
2025 19th International Conference on Automatic Face and Gesture Recognition (FG)

Towards ML-based Assessment of Synthetic Characters Heads

Igor Borovikov1, Karine Levonyan1, Panda Elliott2, and Etienne Danvoye3
1 Electronic Arts, SEED, Redwood City, CA, USA, {iborovikov, karine}@ea.com

2 Electronic Arts, SEED, Vancouver, BC, Canada, pelliott@ea.com
3 Electronic Arts, SEED, Montreal, QC, Canada, edanvoye@ea.com

Abstract— Virtual environments present ever-growing re-
quirements for their population of synthetic characters. In
many applications, various character heads must provide a
balanced representation of age, gender, and ethnicity. With
a character count well above 10,000, manually checking and
verifying the target metrics is impractical. This paper outlines
a possible pipeline for generating parametric avatar heads. The
main focus is the final stage, where generated character heads
are evaluated for aesthetic quality metrics. The proposed quality
assurance (QA) approach uses ML models trained on sparse
data obtained from human evaluation. The QA ML models’
training data collection leverages in-house crowdsourcing and
aims to match the assessment initially provided by the expert
art direction. We illustrate the approach with heads generated
using FLAME.

I. INTRODUCTION

Realistic 3D avatars are an active area of research and
development in gaming and virtual reality (VR). A detailed,
realistic head is vital for delivering likable, believable virtual
characters. Head shape modeling is the key part of such
exploration. This paper focuses on the perceptual quality of
3D parametric avatar head shapes produced in large numbers
using a mixture of various methods, including generative. We
use Machine Learning (ML) to predict the artistic evaluation
of such heads to automate a complete production pipeline.
Artistic evaluation is part of the Quality Assurance (QA)
workflow. A positive aesthetic rating of the produced heads
increases user acceptance of the generated avatars. A more
formal definition of positive aesthetic rating follows in later
sections. The section on previous work indicates that aes-
thetic evaluation was primarily concerned with beauty rather
than other utilitarian metrics. The paper intends to make a
practical contribution to that area of research.

To put our work in the proper context, we begin with
a brief overview of parametric and morphable models, fol-
lowed by a quick mention of AI-driven generative tech-
niques. The introductory discussion (with aesthetic aspects
in the back of the mind) helps to determine the motivation
behind our decisions for the in-house avatar generation
pipeline before defining metrics and diving into the quality
assessment. An important note: In our work, heads are con-
sidered static and neutral, i.e., we exclude facial expressions,
animation rigging, general facial animation, and speech in
particular. Scalp and facial hair play a significant role in
the perception of the human face, but we take that aspect
into account tangentially, deferring their selection to the art
direction.

A. Overview of Head Shape Representation

Numerous practical systems for human head modeling
utilize established approaches like 3D Morphable Mod-
els (3DMM) and parametric models. With a general 3D
modeling tool at the lowest level, a morphable modeling
system allows direct vertex manipulation, including texture
coordinates, applying various blendshapes, and detailed an-
imation rigging. At such a detailed level, a system offers
exceptional control over minute details and extends beyond
human shapes, but it heavily relies on 3D artists’ mastery and
custom assets. A far cry from mass production, sharing such
one-off models between products or in academia is neither
feasible nor practical. The aesthetic qualities of such models
are handled individually.

Quantitative observations of actual head shapes lead to
standardization and a more structural approach. A 3D Mor-
phable Mesh (3DMM) system captures facial structures via
a linear combination of basic shapes (aka in the industry
“blendshapes”) [9]. The blendshapes can be derived from the
statistical analysis of real-world scans. Structured modeling
leads to higher-level parametric representations, e.g., the
Basel Face Model (BFM) [24], [20], and FLAME [29]. The
neutral head in such systems represents the shared base
shape, and the individual features come from blendshapes
combined with weights (parameters). These parametric mod-
els enable avatar creators to generate diverse facial structures
while maintaining compatibility with standardized rendering
and production pipelines. The range of weights for blend-
shapes is usually controlled by the technical validity of
the resulting mesh, i.e., by the necessity to avoid creases,
folds, and self-intersections. From an aesthetic point of
view, a narrow range of weights keeps generated heads in
reasonable agreement with typical artists’ expectations but
may negatively affect the variety of possible heads.

