arXiv.

● We built the mini-game from the ground up in our in-house Halcyon R&D

framework.

● We’ve had the opportunity to be involved early on with DirectX Ray Tracing, with

NVIDIA and Microsoft, to explore some of the possibilities with this technology.

● We decided to create something a bit different and unusual, less AAA than what

you usually expect from an EA title.

● For this demo we wanted cute visuals that would be clean and stylized, yet

grounded in physically-based rendering. We wanted to showcase the strengths of

ray tracing, while also taking into account our small art department of 2 people.

● We used procedural level generation with an algorithm that drove layout and asset

placement. You should check out Anastasia’s various talks on the matter in case

you want to know more how the world was procedurally generated.

So here’s a question: why should we use ray tracing?

I guess for most folks in this room the questions doesn’t need to be asked.

And the best answer is…

● Because why not! And because we can!!

● We can take a stab at “ray tracing is the future and ever will be”.

● Let’s put things into perspective.

● This is our original scene without ray tracing. It’s not super awesome.

● It does include a number of non-trivial rendering algorithms such as screen-space

reflections, screen-space ambient occlusion, physically-based rendering, cascaded

shadow maps, a multi-layer PBR material system, a post-fx stack with eye

adaptation, motion blur, depth of field, and temporal-antialiasing.

If we turn our in-engine path tracer on, at one sample-per-pixel, the scene looks

considerably noisy and is rather expensive to render.

● After waiting for 15 seconds, this what we get.

● The image looks way nicer but you will also notice some noise.

● Some of that noise can take minutes to hours to converge, mostly because of

difficult light paths and caustics.

● But instead if we adopt an hybrid approach, this is the kind of results we get

running at 60 FPS on a TitanV.

● It’s not quite the same as the path traced version; it’s missing caustics and some

small-scale interreflections but still pretty decent.

So yeah, no ray tracing. And with ray tracing (flip)

● For PICA PICA we built a hybrid rendering pipeline which uses both ray tracing,

compute and rasterization.

● By using the interoperability of DirectX, we are able to use the best of all pipeline

stages and achieve a final image augmented by ray tracing at real-time rates, good

enough to be in a game product.

● In the end we get a super stable image that’s noticeably free of noise, noise which

you usually get from monte carlo while benefiting from what you get from ray

tracing, such as awesome reflections, AO, GI, and respecting physically-based

rendering.

● This is what our hybrid rendering pipeline looks like.

● As mentioned we take advantage of the interop between rasterization, compute

and ray tracing, which you can see with the various effects here.

● We have a standard deferred renderer with compute-based lighting, and a pretty

standard post-processing stack.

● We can render shadows via ray tracing or cascaded shadow maps.

● Reflections can be raytraced or screen-space raymarched. Same story for ambient

occlusion.

● Only global illumination, transparency and translucency fully require ray tracing.

● One of our main techniques which takes advantage of ray tracing is of course

reflections

● The ability to launch rays from the g-buffer allows us to trace reflections faster than

through primary visibility.

● We trace them at half resolution, so for every four pixels you get one reflection ray.

This gives us a quarter of a ray per pixel.

● Then at the hit point, shadows will typically be sampled with another ray. This

totals to half a ray per pixel.

● This works for hard reflections, but we also support arbitrary normal and varying

roughness.

● We do this by applying spatiotemporal reconstruction and filtering

● Our first approach combined it with SSR for performance, but in the end we just

raytraced for simplicity and uniformity.

● We have presented some extended info on how we do this, so check out our GDC

2018 and Digital Dragons talks

● Here’s a high-level summary of the ray tracing pipeline.

● We start by generating rays via BRDF importance sampling. This gives us rays

that follow the properties of our materials.

● Scene intersection can then be done either by screen-space raymarching or ray

tracing. As I said in the end we only raytrace but support both.

● Once intersections have been found, we proceed to reconstruct the reflected

image.

● Our kernel reuses ray hit information across pixels, upsampling the image to full-

resolution.

● It also calculates useful information for a temporal accumulation pass.

