
Augmenting Automated Game Testing with Deep
Reinforcement Learning

Joakim Bergdahl, Camilo Gordillo, Konrad Tollmar, Linus Gisslén
SEED - Electronic Arts (EA), Stockholm, Sweden

jbergdahl, cgordillo, ktollmar, lgisslen@ea.com

Abstract—General game testing relies on the use of human
play testers, play test scripting, and prior knowledge of areas of
interest to produce relevant test data. Using deep reinforcement
learning (DRL), we introduce a self-learning mechanism to the
game testing framework. With DRL, the framework is capable
of exploring and/or exploiting the game mechanics based on a
user-defined, reinforcing reward signal. As a result, test coverage
is increased and unintended game play mechanics, exploits and
bugs are discovered in a multitude of game types. In this paper,
we show that DRL can be used to increase test coverage, find
exploits, test map difficulty, and to detect common problems that
arise in the testing of first-person shooter (FPS) games.

Index Terms—machine learning, game testing, automation,
computer games, reinforcement learning

I. INTRODUCTION

When creating modern games, hundreds of developers,
designers and artists are often involved. Game assets amount
to thousands, map sizes are measured in square kilometers,
and characters and abilities are often abundant. As games
become more complex, so do the requirements for testing
them, thus increasing the need for automated solutions where
the sole use of human testers is both impractical and expensive.
Common methods involve scripting behaviours of classical
in-game AI actors offering scalable, predictable and efficient
ways of automating testing. However, these methods present
drawbacks when it comes to adaptability and learnability. See
section III for further discussion.

Reinforcement learning (RL) models open up the possibility
of complementing current scripted and automated solutions
by learning directly from playing the game without the need
of human intervention. Modern RL algorithms are able to
explore complex environments [1] while also being able to
find exploits in the game mechanics [2]. RL fits particu-
larly well in modern FPS games which, arguably, consist
of two main phases: navigation (finding objectives, enemies,
weapons, health, etc.) and combat (shooting, reloading, taking
cover, etc.). Recent techniques have tackled these kinds of
scenarios using either a single model learning the dynamics
of the whole game [3], or two models focusing on specific
domains respectively (navigation and combat) [4].

II. PREVIOUS WORK

Research in game testing has provided arguments for auto-
mated testing using Monte-Carlo simulation and handcrafted
player models to play and predict the level of difficulty in

novel parameter configurations of a given game [5]. Super-
vised learning using human game play data has successfully
been applied to testing in 2D mobile puzzle games by pre-
dicting human-like actions to evaluate the playability of game
levels [6]. Reinforcement learning has also been used for
quality assurance where a Q-learning based model is trained
to explore graphical user interfaces of mobile applications [7].
Applications of reinforcement learning in game testing show
the usability of human-like agents for game evaluation and
balancing purposes as well as the problematic nature of ap-
plying the technology in a game production setting [8]. Active
learning techniques have been applied in games to decrease the
amount of human play testing needed for quality assurance
by preemptively finding closer-to-optimal game parameters
ahead of testing [9]. In the work that is most similar to ours,
a combination of evolutionary algorithms, DRL and multi-
objective optimization is used to test online combat games
[10]. However, in this paper we take a modular approach where
RL is used to complement classical test scripting rather than
replace it. We expand on this research including exploit detec-
tion and continuous actions (simulating continuous controllers
like mouse and game-pads) while focusing on navigation (as
opposed to combat).

III. METHOD

The methodology presented in this paper is the result from
close collaboration between researchers and game testers.

A. Reinforcement Learning

Scripted agents are appealing due to their predictable and
reproducible behaviours. However, scripting alone is not a per-
fect solution and there are key motivations for complementing
it with RL.

• RL agents have the capacity to learn from interactions
with the game environment [3], as opposed to tradi-
tional methods. This results in behaviours more closely
resembling those of human players, thus increasing the
probability of finding bugs and exploits.