The 3DMM remains an active area of research, with
later contributions addressing the limitations of the original
approach. Introduction of non-linearity [52] improves repre-
sentation accuracy. A combination of 3DMMs leverages data
from different sources [43]. More complete models cover the
entire head, including the face, cranium, ears, eyes, teeth,
and tongue [42]. Focusing on concrete regions like ear [16]
extends the approach even further. A relatively recent review
of the 3DMMs is in [17]. In addition to compact and accu-
rate shape representation, parametric models in commercial
software enable end-user avatar customization. Systems such
as Ready Player Me [45] and Epic Games’ MetaHuman
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Creator [19] allow users to modify head proportions, facial
features, and skin details interactively. The data formats
for these systems allow their use in popular game engines.
Also, many video games featuring proprietary systems for
avatar customization use custom parametric representation
and blendshapes. In commercial applications, design deci-
sions play a critical role. The design usually favors pleasing
avatar heads attractive to a broad multicultural audience. That
dictates additional limits on top of technical correctness for
the controls. It also enforces necessary correlations between
parameters, e.g., by introducing curated templates available
for blending [19].

Generative methods are rapidly gaining popularity due to
exciting results. The most direct way of using the generative
approach in the industry is to reconstruct 3D heads from
images generated by commercial systems like Adobe Firefly
[1] or other readily available counterparts. The generative
systems can process text inputs to produce human portraits
that closely meet the specifications. The transition to a 3D
head model requires monocular reconstruction, which is
well-studied; a recent review is available in [8]. The paper
[31] demonstrates a monocular reconstruction technique in
application to video game avatars. Other public and propri-
etary neural models produce human heads using generative
approaches. Direct sculpting from 2D generative images
is also possible [34]. A complete 3D generative approach
for human heads can provide a shortcut by eliminating
the 2D stage [62]. During the generation phase, including
keywords for aesthetic aspects (e.g., ”attractive”) may steer
the generation in the desired direction. However, that requires
inventive prompt engineering to keep the imagery sufficiently
diverse. Building a complete automated pipeline with such
an approach may be cumbersome.

Methods such as Neural Head Avatars are another active
research area (see a review in [28]). Such models implicitly
capture 3D facial morphologies and often surpass the ex-
pressiveness of traditional parametric or 3DMMs. Training
neural parametric models requires extensive (and expensive)
datasets of human head scans to distill them in a compact
yet expressive form of embedding. Publicly available models
like FaceNet [46] may provide a practical replacement for
less accessible ones. Embeddings enable the mass production
of heads by mapping latent vectors to the interpretable
parameters [10]. This method may scale up in production
but lacks efficient pipeline controls to meet required metrics
such as gender, age, and ethnicity with sufficient variety in
each category. The aesthetic aspects also remain difficult to
control.

Currently, the head generation of human avatars draws
artistic or aesthetic evaluation from humans in the loop
(character artists, game designers). It also relies on implicit
(embeddings) or explicit (parameter ranges) constraints. In
interactive applications, generation systems’ are geared to-
wards attractiveness. That makes the problem of aesthetic
evaluation less critical when the generation process objective
is to produce a limited number of heads. However, the bias
towards “attractive” faces may result in a loss of visual va-

riety. With variety and mass production becoming a priority,
the built-in attractiveness may need additional support from
an automated ML-based evaluation.

II. PREVIOUS WORK

Various motivations trigger the exploration of attractive-
ness, beauty prediction, or similar aggregate attributes of
human faces. Facial Beauty Prediction (FBP) is a commonly
accepted name for this research area. The subject is widely
studied, but due to either a strictly academic or commercial
approach, the datasets and models mentioned in this section
are proprietary and unavailable for commercial use in appli-
cations to virtual worlds.

We skip works based on measured anthropometric fea-
tures as input (primarily applicable in plastic and restorative
surgery, e.g., [22]) and focus on visual inputs.

Various definitions of facial beauty revolve around key
concepts like the golden ratio, facial symmetry, and the
averageness hypothesis with support from early datasets and
models. These are discussed in the still-relevant [60] and
[59]. The methods continue development by utilizing general
popular characteristics like the golden ratio, e.g., [39], [26],
[54], [25], [7] to the application of classic Computer Vision
(CV) [21] and more recent ML and AI-based approaches
(discussed next), all the way to the recent generative text-to-
image techniques [6].

Early works establish the applicability of ML, e.g., [18].
They utilize visual input with promising results, showing that
the subject lends itself to ML and can approximate human
perception even from a limited-size dataset of images. In-
stead of full image input, smaller dimensionality inputs, like
facial landmarks, are one of the popular features. Landmarks
and similar geometric features appear helpful for beauty
definition and prediction using various ML models in, e.g.,
[27], [61], [14], [51], [15]. However, the landmarks can be
explicitly ignored with still good results [21].

