

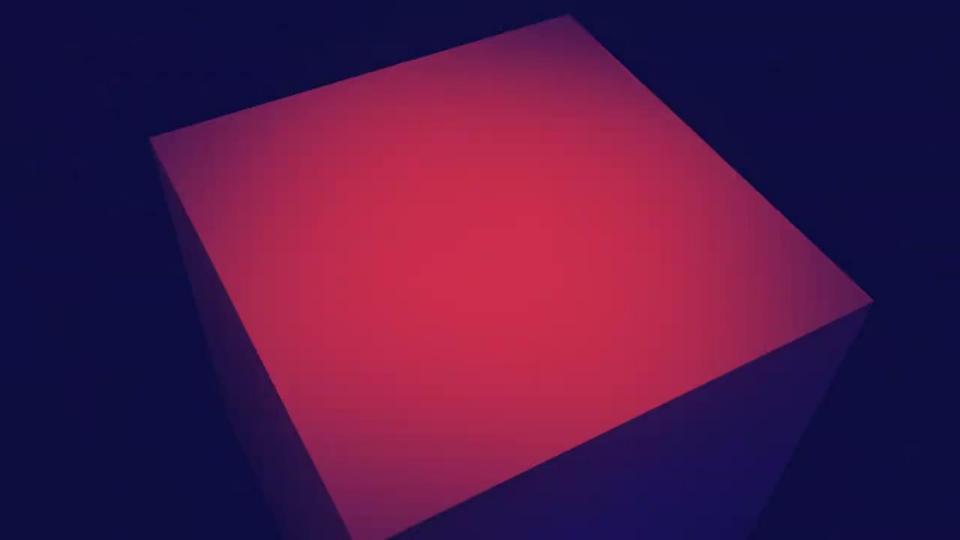
SEED // SEARCH FOR EXTRAORDINARY EXPERIENCES DIVISION

ML in Game Production

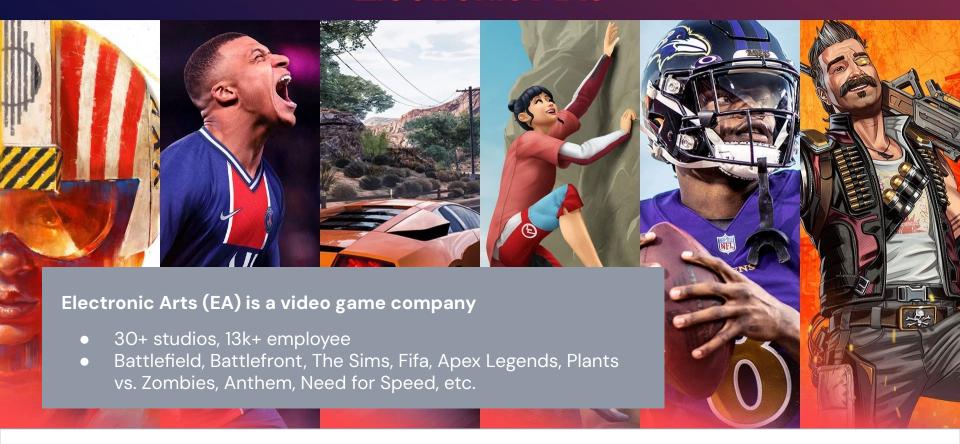
Linus Gisslén - ML Technical Director SEED - EA

Purpose with this talk

- To show interesting challenges and solutions using ML in games and game production.
- To show why **ML is, and will continue to be important** for game production in the future.
- Present some **opportunities** for research in this domain and to foster even more **collaboration** between academia and industry.
- Excite you about the possibilities to work with this!



Electronic Arts



SEED

Search for Extraordinary Experiences Division

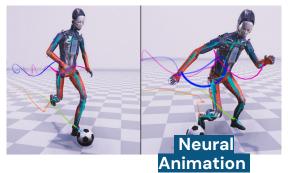
SEED is an advanced R&D department at EA. Our mission is **to explore**, **build**, **and help define the future of interactive entertainment**

Locations: Stockholm // San Francisco // LA // Vancouver // Montreal // Remote

We exist to:

- Explore risky topics
- Research new technologies for innovative concepts to emerge
- Empower EA to create even greater experiences for our players

About SEED: Our different research vectors



SEED partnerships

Current academic partnerships:

- BAIR: Pieter Abbeel, Trevor Darrell, Angjoo Kanazawa
- KTH: TMH, Robotics, Digital Future, etc.
- University of Houston
- University of Florence: Andy Bagdanov
- WASP WARA Media & Language

Bridge between academia and industry.