• Scripting and coding behaviours can be both hard and
cumbersome. Moreover, any change or update to the
game is likely to require rewriting or updating existing
test scripts. RL agents, on the contrary, can be retrained
or fine-tuned with minimal to no changes to the general
setup. RL agents are also likely to learn complex policies

978-1-7281-4533-4/20/$31.00 ©2020 IEEE

which would otherwise remain out of reach for classical
scripting.

• RL agents can be controlled via the reward signal to
express a specific behaviour. Rewards can be used to
encourage the agents to play in a certain style, e.g.
to make an agent play more defensively one can alter
the reward function towards giving higher rewards for
defensive behaviours. The reward signal can also be used
to imitate human players and to encourage exploration
by means of curiosity [11].

Both scripted and RL agents are scalable in the sense that
it is possible to parallelize and execute thousands of agents
on a few machines. With these properties, we argue that RL
is an ideal technique for augmenting automated testing and
complementing classical scripting.

B. Agent Controllers

In scripted automatic testing it is a common practice to use
pre-baked navigation meshes to allow agents to move along
the shortest paths available. Navigation meshes, however, are
not designed to resemble the freedom of movement that a
human player experiences. Any agent exclusively following
these trajectories will fail to explore the environment to the
same degree a human would and it is therefore likely to miss
navigation-related bugs.

In the following experiments, the RL agents use continuous
controller inputs corresponding to a game controller, i.e.
forward/backward, left/right turn, left/right strafe, and jump.
No navigation meshes are introduced in the demonstrated
environments.

C. Agent observation and reward function

The observation state for all agents in this paper is an
aggregated observation vector consisting of: agents position
relative to the goal (R3), agents velocity (R3), agent world
rotation (R4), goal distance (R), is climbing (B), contact with
ground (B), jump cool-down time (R), reset timer (R) and a
vision array. The vision array consists of 12 ray casts in various
directions. All values are normalized to be kept between
[−1, 1]. The agents receive an incremental, positive reward for
moving towards a goal and an equally sized negative reward
as a penalty for moving away from it.

D. Environments

We test our hypothesis on a set of sand-box environments
where we can test certain bug classes (e.g. navigation bugs,
exploits, etc.). We investigate local navigation tasks by letting
the environments represent a smaller part of larger maps where
hundreds of agents could be deployed to test different areas.
The agents always start in the same positions in the environ-
ment so as not to use random placement as a mean to explore
the map. We employ four different sand-box environments:

• Exploit - One of the walls in the environment lacks a
collision mesh thus allowing the agent to exploit a short-
cut that is not intentional. See Fig. 1.

Fig. 1: Exploit and Stuck Player sand-box: The yellow spheres
indicate navigation goals. The blue wall lacks a collision mesh
which allows agents to walk through it. The pink squares
represent areas where the agent will get stuck when entering
them.

Fig. 2: Navigation and Dynamic Navigation sand-box: The
yellow spheres indicate navigation goals. The dark blue box
represents a climbable wall which is the only way to reach
the two goals farthest away from the camera. In the Dynamic
Navigation environment the 4 red platforms move.

• Stuck Player - This environment is similar to the Exploit
sand-box but with five areas where the agent will get
stuck when entering. The goal here is to identify all these
areas. See Fig. 1.

• Navigation - This environment is based on a complex
navigation task. The task is to reach navigation goals in
the shortest time possible. It requires the agent to jump
and climb in order to reach the goals. See Fig. 2.

• Dynamic Navigation - This environment is identical to
the Navigation sand-box but with moving, traversable
platforms in the scene. See Fig. 2.

E. Test scenarios

This paper focuses on navigation in FPS type games.
However, the approach we use is transferable not only to other
elements of an FPS game such as target selection and shooting
but also to other types of games. We apply RL to a set of
different areas: game exploits and bugs, distribution of visited
states, and difficulty evaluation.