Training some of the more powerful models for facial at-
tractiveness became possible with larger datasets like SCUT-
FBP [57] and SCUT-FBP5500 [30]. However, their data
is limited to Caucasian and Asian faces. Conditioning on
ethnicity is frequent in the field of facial beauty. Nigerian
[26], Turkish [38], Gujarati [49], North Indian [35], and
Bengali [2] (and many more) faces are the subjects of
exploring the golden ratio. To balance the narrow focus, the
racial fairness approach in [37] highlights another facet of
beauty exploration.

The rise of online dating motivates research leveraging
large-scale crowdsourced ratings, as seen in studies like
“Hot-Or-Not” [5]. The potential dating angle introduces
certain cultural biases both in the input imagery and in the
scores. Similarly, the social media angle focuses on altering
or selecting images to enhance the beauty aspect [56], [33].
The large-scale celebrity datasets CelebA and CelebA-HQ
[32] offer the “Attractive” attribute but are not available for
commercial applications.

Authors in [58] propose leveraging attention mechanisms
for FBP through transfer learning by tuning the pre-trained



SCUT-FBP500 dataset to their target dataset. Recent ad-
vancements include the work of [11], who demonstrate
that vision transformers outperform traditional CNN-based
neural classifiers for facial beauty assessment. A recent
introduction of Anchor-Net [4] relies on an ensemble-based
approach utilizing semi-supervised learning. This method
predicts beauty scores by coupling ResNet predictions with
the relative distances between faces in the embedding space,
effectively capturing perceived beauty differences.

Since relevant data and models are not widely available
for commercial applications, the industry is left to collect its
in-house datasets and train models tailored to their specific
needs.

III. CONTRIBUTION

This work expands beyond previous studies by exploring
virtual worlds as an application domain, including syn-
thetic heads created with generative methods and considering
practical beauty standards. Our analysis also relies on a
novel scoring approach utilizing a panel of proxy experts
approximating the principal expert.

Most published work on facial beauty concerns real hu-
mans, while the presented work explores the acceptability of
synthetic heads as the main subject. The subject is related
to the “uncanny valley” problem of synthetic avatars (e.g.,
[13], [47], [48], [36], and more) but is not the same since
we are exploring heads generated from the same pipeline
and sharing the same level of details, feature completeness,
and distinct artistic style. To that end, we propose a more
practical standard for beauty, limiting it to the level of
”acceptable,” i.e., a level that allows releasing it with a
product without triggering negative user feedback. That leads
to a simple binary classification and preserves “interesting”
heads that will not necessarily win a beauty contest but are
acceptable and engaging. In that sense, the mainstream of
the FBP and “uncanny valley” research only applies on a
conceptual level.

A proposed name for our approach is “proxy crowdsourc-
ing”. We tap into in-house crowdsourcing to approximate
and augment the evaluations provided by the art direction.
The art directors’ time is considered more valuable than the
time provided by in-house volunteers willing to give ratings
to a small set of synthetic heads as a fun distraction from
their primary duties. Since the respondents work for the same
company, their perception of acceptability is aligned to a
degree and introduces useful bias into our experiments.

IV. IN-HOUSE HEAD GENERATION PIPELINE OVERVIEW

While we present results obtained with open source para-
metric model FLAME [29], they can translate to the in-
house pipeline, which we outline in this section. The in-house
head shape parametric model conceptually follows a typical
pattern of having a handcrafted “neutral head” or “base
shape” representing an average of all heads. A collection of
blendshapes (over 600) covers all major areas of a complete
head, allows for asymmetries, and comprises the head shape
model. Initially, the blendshapes were handcrafted from

(1) Tag-based randomization with 

mix-and-match by facial region,

(2) Randomization of individual parameters

Avatar 

Head 

Shape

Aesthetic 

evaluation

Assets DB: Parametric head shape components by face region.

Tags: age, gender and ethnicity.

Heads from promptsHand-crafted HeadsScanned Heads

Fig. 1: Head Shapes Generation Pipeline.

anatomical data. Next, registration and tweaks of blend-
shapes to the scanned heads ensure their completeness, i.e.,
the parametric model can represent scanned shapes with the
required accuracy. The resulting structure of the in-house
parametric head model is similar to the FLAME model at a
conceptual level.

Figure 1 shows a schematic representation of our pipeline.
It generates head shapes using various data sources. The
available head shape assets feed into a library of components
organized by facial regions and tags specifying age, gender,
and ethnicity. The first generation step involves mixing and
matching parts by regions with randomized weights while
respecting tag consistency.