● Finally we run a last-chance noise cleanup in the form of a cross-bilateral filter.

● When it comes to materials, for this project we put together a material model where

we combine multiple layers into a single, unified and expressive BRDF.

● By unified I mean that this model works for all lighting & rendering modes, is

energy conserving and handles Fresnel between layers.

● It has allowed us to rapidly experiment with different looks, but if we were to use

this in a real game production we’d most likely bake down the number of layers.

● The reflection pass works with layered materials, and we still generate just one

direction for the whole stack.

● The simplest way to do this is by choosing one of the layers with uniform

probability, and sampling the layer’s BRDF. That works, but can be wasteful.

● For example, a smooth clear coat layer is barely visible heads-on, but noticeable at

grazing angles. To improve on the scheme, we draw the layer from a probability

mass function based on each layer’s approximate visibility.

● Looking only at the reflections, this is the raw results we get at 1 reflection ray

every 4 pixels.

● And this is what the spatial filter does with it. The output is still noisy, but it is

now full rez, and it gives us variance reduction similar to actually shooting 16

rays per pixel.

● The idea is very similar to stochastic screen-space reflections that Tomasz

Stachowiak from our team presented three years ago at SIGGRAPH. If you

want more info about this you should check his talk.

● Every full resolution pixel basically uses a set of ray hits to reconstruct its

reflection. It’s a fancy weighted average where the local pixel’s BRDF is used

to weigh contributions. It’s also scaled by the inverse PDF of the source rays

to account for their distribution.

● Followed by temporal accumulation

● And finally by a much simpler bilateral filter that removes up some of the

remaining noise.

● It overblurs a bit, but we needed it for some of the rougher reflections.

● Compared to SSR, ray tracing is trickier because we can’t cheat with a blurred

version of the screen for pre-filtered radiance

● There’s much more noise compared to SSR, so our filters need to be more

aggressive too.

● To prevent it from overblurring, we use the variance estimate from the spatial

reconstruction pass and use it to scale down the bilateral kernel size and

sample count

● And finally by a much simpler bilateral filter that removes up some of the

remaining noise.

● It overblurs a bit, but we needed it for some of the rougher reflections.

● Compared to SSR, ray tracing is trickier because we can’t cheat with a blurred

version of the screen for pre-filtered radiance

● There’s much more noise compared to SSR, so our filters need to be more

aggressive too.

● To prevent it from overblurring, we use the variance estimate from the spatial

reconstruction pass and use it to scale down the bilateral kernel size and

sample count

● With temporal anti-aliasing, we then get a pretty clean image. Considering this

comes from one quarter rays per pixel per frame, and works with dynamic

camera and object movement, it’s quite awesome what can be done when

reusing spatial and temporal

● Going back to the raw output, it’s quite a change!

● Raytraced shadows is another technique we have. Those are great because they

perfectly ground objects in the scene. This is not too complicated to implement.

Just launch a ray towards the light, and if the ray misses you’re not in shadow

● Hard shadows are great… but soft shadows are definitely better to convey scale

and more representative of the real world

● This can be implemented by sampling random directions in a cone towards the

light

● The wider the cone angle, the softer shadows get but the more noise you’ll get, so

we have to filter it

● You can launch more than one ray, but will still require some filtering

● In our case, we first reproject results TAA-style, and accumulate shadow and

variance

● We then apply an SVGF-like filter. We modified SVGF to make it more responsive

for shadows. We coupled it with a color bounding box clamp similar to the one in

temporal-antialiasing, with a single scalar value which is cheap to evaluate. We

used Marco Salvi’s variance-based bounding box method, with a 5x5 kernel

estimating the standard deviation in the new frame. The result is not perfect, but

the artifacts aren’t noticeable with full shading.

● Let’s zoom on some details. With our approach one can see we get nice contact

hardening while getting rid of the noise.

● But this approach is not completely physically correct, since we don’t incorporate

the BRDF.