F. Training

We compare different algorithms (see Fig. 3) and for the
experiments in this paper, Proximal Policy Optimization (PPO)

Fig. 3: Comparison between different algorithms training on
the Dynamic Navigation sand-box. All models were trained
using the same learning rate. Baseline is a human player.

tends to reach higher scores without a significant increase in
training time [12]. For this reason, we will be using PPO and
report its performance in the following. We train the models
using a training server hosted on one machine (AMD Ryzen
Threadripper 1950X @ 3.4 GHz, Nvidia GTX 1080 Ti) being
served data from clients running on 4 separate machines (same
CPUs as above). During evaluation, the algorithms interact
with the environment at an average rate of 10000 interac-
tions/second. With an action repeat of 3, this results in a total
of 30000 actions/second. Assuming a human is able to perform
10 in-game actions per second, the performance average over
the algorithms corresponds to 3000 human players. With this
setup, only a fraction of the machines and time required for a
corresponding human play test is needed.

Training the agents in the various environments requires
between 50 - 1000 M environment frames depending on the
complexity of the game. Fig. 3 shows a detailed comparison
between the different algorithms for the Dynamic Navigation
environment. All agents in the other environments and tests are
trained with identical algorithm (i.e. PPO), hyper-parameters,
observations, and reward function, i.e. they are not tailored
to the task at hand. In the following section we present our
findings and discuss them in detail.

IV. RESULTS

A. Game exploits and logical bugs

A game exploit is a class of bugs that gives the player the
means to play the game with an unfair advantage. Exploits
may lead to unbalanced game play ultimately resulting in a
deteriorated player experience. Examples of game exploits are
the possibility of moving through walls or hide inside objects
(making the player invisible to others) due to missing collision
meshes. In comparison, logical game bugs introduce unpre-
dictable and unintended effects to the game play experience.
One example are those areas in a level where the player gets
stuck and cannot leave. In the worst case scenario, logical bugs
may render the game unplayable.

One of the main differences between traditional game AI
(i.e. scripting) and machine learning is the ability of the latter
to learn from playing the game. This ability allows RL agents

(a) Scripted NavMesh agent. (b) RL agent after 5 M steps.

(c) RL agent after 30 M steps. (d) RL agent fully trained.

Fig. 4: Heat maps generated during training on the Exploit
sand-box, see Fig. 1. Fig. 4a shows the scripted agent follow-
ing its navigation system output. Figs. (b), (c), and (d) show
how the distribution of the agents changes during training. We
see that early in training the visited states are evenly distributed
across the map. When fully trained, the agents find the near
optimal path to the goals.

to improve as they interact with the game and learn the under-
lying reward function. Moreover, there are plenty of examples
where RL algorithms have found unintended mechanics in
complex scenarios [2]. Unlike human play testers, however,
RL agents have no prior understanding of how a game is
intended to be played. Although this could be regarded as
a disadvantage, in the context of game testing, we argue, it
becomes a useful attribute for finding exploits.

We use the Exploit environment (see Fig. 1) as an example
of what could happen when the lack of a collision mesh opens
up a short-cut in the environment. Comparing Figs. 4a and 4d
we see how the two agent types (scripted and RL) behave. In
Fig. 4a it is evident that the scripted navigation mesh agent is
unaware of the available short-cut. In contrast, the RL agent
quickly finds a way of exploiting the missing collision mesh
and learns to walk through the wall to maximize its reward
(see Fig. 4d).

Furthermore, using a navigation mesh is not an effective
way of finding areas where players could get stuck. These
areas are often found in places human players are not expected
to reach and are therefore very rarely covered by the navigation
mesh. In the following experiment we used the Stuck Player
sand-box to analyze the positions in the map where agents
would time-out. Fig. 5 shows the positions of the agents at

Fig. 5: Results from Stuck Player sand-box: The small boxes
show where the agents timeout, clearly indicating where on
the map the agents get stuck.

(a) RL agent after 20 M steps. (b) RL agent fully trained.