Since the source assets are limited, tag-based randomiza-
tion produces an insufficient variety of shapes. To address
that, we introduce the second stage, where we randomize
individual parameters to create wider variations of the pro-
duced heads. A more extensive range of randomization can
push head shapes into the region of “unacceptable,” i.e.,
not following beauty standards by a notable margin. Mild
randomization produces more likable heads in line with
the “averageness hypothesis” [60]. Still, the variety of the
produced heads is too low for the target application, and
“interesting” heads are missing. In our early experiments,
such heads mostly disappear when parameters clamp under
approximately one standard deviation of the initial batch.
The range of produced parameters depends on the initial ran-
domization range, age, gender, and ethnicity. The described
trade-off between variety and acceptability necessitates a
customized approach to rating the randomized heads as
“acceptable.”

The final artifact of our pipeline is a set of parameters that
define the shape and discrete elements of an avatar of a young
age. A younger age allows us to ignore the impact of facial
texture lacking wrinkles. Also, this paper does not consider
makeup, facial hair, and scalp hair. The last box in Figure 1
is the focus of this paper and ensures that the produced heads
are aesthetically pleasing without limiting randomization to
an unnecessarily narrow range. It also prevents extreme or
undesirable shapes from being offered to users in production.

V. PANEL OF PROXY EXPERTS

We aim to answer the question in this section: Can we
approximate professional artistic judgment with a crowd-



Fig. 2: Six least voted heads out of 200 with average score 0.

Fig. 3: Six top voted heads out of 200 with average score ≈ 1.

Fig. 4: Approved by expert, disliked by the crowd.

Fig. 5: Disapproved by expert, favored by the crowd.

sourced one from non-artist respondents? The motivation
behind this comes from the scarcity of art direction time,
while other disciplines (e.g., customer support) may be more
available and willing to provide their judgment. Since their
judgment is likely noisy and biased, we aim to build a robust
ML model leveraging crowdsourced ratings and using art
ratings as ground truth.

We start with defining the terms. In our models, the
“principal expert” (or “expert” for brevity) is a single
individual, usually an art director or other professional artist.
The ratings from the expert comprise ground truth. The
ground truth is what we want to predict with our models. The

non-expert respondents in our experiments are the “crowd”
or the “proxy experts.” We will use these terms interchange-
ably. The crowd forms the “panel of proxy experts”.

Next, we introduce notations. The training batch B of
generated heads consists of N images Ii=1,...,N rendered
using identical settings from 3D models defined by known
generation parameters xq=1,...,m, i.e., an image is a deter-
ministic function of generation parameters I = f(x). These
parameters contain floating point values and discrete choices
in our production pipeline. In the FLAME experiment de-
scribed here, these parameters are limited to floating point
numbers defining weights for principal components of the



TABLE I: Correlations of crowd-sourced raters with the
expert.

Rater Mean Pearson Correlation P-value

crowd4 0.245 -0.030 0.680

fair coin x1000 0.500 0 0.490

crowd3 0.280 0.160 0.020

crowd7 0.560 0.230 0

crowd5 0.795 0.260 0

crowd1 0.500 0.350 0

crowd6 0.325 0.440 0

crowd2 0.470 0.450 0

expert (ground truth) 0.495 1 0

parametric head model.
The art director (the expert) provides “likability” binary

ratings Y for the images: Y = 0 for “reject” and Y = 1
for “accept.” The art director uses their subjective judgment
function F0(I) to produce these values: r = F0(I(x)), or
r = F0(x) for brevity. Ratings comprise our first training
dataset D = (xi, Yi)i=1,...,N and places the problem into the
classic supervised ML context. This dataset is, by definition,
the ground truth.

Our first objective is to fit a model to the function F0(x).
We can apply a variety of methods to that end. However,
the scarcity of data points (200 in most of our experiments)
and relatively high dimensionality of the parametric space
(300 for the FLAME neutral head shape) suggest simpler,
less powerful models to avoid overfitting. Candidates could
be Logistic Regression, Random Forest, SVC, XGBoost, or
other models. In this work, we rely on their implementa-
tions provided by scikit-learn [40]. Model selection may be
considered a designer choice with a preference for better
explainability. We use the default split of D into the training
and test data to avoid overfitting the single available dataset.
We conduct repeated experiments using different random
seeds for the split, similar to how bagging treats the data
[40], [12].

With art preferences approximated by a fit model of
F0(x), we introduce k proxy experts (the regular independent
respondents), indexed as j = 1, . . . , k with index 0 reserved
for the principal expert. Using the same batch B of N
images, we collect ratings from j = 1, . . . , k independent
respondents: D(j) = (xi, Y i(j))i=1,...,N . Next, similarly
to the expert, we train individual models Fj(x) for proxy
experts. These Fj(x), j ̸= 0 approximate the preferences of
the individual crowd members.