● Steve Hill will talk about how you can do this properly in the Advances in Real-

Time Rendering Course on Monday at SIGGRAPH. So make sure to attend!

● Another technique that maps and scales well to real-time ray tracing is of course

ambient occlusion, which we apply to indirect lighting.

● Being the integral of the visibility function over the hemisphere, we get more

grounded results because all the random directions used during sampling actually

end up in the scene, unlike with screen space techniques where rays can go

outside the screen, or where the hitpoint is simply not visible.

● Just like in the literature, this is done by doing cosine hemispherical sampling

around the normal.

● In our case we launch rays using the gbuffer normal, use the miss shader to figure

out if we’ve hit something

● You can launch more than 1 ray per frame, but even with one ray per frame you

should get some nice gradients after a few frames.

● We apply a similar filter as the one for the shadows

Let’s compare some results. For comparison this is screen-space AO

And here’s raytraced AO ☺

Looks so much more grounded!

But what if we used similar ranges for the screen-space AO and the raytraced AO?

Again, here’s the screenspace AO. Notice the broom against the wall with some really

nice darkening

- And now raytraced AO. One can see how the missing screen space information

really adds when it’s accessible through ray tracing in world space.

- TOGGLE BACK AND FORTH

- Actually, if you look carefully you’ll notice the broom is actually not touching the

wall. RTAO exposed some imprecisions in our procedural placement, which SSAO

did hide, so that was a funny find.

And with raytraced AO, we can even go further and have far-field AO

● With ray tracing we can do proper refractions.

● We can also throw more rays, get translucency and subsurface scattering instead

of the “thickness” term that I developed in EA’s engine Frostbite, which was

precomputed offline and didn’t allow for self occlusion.

● We can actually have the light travel and scatter inside the medium, for all lights

and taking shadows into account. This gives more convincing results, and is fully

dynamic too.

● For this demo, we did it in texture space, but it can also be done in screen-space.

● This technique works for both clear and rough glass

● For clear glass no filtering is required

● For rough glass we open the cone angle. Obviously with rougher reflections we

need more samples to get rid of noise, but one can also use temporal filtering here

● The examples here show a very simple material model for glass, but something

more complex can be done if needed

Here’s a breakdown of how we compute translucency

Here’s a breakdown of how we compute translucency

Here’s a breakdown of how we compute translucency

Here’s a breakdown of how we compute translucency

Here’s a breakdown of how we compute translucency

Here’s a breakdown of how we compute translucency

● We let the results converge over multiple frames via temporal accumulation.

Spatial filtering can be used as well, although we didn’t hit enough noise to

make it worthwhile.

● Since lighting conditions can change with objects moving, a temporal filter

needs to be able to adapt to them. Depending on your use case, a simple

exponential moving average can do the trick.

● We use a slightly fancier, adaptive temporal filter based on exponential

averaging. It varies its hysteresis to quickly re-converge to dynamically

changing conditions.

● We’ve covered indirect specular and transmission, so let’s talk about the rest of

light transport. In this case I mean indirect lighting applied in a diffuse manner to

scene surfaces.

● Great materials require great light transport. Of course ray tracing makes it

possible to implement it better than ever.

● GI makes scene elements fit with each other, and makes the life of artists better, as

it reduces the need to manually place artificial lights as many games have shipped

with, or even touch up surface colors and destroy PBR.

● Or even worst: negative lights. What the hell is that anyway!

● We set out to create a solution that was very dynamic, without the need for any

precomputation or even UVs. It had to support dynamic and static scenes, and we

wanted it to refine to a high quality result, at least in static regions.

● And in the future we’ll need to support static + dynamic scenes, user generated

content, arbitrary content that you can’t ask artists to clean-up and preprocess.

● An initial PICA PICA test scene with indirect diffuse off

● And now on. Notice the bounce in the back and in the front on the robots

● When it comes to indirect lighting, or global illumination we can’t afford to re-solve

every frame

● We set ourselves a 250K rays per frame budget

● For PICA PICA we wanted a technique that doesn’t require precomputation,

parametrization (such as Uvs and mesh proxies), works for both dynamic and

static scenes

● Basically, no step to piss-off artists and to be honest it’s 2018, I think it’s time. And

in the future we want to support arbitrary content from anyone, so can’t expect

them to unwrap meshes or build mesh proxies.