Fig. 6: Heat maps generated during training on the Dynamic
Navigation sand-box. See Fig. 2. The white dots indicate that
the agent managed to reach a navigation goal. One of the goals
that is harder to reach can be seen to the left in the heat maps.
Reaching this goal requires the agent to jump on two thin
ledges which only occurs at the end of training (Fig. (b)).

the end of each training episode. From visual inspection alone
it is clear that all five areas of interest could be identified.

B. Distribution of game states visited

Adequate test coverage is important to successfully test
server load, graphical issues, performance bottlenecks, etc.
In order to maximize the test coverage it is desirable to
visit all reachable states within the game. Human testers
naturally achieve this as they generally play with diverse
objective functions and play styles. Traditional testing using
navigation meshes leads to a mechanical and repeating pattern,
see for example Fig. 4a. In the RL approach, the agents
frequently update their behaviours during training ranging
from exploration to exploit focused (compare Figs. 6a and
6b).

C. Difficulty evaluation

The time it takes for the agent to master a task can be used
as an indicator of how difficult the game would be for a human
player. Table I shows a comparison of the number of frames
required to train navigation agents in different environments.
As the complexity of the tasks increases (due to larger and/or

Sand-box 80% of max 50% of max
Exploit-Explore 88.2 M 70.8 M
Navigation 298.8 M 197.4 M
Dynamic Navigation 342.0 M 224.1 M

TABLE I: Comparison of identical tasks but in different
environments, see Figs. 1 and 2. We report frames required
to reach a certain percentage of max reward.

dynamic scenarios), so does the time required to train the
agents. We envision these metrics being used to measure and
compare the difficulty of games.

V. CONCLUSION

In this paper we have shown how RL can be used to
augment traditional scripting methods to test video games.
From experience in production, we have observed that RL is
better suited for modular integration where it can complement
rather than replace existing techniques. Not all problems are
better solved with RL and training is substantially easier when
focusing on single, well isolated tasks. RL can complement
scripted tests in edge cases where human-like navigation,
exploration, exploit detection and difficulty evaluation is hard
to achieve.

REFERENCES

[1] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran, and
R. Hadsell, “Learning to navigate in complex environments,” in Inter-
national Conference on Learning Representations, 2017.

[2] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew,
and I. Mordatch, “Emergent tool use from multi-agent autocurricula,” in
International Conference on Learning Representations, 2020.

[3] J. Harmer, L. Gisslén, J. del Val, H. Holst, J. Bergdahl, T. Olsson,
K. Sjöö, and M. Nordin, “Imitation learning with concurrent actions in
3d games,” in 2018 IEEE Conference on Computational Intelligence and
Games (CIG), 2018, pp. 1–8.

[4] G. Lample and D. S. Chaplot, “Playing fps games with deep re-
inforcement learning,” in Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

[5] A. Isaksen, D. Gopstein, and A. Nealen, “Exploring game space using
survival analysis.” in FDG, 2015.

[6] S. F. Gudmundsson, P. Eisen, E. Poromaa, A. Nodet, S. Purmonen,
B. Kozakowski, R. Meurling, and L. Cao, “Human-like playtesting with
deep learning,” in 2018 IEEE Conference on Computational Intelligence
and Games (CIG). IEEE, 2018, pp. 1–8.

[7] Y. Koroglu, A. Sen, O. Muslu, Y. Mete, C. Ulker, T. Tanriverdi, and
Y. Donmez, “Qbe: Qlearning-based exploration of android applications,”
in 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 2018, pp. 105–115.

[8] I. Borovikov, Y. Zhao, A. Beirami, J. Harder, J. Kolen, J. Pestrak,
J. Pinto, R. Pourabolghasem, H. Chaput, M. Sardari et al., “Winning
isn’t everything: Training agents to playtest modern games,” in AAAI
Workshop on Reinforcement Learning in Games, 2019.

[9] A. Zook, E. Fruchter, and M. O. Riedl, “Automatic playtesting for game
parameter tuning via active learning,” arXiv preprint arXiv:1908.01417,
2019.

[10] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen,
Y. Chen, and C. Fan, “Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 772–784.

[11] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in ICML, 2017.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