The final step is ensembling Fj=1,...,K into a single model:
E(x) = E(F1(x) . . . , Fk(x)) (where we may also include
x explicitly as a feature) and fit E to the ground truth on
the same batch B. As with individual models, we prefer a
smaller model for E with a simple structure allowing us
to add or remove individual proxy experts at a low cost of
re-training. Note that including F0(x) as a feature in the
ensemble doesn’t result in a performance better than that of

the principal expert itself. However, our experiments show
that the fit ensemble E may sufficiently approximate F0(x).
That is unsurprising since F0(x) is the only model trained on
ground truth, while proxy models use predictions from the
corresponding crowd members. Such models will unlikely
give a positive score to the images from Figure 4 and will
likely generate False Positives for the images from Figure
5. Eliminating such disagreements from the dataset (e.g., by
voting and applying a threshold) may be desirable and will
likely improve the performance of the ensemble of the crowd
models. We also leave this for future exploration.

Bayesian Weighted Votes [44] is an approach related to
our field and showing effectiveness. It predicts ground truth
from noisy votes. Adding variational aspect as in [50] may be
beneficial, but we leave it to future exploration. The outline
of Bayesian weighted votes is straightforward.

We aim to predict whether a head is Good (Y = 1)
or Bad (Y = 0) using k voters. Each voter j produces
a prediction D ∈ {0, 1}, where 1 indicates “Good”. The
voters are imperfect and characterized by their correlation
Qj ∈ (0, 1) with the expert.

The likelihoods for each voter Dj conditioned on the true
label Y ∈ {0, 1} are:

P (Dj = 1 | Y = 1) = Qj

P (Dj = 0 | Y = 1) = 1−Qj

P (Dj = 1 | Y = 0) = 1−Qj

P (Dj = 0 | Y = 0) = Qj

For each voter score Dj , the log-likelihood ratio is:

log

(
P (Dj | Y = 1)

P (Dj | Y = 0)

)
= (2Dj − 1) log

(
Qj

1−Qj

)
This captures whether the voter supports class 1 or class

0 and how strongly, based on its reliability.
Using Bayes’ theorem, the posterior log-odds of Y = 1

versus Y = 0 given all voters outputs is:

log
P (Y = 1 | D)

P (Y = 0 | D)
=

log

(
ρ

1− ρ

)
+

k∑
j=1

(2Dj − 1) log

(
Qj

1−Qj

)
where ρ = P (Y = 1) is the prior probability of a head

being good.
Decision Rule: We classify the head as “Good” (i.e., Ŷ =

1) if the posterior odds favor class 1:

Ŷ =

1 if log
P (Y = 1 | D)

P (Y = 0 | D)
> 0

0 otherwise

Favoring Pearson correlation with proper normalization
instead of agreement measure produces results, shown in
Table II. The last row of the table corresponds to Bayesian



TABLE II: The table shows the performance of individual, Bayesian Weighted Votes, and ensemble models in the panel
of proxy experts. Individual respondents’ models aim to predict corresponding crowd votes. The same type of classifier is
used for “Ensemble” rows (third row in each cell). We omit combinations of different classifiers for brevity (e.g., SVC for
individual models and Random Forest for ensembling). The table shows the mean and standard deviation of 64 experiments
with different train-test splits. SVC and Random Forest achieve the best FPR with reasonable accuracy.