● And so we ended up using world space surfels that we spawn on what you see

● To support animated objects, surfels remember the object on which they were

spawned, and are updated every frame to move with it.

● This does pose a challenge to temporal accumulation, but it’s not as severe as

ghosting from screen-space techniques.

● To apply surfels to the screen, we render them in a similar way to light

sources.

● We use smoothstep for distance attenuation, with the Mahalanobis metric to

squash them in the normal direction.

● We also have angular falloff, but each surfel’s payload is just irradiance,

without any directionality.

● Also similarly to deferred lights, we have a surfel culling system.

● In order to be able to query the GI solution anywhere, we use a world-space

data structure.

● For simplicity, it’s a grid in which every cell stores a list of surfels. Each pixel

or point in space can then look up the containing cell, and find all relevant

surfels.

● The GI has limited resolution, and lacks high frequency detail.

● We augment it with screen-space ambient occlusion implemented after

“Ground Truth AO” from Jorge Jimenez.

● We use the colored multi-bounce variant, as it helps retain the warmth in our

toy-like scenes.

● As I mentioned, surfels are spawned on the fly, and require no precomputation.

● Here’s a clip of the process in action at around one percent speed.

● As you can see, the distribution is quite even and resembles Poisson disk.

● Haven’t covered irradiance transfer here, but for the sake of time you should check

tom’s slides from Digital Dragons 2018.

A bit of a side note, but for n our demo we also explored doing ray tracing on multiple

GPUs. The primary GPU acts as the arbiter, splitting the work for secondary devices

and finishes the final work.

- Run ray generation phase on primary GPU for the entire screen

- Copy ray generation texture in sub-regions to other GPUs

- Run tracing phases on other GPUs (just a sub-region of the entire screen on each

GPU)

- Copy tracing results back in sub-regions from other GPUs

- Filtering is then done only on primary GPU. This allows us to mitigate temporal

problems.

● We obviously haven’t solved everything, and still have a bunch of topics we

need to tackle as an industry that I would like to discuss with you.

● Real-time ray tracing opens the door to an entirely new class of techniques for

games, which is awesome!

● Not automagical: we still have to build around trade-offs. For example…

● Still need to devise techniques around real constraints, such as: …

● For researchers, this becomes a key discussion elements for your papers, for

gamedev adoption ☺

● And so for now it feels like RTRT will be seen as a high-end feature, for some

amount of time at least

● Obviously performance won’t happen over night

● As the transition happens, need to make those techniques swappable or

pluggable, depending on the hardware customers have, so that other SKUs

don’t suffer: SSR → RT Reflections, SSAO → RTAO

● So what do I mean by gamedev constraints?

● In gamedev we have this thing called the “less than N milliseconds threshold”,

which is basically a game and platform specific cutoff at which a technique

passes all the gates (technical, art, production) and can make it into a game.

● Assume 30-60FPS, so 16ms to 33ms per frame which is shared between all.

A lot of techniques run between 1-3ms. Sometimes less, sometimes a bit

more. It all depends on the kind of game you’re shipping, but generally these

are the kind of ranges we look at

● Limitations on memory as well as well as production constraints: for example,

will this help or make the art process more tedious?

● So, if your technique is awesome, passes the thresholds, and brings

significant value, awesome!

● But if the frame is full, it’s a different discussion.

● This sounds quite limiting, but there are some options around this. Especially

on PC since it’s easier to tailor for high-end features, unlike on consoles which

are more fixed. Though a bit of a different story now with PS4 pro and Xbox1X

● As mentioned there’s a pluggable advantage to ray tracing: one can swap

SSR with RT reflections, and SSAO with Raytraced AO, so that allows us to

have two profiles, a normal one and a high-end one

● Now for some other techniques it might be a bit more difficult. For example if

your game depends on raytraced real-time GI, where you have gameplay

around dynamic lights turning on or off, it might be harder to make it

pluggable, unless it’s incremental.

● Here’s another open problem: transparency and partial coverage

● Even with real-time ray tracing, this is definitely not solved.

● When one looks at the images on the right from the Maxwell renderer, clear &

rough + shadowed… we still have work to do to reach that quality level in real-

time, at 1 or two samples per pixel

● If one considers transparency for particles and volumetric effects, one can use

the miss shader to trigger rays that will update volumes, and even do some

amount of raymarching in hit shaders right now with DXR, but at what cost?

● Actually most of the volumetric effects require non-trivial blending with the rest

of the scene, and non-trivial filtering.

● For transparency on PICA PICA we came up with a texture-space OIT

technique, which worked for refractions and scattering

● While our approach worked for our case, even handles view-dependent

parameters, it’s not perfect and came with its share of temporal issues.

● I’m also not sure how it would blend with other effects we skipped for this

demo… such as volumetric effects, particles and fog. One step closer

though…

● The thing is, with 1 sample per pixel, and throwing some Monte Carlo in there,

most denoising techniques generally don’t work so well with transparency or

partial coverage

● Same thing if we talk about foliage and just like the previous fall in the

category of partial coverage…

● We can still do alpha testing in the hit shaders, and could use some pre-

filtering. But as soon as it starts moving, it becomes a problem both for tracing

performance, for BVH updates, but also for filtering.

● The BVH update is technically an IHV issue, but doesn’t mean we can just

forget about it. ☺

● Refitting is fast, but not free, and if you’re building a jungle or a scene like

PBRT, or the forest on the island from Moana that Disney has released, it’s a

different story than just a tree here and there.

● Other types of partial coverage effects that get affected such as depth of field

and motion blur also fall into this trap

● And so, current denoising techniques don’t work well with this kind of partial

visibility in real-time. And often this is because we only have 1 sample per

pixel and assume everything is opaque.

● So if we can figure out denoising of partial coverage for 1-2 spp, that would be

ace!

● Speaking of denoising and reconstruction, where most games right now

support some minimal amount of it, and the fact that there’s been great

progress there, it feels like we’re still not done exploring

● As you saw from our demo, there is definitely something to be said about

reusing temporal and spatial data to your advantage

● For example in the case of PICA PICA, we applied denoising and

reconstruction that’s specialized for view-dependent, lighting dependent or

any other term you can monitor variance across frames.

● One _can_ use general denoising on a whole image, but at the end of the day

specialized denoisers should always achieved greater quality: you know what

problem you are trying to solve, and you focus on that.

● It also should converge faster since it’s specialized

● But does that mean we can’t find an algorithm to rule them all? Maybe?

● For PICA PICA we used SVGF, and now Christoph Shied has come up with

an improved version of SVGF where temporal ghosting is reduced by taking a

fraction of samples from the past and checking if they look different in the

present, detecting temporal gradients.

● Will need to take a look at it when I go back to Stockholm, looks like really

great promising work!

● Also, there’s been a lot of progress with deep learning approaches. Seems

those networks react well to noise, so might as well throw it at them. Think

we’re not done here, but definitely interesting to keep an eye on.

● Speaking of implementing techniques, one cool thing I find with DXR is how

easy one can adapt their existing real-time engine to have support for ground

truth

● As everyone knows here validating against ground truth is key, and necessary

when building real-time ray tracing

● For PICA PICA we’ve added the ability to toggle between our hybrid rendering

approach and a path tracer implementation

● This has allowed us to rapidly compare results against ground truth, and was

super useful as we built our hybrid renderer

● One of the best reasons I find to have this, other than validating that your math

is not complete garbage or missing a divide by PI (but then again doesn’t

happen often because we use the same HLSL code between the path tracer

and the hybrid mode), is to compare and figure out where to cut corners for

real-time.

● Figure out when something is good enough and not completely too far from

the reference.