Classifier Ensembling Accuracy Precision Recall FPR

Logistic Regression

Mean of crowd models 0.56±0.06 0.55±0.08 0.73±0.11 0.61±0.11

Bayesian Weighted Votes 0.73±0.02 0.73±0.03 0.73±0.02 0.27±0.04

Ensemble 0.59±0.08 0.56±0.09 0.77±0.10 0.57±0.13

Expert 0.68±0.08 0.64±0.09 0.80±0.10 0.43±0.12

Random Forest

Mean of crowd models 0.70±0.06 0.82±0.11 0.52±0.10 0.12±0.07

Bayesian Weighted Votes 0.76±0.02 0.81±0.03 0.68±0.03 0.15±0.03

Ensemble 0.79±0.06 0.96±0.05 0.60±0.11 0.02±0.03

Expert 0.79±0.06 0.97±0.05 0.60±0.11 0.02±0.03

XGBoost

Mean of crowd models 0.63±0.07 0.66±0.11 0.59±0.10 0.31±0.11

Bayesian Weighted Votes 0.75±0.02 0.79±0.03 0.69±0.03 0.18±0.03

Ensemble 0.73±0.06 0.80±0.12 0.61±0.12 0.15±0.10

Expert 0.76±0.06 0.81±0.09 0.66±0.11 0.15±0.08

Support Vectors

Mean of crowd models 0.70±0.06 0.84±0.10 0.51±0.09 0.10±0.06

Bayesian Weighted Votes 0.79±0.01 0.83±0.02 0.74±0.02 0.15±0.02

Ensemble 0.79±0.06 0.97±0.04 0.60±0.11 0.02±0.03

Expert 0.79±0.06 0.97±0.04 0.60±0.11 0.02±0.03

Weighted Bayesian Voting Ratings as votes 0.76±0.06 0.77±0.09 0.72±0.09 0.21±0.10

weighted votes ensembling directly from the crowd votes.
Like ground truth, these votes are unavailable outside of the
training-test dataset. Hence, we replace them with trained
models with results presented in the rest of Table II.

With models F0, F1, . . . , Fk and the ensemble E trained,
we apply the prediction from E in the production pipeline
as the final step to decide if a particular head can be
shipped with the product. Finally, before the deployment in
production, we may apply bagging [12] to the models trained
in our experiments with different subsampling of the training
data. Another way to use the trained models is to filter out
rejected heads with the proxy experts ensemble and then
pass the remaining heads to the expert model for the next
pass. Finally, the human expert may review a small sample
to ensure a low rate of False Positives. Such a workflow
is reminiscent of the general idea of boosting, where weak
learners can ensemble sequentially to improve performance.

The shift in facial feature distribution between the batches
of images may invalidate the models. A change of art
direction may also degrade the ensemble’s performance.
Either of these events may require a new round of scoring
and re-training.

To summarize this section: We aim to capture the art
direction’s preferences with crowdsourced input and use it
instead of or together with the expert model.

VI. EXPERIMENT SETUP

In our experiment, an artist rates 200 images generated
with FLAME by randomizing shape parameters within a

Fig. 6: Web-based Rating tool: the instructions are minimal.
The placeholders “Generic” and “Any Gender” allow more
specific questionary for use production.

relatively large range of values and with asymmetry con-
straints partially tuned down. For each portrait, the rater
has to answer “yes” or “no”, indicating whether the head
is “likable”. Our experiment’s principal expert providing
ground truth is a professionally trained, well-recognized
artist. The heads dataset is balanced, and the mean rating
from the art expert is 0.495.

Next, we invite seven proxy experts who rate the same



(a) t-SNE visualization of the expert ratings (b) t-SNE visualization of the crowd average ratings

Fig. 7: Visualizations of generation parameters embeddings showing (a) expert ratings and (b) crowd average ratings.

(a) t-SNE visualization of the expert ratings (b) t-SNE visualization of the crowd average ratings

Fig. 8: Visualizations of FaceNet embeddings showing (a) expert ratings and (b) crowd average ratings.

heads. The proxy experts’ backgrounds include engineering
and administration, with no professionally trained artists in
the “crowd.” The correlations Table I shows their agreement
with the expert ratings.

The proxy experts do not receive detailed instructions
before providing scores, see Figure 6 showing a minimalist
interface. Moreover, they are asked not to “overthink” and
use their intuitive judgment instead of analyzing image
details. This way, we aim to capture the subjectivity of
the crowd’s judgment. Figure 4 and Figure 5 illustrate the
difference in the evaluation of the heads where the scores
of the expert and the crowd are in disagreement. Note that
the order of image presentation may affect the ratings: if
there is a long stretch of potential rejections, the subjective
quality standard may drop and introduce undesirable bias.
We randomly shuffle images for each new respondent for
our experimentation to mitigate such effects. The effect is
likely measurable, and we plan to explore it in future work.

Since we have a balanced dataset, we use a fair coin
toss sampled a thousand times as the baseline; see row 2
in Table I. Interestingly, one responder (crowd4, see the first
row) shows a slightly negative correlation, voting 0 for most
heads, hence a larger P -value. Such imbalanced ratings affect
training classifiers: all predicted values are zeros in most data
splits for training and tests, invalidating the predictions of
several classifiers. The crowd member crowd3 is similarly
problematic. For this reason, we exclude both crowd3 and
crowd4. A low correlation with the expert and relatively
high P -value may be an early indication for excluding
proxy experts from further exploration as their ratings were
poor predictors. However, we can exploit a strong negative
correlation. Our small-scale experiment doesn’t encompass
such respondents.