● Also because of interop between Raster, Compute and Ray Tracing and like I

said the fact that you can share shader code with all pipelines, there is

minimal to almost no extra work and maintenance required, so having this

ground truth comparison tool shouldn’t add too much work.

● I think this is really cool for researchers, who definitely want to compare

against ground truth and swear by it.

● Image: http://www.cristanwilliams.com/b/2012/01/10/apple-separatism/

● Speaking of interop, as I mentioned we use the same HLSL code between

raster, compute and ray tracing, our hybrid mode and the path tracing

reference

● This is really awesome, so no need to do conversions like one had to do in the

past when using an offline tool as the reference.

● It always becomes tricky with materials, and so now because it’s the same

code, often via generalized functions that you’ve built, makes life easier.

● And so with interop, one stage can feed data for another

● Think of it this way, you can prepare data in compute write it to a UAV and us

it in a ray tracing stage. This is what we do transparency and translucency

● You can also prepare rays to be launched, and trace at a later time. This is

what we do with our parallel fork-and-join approach mGPU that I talked about

● You can also technically update the shader table from the GPU

● And so, for a researcher, the concept of interop extends opportunities for

solving new sparse problems

● You can basically use the power of each stage to your advantage, and

develop a technique that can get adopted by a game title.

● If we talk about literature, and hopefully I say this properly and don’t offend

anyone so please bare with me, and if you have any comments makes sure to

share them at the end but…

● While literature has done some significant amount of work to accelerate ray

tracing, it has mostly assumed “correct ray tracing”. This has undeniably

allowed for accelerating BVH building, proposals for hardware acceleration

with intersection, shader sorting, etc

● With DXR and game ray tracing this adds a bunch of new challenges,

especially if you can only do 1-2-3 or maybe 4 rays per pixel and need to

render at either 30 or 60 FPS

● With games people now toying with ray tracing, for publications and wide

adoption this means publications have to get adapted to game ray tracing

constraints

● Obviously achieving all of these constraints at once is not easy! But it’s our

reality in the games industry, and we need help from the research community.

Maybe not solve everything, since games are flexible, so maybe meet half

way?

● Also these new metrics become important for papers to get adopted by games

● Speaking of literature and thinking of game constraints, would love to see

someone tackle the following questions

● Not easy! ☺

● Speaking of DXR, if you’ve checked the API, it’s a bit of blackbox. Its

abstractions is that it makes it available for everyone to speak the same

language and have a common playground

● It’s quite flexible but has some limitations. It’s not forward shading friendly in

the sense that you can’t launch rays from raster

● Obviously DXR doesn`t prevent you from building your own ray tracing

framework with compute

● It being a blackbox, this means IHVs can optimize for the common usecase

● The acceleration structures are opaque, and so optimizations on acceleration

structures will be limited to IHVs

● But that research is much needed. I guess one way to have an impact there is

to get a job at an IHV? Or experiment with the Fallback layer in Compute and

build your own accelerations there…

● We also need to find ways to accelerate for non-obvious primitives. If I were to

build some ray tracing hardware, ray-triangle in a BVH would the obvious one

● But cone-BVH might also be interesting, especially for ray marching

● And so earlier I mentioned the Top and Bottom acceleration structures for

DXR, and whether that’s the best approach for real-time ray tracing and

dynamic scenes

● Right now it’s not clear how performance scales in the context of AAA game

titles

● Considering you can have many-to-1, what about top vs bottom counts

● Or other questions such as the ones listed here

● Is the best approach to throw everything into a single massive BVH?

● Many factors can affect the performance, so it’s not clear yet. There aren’t a

lot of docs going into detail about expected counts and usage characteristics

at the moment.

● Also, since ray tracing requires knowing everything about the scene, it’s kind

hard right now to know how it scales to massive dynamic open 3x3, 5x5,

10x10 km worlds

● Speaking of massive worlds, this also means dynamic scenes, and dynamic

scenes are not fully solved yet in terms of performance

● In the context of a game we need to support many animated characters,

foliage, potentially in a massive open world that evolves

● With some user generated content and created experiences that you might not

able to process on the fly, without any art clean-up

● And so in terms of dynamism, it’s not clear if the current top & bottom

acceleration structure is the best approach for massive dynamic environments

● We’ve been told to shove everything in one BVH right now. And to that one

question one might have is whether having a single BVH is the best way to get

the best performance

● This feels viable for a static scene, but most games are not static

● And so the top level has to be rebuilt when anything interesting happens, such

as when objects move but also when static geometry LOD gets swapped are

you get closer to a building.

● With regards to the bottom level acceleration, it’s not clear what the sweet

spot is: one can have lots of individual rigid objects, which will take memory,

and so to fix this we might have to merge down objects.

● Not sure what the numbers are yet, we have to experiment more because of

the blackbox nature of the API.

● And so what about more than 2 level hierarchies?

● This would allow to split worlds in update frequencies

● But also means that tracking object-to-object transformations becomes a stack

which makes it more complicated for ISVs

● Also IHVs might fear that aps can end up creating large instance hierarchies

of single node trees. This would be bad for performance.

● Here’s a suggestion: have two bottom level BVHs, one for static and one for

dynamic geometry

● And so the static one is built once and left alone. This is the one you traverse

first

● The tynamic one is rebuilt in the background as a long runniing tasks, refitted

every frame, and if you have to do a rebuild you can have 2 copies that can be

swapped when rebuilding is done

● This approach would support many animated characters easily while not

taking a hit for rebuilding the BVH for static geometry which doesn`t change

● Doesn`t solve the issue of massive number of materials that typical game

engines have

● Just an idea, and we wonder if you have other ideas on how to solve this. If

you have something to share, would love to hear it at the end during the

questions

● When it comes to geometry, ray-triangle intersection is the fast path. This is a

well known problem, and supported natively by the API and the current GPU

native implementations

● On the flipside, in DXR intersection of procedural geometry is done via

intersection shaders which allows for custom intersection code, basically

arbitrary shapess

● This is obviously the slow path. With the current drivers I calculated calculated

that procedural triangle intersection is about half as fast at the native one

● This means that anything procedural, such as hair water and particles is still a

challenge

● In the case of water, you can use triangles,. But reflections and refractions are

challenging

● And so in the IHV perspective, right now procedural means unpredictable

since you can do pretty much whatever you want

● This is hard to optimize and unpredictable performance-wise

● Speaking of performance, handling coherency is key for real-time ray tracing

performance

● You will get some adjacent rays that perform similar operations and memory

accesses, and those will perform well, while some might trash cache and

affect performance

● Depending on what techniques you implement, you will have to keep this in

mind

● And while there have been attempts at ray tracing hardware in the past, it

doesn’t mean that it will solve everything

● In the content of pica pica, if all rays were incoherent we’d need hardware that

can do 280M incoherent rays per second

● Can’t expect out-of-core ray sorting and coherency construction from total

mess. Still need to tackle coherency upfront in the techniques & algorithms we

develop.

● There has been some work on the software side, especially from Disney and

their Hyperion renderer

● But more R&D and pipeline tailoring will be needed to reduce incoherencies

for real-time

● Speaking of performance, handling coherency is key for real-time ray tracing

performance

● You will get some adjacent rays that perform similar operations and memory

accesses, and those will perform well, while some might trash cache and

affect performance

● Depending on what techniques you implement, you will have to keep this in

mind

● And while there have been attempts at ray tracing hardware in the past, it

doesn’t mean that it will solve everything

● In the content of pica pica, if all rays were incoherent we’d need hardware that

can do 280M incoherent rays per second

● Can’t expect out-of-core ray sorting and coherency construction from total

mess. Still need to tackle coherency upfront in the techniques & algorithms we

develop.