For illustration, we include only the most and least-liked
heads from the entire dataset of images: Figure 3 and Figure
2 correspondingly. These extremes illustrate how the heads



look like in the rest of the dataset. The less-liked heads
show more ragged features, while the top-rated ones appear
smoother with well-correlated features.

Table II summarizes the experiment’s results. Since the
dataset is small, we use multiple independent random splits
for training and test data following the standard procedure
implemented with default parameters in scikit-learn. While
that doesn’t guarantee statistical significance, it suggests that
the results can be similar in more extensive experiments.

The observations are common across the model selection.
The Random Forest and SVC models of the expert F0(x)
achieved performance that exceeds the random guess base-
line in the data’s 80-20 percent split. But Logistic Regression
did not generalize well. A random guess with the probability
matching ground truth distribution would result in a False
Positive Rate (FPR) close to 0.5. Approximating the ground
truth probability (0.495, see Table I) of ones as 0.5, we get:

FPR =
FP

FP + TN
=

0.25

0.25 + 0.25
= 0.5

Mean performance of the individual models Fi(x), i =
1, . . . k trained for the crowd is not as good as for the
model F0(x) of the expert. Ensembling individual models of
the crowd E(F1(x)) . . . , Fk(x)) improves performance. For
Random Forest and Support Vectors Classifiers, the metrics
are on par with the model of the expert, supporting our
initial guess that crowdsourcing may offer an alternative to
the expert.

An insight into the low performance of Logistic Regres-
sion comes from Figure 7. We produce clusters in the gener-
ation parameters space with t-SNE [23], [53] as implemented
in [40]. Highly-rated heads form a distribution with a single
mode, similar to Gaussian. The rejected heads form a ring
around the accepted heads. Linear decision boundaries for
such data can not deliver good predictions. As expected, non-
linear classifiers show much better performance in this case.
The t-SNE diagrams support the “averageness hypothesis”
but do not trivialize the problem of rating heads.

One aspect of the non-triviality consideration comes from
the technical art choice of the neutral head, described by all
zeroes in the generation parameters space. The zero point of
the PCA space in FLAME is one generic candidate. However,
art may prefer a different neutral head to better cater to the
concrete application and to make the best use of the in-
house data. The center of the accepted heads cluster may
not necessarily coincide with such a zero.

The second aspect is that we are not solving the classic
FBP problem. The objective of keeping “interesting heads”
may introduce additional structure to the distribution of ac-
cepted heads. Such a structure may be directly interpretable
with techniques applied to embeddings [41]. To that end,
various embedding may provide additional insights. FaceNet
embeddings capture facial features directly in a non-linear
space and may indicate the “interesting heads” structure
independent of the design zero point; see Figure 8. Moving to
a higher dimension of FaceNet embedding (512) may appear
to be overkill compared to FLAME parameters (300 for the

static head). However, t-SNE visualization may be helpful in
future experiments with larger parametric models.

One of our objectives is a low FPR since preventing the
approval of “unlikable” faces is more critical than mistakenly
rejecting “likable” ones, aligning with our experimental
design to prioritize user satisfaction and accuracy. From that
perspective, the lowest FPR comes from the expert model and
ensemble trained with Random Forest and Support Vectors,
which is superior to ensembling with Bayesian Weighted
Votes. With low FPR, we can also envision a hybrid work-
flow using the crowd model to eliminate the extremely bad
heads and then send the crowd-accepted heads to the art
director for final approval. This would mean that they would
have a smaller batch to review, saving their (valuable) time.

VII. CONCLUSION AND FUTURE WORK

We plan to run broader scale rating experiments to obtain
additional data points and uncover structures beyond the
simple “good” Gaussian centered at zero. Such experiments
may also help train a model for the crowd, potentially
replacing the expert without asking them to rate images
unless art direction requires changes. The t-SNE diagrams
and the results table show promising agreement between
the accepted and rejected heads with the expert rating.
Clustering the majority using voting may be sufficient. More
sophisticated methods can emerge from a signal-processing
approach, where we aim to recover noisy signals (expert
ratings) from biased noise observations by the crowd.

Synthetic faces of high quality with properly correlated
features are valuable as training data for various face recon-
struction models. Applying our technique to filter randomly
generated heads intended for such purpose can improve the
quality of the produced data. One positive outcome is a
reduced distribution shift in applications to authentic faces in
the wild. The “acceptability filter” will substantially reduce
the number of produced heads. Still, we can address that with
established methods (reviewed in [55]) and with more recent
techniques geared towards face reconstruction [3]. We plan
to explore this subject more deeply in the future research.