● There has been some work on the software side, especially from Disney and

their Hyperion renderer

● But more R&D and pipeline tailoring will be needed to reduce incoherencies

for real-time

● Speaking of performance, handling coherency is key for real-time ray tracing

performance

● You will get some adjacent rays that perform similar operations and memory

accesses, and those will perform well, while some might trash cache and

affect performance

● Depending on what techniques you implement, you will have to keep this in

mind

● And while there have been attempts at ray tracing hardware in the past, it

doesn’t mean that it will solve everything

● In the content of pica pica, if all rays were incoherent we’d need hardware that

can do 280M incoherent rays per second

● Can’t expect out-of-core ray sorting and coherency construction from total

mess. Still need to tackle coherency upfront in the techniques & algorithms we

develop.

● There has been some work on the software side, especially from Disney and

their Hyperion renderer

● But more R&D and pipeline tailoring will be needed to reduce incoherencies

for real-time

● Managing coherency also means managing ray batch sizes

● For example, in a real game scene, where you have a 1000 materials and

need to fire 100 000 secondary rays

● This means that 100 shaders protentially need to run on hundreds of hits.

That’s a questionably-viable GPU workload

● And so we can’t just shove all material variations in the shader binding table

and let IHVs figure it out

● There is a tipping point wherewe might have to reduce the number of shader

variations, but is it 1 order or 2 orders of magnitude

● Or one might consider adopting more a uber-shader-like approach, like we did

for pica pica, but results might vary depending on the kind of game you are

making

● Should games move even more to uber shaders (or precomputed shader

graphs) and texture-space g-buffers to remove control divergence. That might

require too much memory but might work in some cases

● At the end of the day, dumping this responsibility on IHVs is not the solution,

but we’ll have to work together on what is the best way to provide hints at

IHVs for scheduling unoptimal workloads

● Real-time ray tracing doesn`t completely solve real-time GI

● As most of you know, it’s still a problem in offline rendering where scenes can

take hours to resolve. With difficult paths with caustics for example

● There are many workarounds in offline, but they don’t necessarily map to the

real-time world

● For PICA PICA we had to resort to caching of GI in surfels. Works but has

some limitations. Our artists were happy to not have to deal with lightmap Uvs

and mesh proxies though…

● We also need to solve GI for user-generated content, where you can’t expect

any upfront parametrization

● So even with RTRT, we’re definitely not done here

● At this point in time we can`t rely 100% on raytraced primary visibility. It works,

we have prototyped it, but it would be a bit silly to not take advantage of raster,

which has some advantages

● If we were to have hardware ray tracing, would probably be a different story,

but who knows

● And so we’re thinking of other ways of combining raster, compute and ray

tracing

● Pica pica was a first step, but what’s next. If folks here have ideas, I’m

definitely open to chatting more it with you, some of the challenges we had but

also where we can take things next

What do I mean about texture LOD?

- As many of you are aware, we don’t have shading quads for ray tracing

● We’ve barely scratched the surface:

● Works great for materials where the texture sampling is very clear

● Need to look at anisotropy & dependent texture lookups in complex shader graphs

● Technique assumes static Uvs, so need to look at recomputing texture coordinates

on the fly?

● For pica pica we used it but the difference is minimal because of the super clean

visuals

● Even with detail normal on all objects, with a ton of TAA on top sampling mip0 was

not noisy

● Does affect performance, so you don’t want to only sample mip0

● A good start though, but still work to do here. Make sure to check out the pre-print

● That’s what’s fun about graphics, every year with progress from IHVs, ISVs, and

research, it gets even more awesome. Looking forward to what we can solve as an

industry and where we take things next, together!

● Ping us at SEED if you have some ideas and would like to collaborate.

See you at the NVIDIA real-time ray tracing session where we will talk about

additional ray tracing experiments we did, such as soft transparent shadows for

glass rendering.

● Academia always asks for content from the games people and often doesn’t get it.

● And so for SIGGRAPH we have decided to release all the assets from PICA PICA

● You can download them via Sketchfab and on our website, use them in your

research for free, build your ray tracing pipeline and compare with ours.

● Challenge Accepted?

I will now take questions, but mostly looking forward if people have any thoughts on

real-time ray tracing challenges