In conclusion, with subjective evaluation geared towards
a concrete product, relying on widely accepted models of
likability and mainstream FBP is hard. Restrictive or unclear
licenses of the public datasets make the field challenging to
commercial applications when relying on publicly available
data and models. With the simple approach proposed in this
paper, we expect to address the issue by training models
from the ratings provided by the art director and the proxy
experts employed by crowdsourcing. The proposed approach
carries the bias introduced by the proxy experts from the
same company or industry. The positive impact of such a
bias may allow us to uncover the structure of the manifold
of “interesting heads” that do not follow the metrics of classic
FBP. That would require larger-scale experimentation, which
we plan for future work.
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T. Vetter. Morphable face models - an open framework. Proceedings
of the 13th IEEE International Conference on Automatic Face Gesture
Recognition (FG), pages 75–82, 2018. Basel Face Model 2017
(BFM17).

[21] D. Gray, K. Yu, W. Xu, and Y. Gong. Predicting facial beauty without
landmarks. In European Conference on Computer Vision, 2010.

[22] H. Harrar, S. Myers, and A. Ghanem. Art or science? an evidence-
based approach to human facial beauty a quantitative analysis towards
an informed clinical aesthetic practice. Aesthetic Plastic Surgery,
42:137 – 146, 2018.

[23] G. E. Hinton and S. T. Roweis. Stochastic neighbor embedding. In
Neural Information Processing Systems, 2002.

[24] IEEE. A 3D Face Model for Pose and Illumination Invariant Face
Recognition, Genova, Italy, 2009.

[25] E. Imre and A. Yılmaz. The effect of the golden ratio in facial anatomy
on beauty perception. Anatomy, 2024.

[26] K. A. Iteire, F. Chukwudebe, V. O. Ukwenya, F. Johnson, R. Uwejigho,
and F. Enemali. Conceptualization of facial beauty among female
students in a southwestern nigerian university using the golden ratio
model. Nigerian Journal of Experimental and Clinical Biosciences,
10:81 – 89, 2022.

[27] T. J. Iyer, R. K, R. Nersisson, Z. Zhuang, A. N. J. Raj, and I. Refayee.
Machine learning-based facial beauty prediction and analysis of frontal
facial images using facial landmarks and traditional image descriptors.
Computational Intelligence and Neuroscience, 2021, 2021.

[28] M. jung Sun, D. Yang, D. Kou, Y. Jiang, W. W. Shan, Z. Yan,
and L. Zhang. Human 3d avatar modeling with implicit neural
representation: A brief survey. 2022 14th International Conference
on Signal Processing Systems (ICSPS), pages 818–827, 2022.

[29] T. Li, T. Bolkart, M. J. Black, H. Li, and J. Romero. Learning a model
of facial shape and expression from 4D scans. ACM Transactions on
Graphics, (Proc. SIGGRAPH Asia), 36(6):194:1–194:17, 2017.

[30] L. Liang, L. Lin, L. Jin, D. Xie, and M. Li. Scut-fbp5500: A diverse
benchmark dataset for multi-paradigm facial beauty prediction. 2018
24th International Conference on Pattern Recognition (ICPR), pages
1598–1603, 2018.

[31] J. Lin, Y. Yuan, and Z. Zou. Meingame: Create a game character face
from a single portrait. ArXiv, abs/2102.02371, 2021.

[32] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes
in the wild. In Proceedings of International Conference on Computer
Vision (ICCV), December 2015.

[33] R. Loucas, B. Sauter, M. Loucas, S. Leitsch, O. Haroon, A. Macek,
S. Graul, A. Kobler, and T. Holzbach. Is there an “ideal instagram
face” for caucasian female influencers? a cross-sectional observational
study of facial proportions in 100 top beauty influencers. Aesthetic
Surgery Journal. Open Forum, 6, 2024.

[34] Y. Men, B. Lei, Y. Yao, M. Cui, Z. Lian, and X. Xie. En3d: An
enhanced generative model for sculpting 3d humans from 2d synthetic
data. 2024 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 9981–9991, 2024.

[35] S. Mittal, G. Aneja, A. Mittal, P. H. Teja, M. Gagain, and A. Verma.
Comparison of facial attractiveness with golden proportion anthropo-
metrically in young north indian females. International Dental Journal
of Student’s Research, 2024.

[36] S. M. Moon and J. K. Min. A study on the visual realism of digital
humans and the uncanny valley phenomenon. Journal of The Korean
Society of Illustration Research, 2024.

[37] E. Nguyen, S. E. Akwafuo, D. Bein, and B. Ojeme. Racially inclusive
approach to facial beauty modeling using machine learning. 2024
IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), pages 4467–4473, 2024.
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