ML for game production

Motivation for ML in game production

Today's games are often huge and requires years of development

Case study: Red Dead Redemption 2

• Cost: ~\$500M

• Time: ~8 years of development

Staff: ~2000 persons

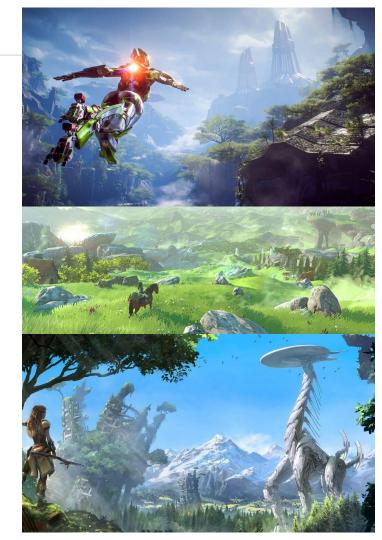
Trend in games

Trend in AAA games:

- Open world
- Higher quality assets, more detail
- Deeper interactions

Trend continues for industry and EA. Automation and tools to create new generation of games is crucial.

ML is ideal for this and in this talk I will give some example of research in this direction.



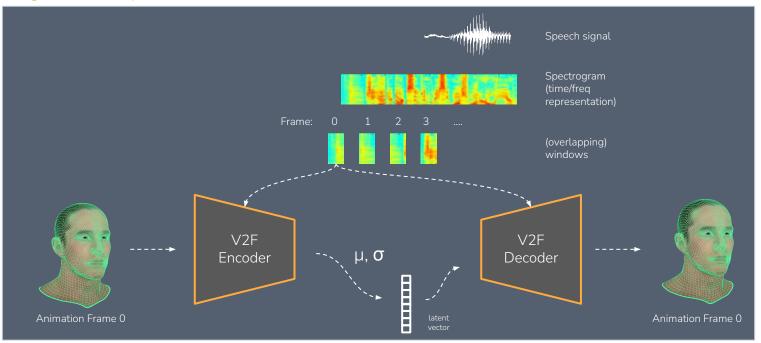
Automated facial animations

Motivation

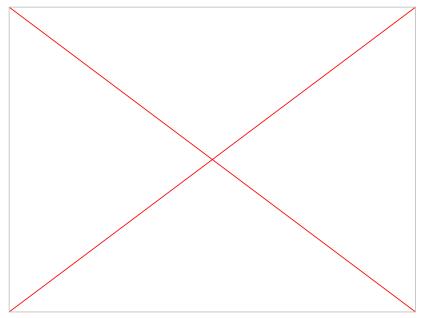
- Creating facial animations is very tedious, takes days to do minutes of animations
- Existing automated (non-ML) methods are not very good
- E.g. Real-time animation on player speech would unlock new experiences

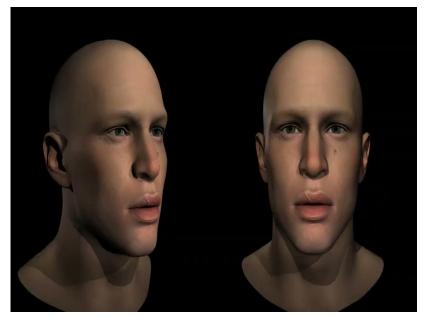
Voice2Face

Generating Facial Expressions from Voice



Voice2Face





Results: English Non-English

Voice2Face: Audio-driven Facial and Tongue Rig Animations with cVAEs Aylagas MV, Leon HA, Teye M, Tollmar K Computer Graphics Forum 2022 BATTLEFIELD

Electronic Arts

Expressive Voice2Face

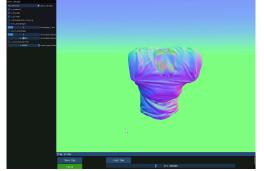
Comparison, different emotions

Swish: Neural Cloth Simulation on Madden 21-24

Adding wrinkles in Jerseys with ML

- Training data:
 - Plausible poses extracted from game
 - Cloth generated in Marvelous Designer was paired with the pose. Post-processing with Maya to optimize for speed.
- Train a simple neural network pose -> mesh
- Inference time; 140 μ s -> Cheaper than standard real-time cloth deformation

Visual target



Training data sample

Swish: Neural Cloth Simulation on Madden 21-24

Adding wrinkles in Jerseys with ML

Swish: Neural Network Cloth Simulation on Madden NFL 21

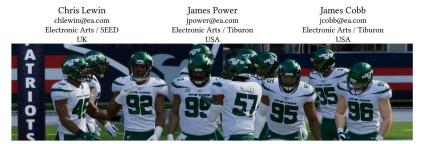
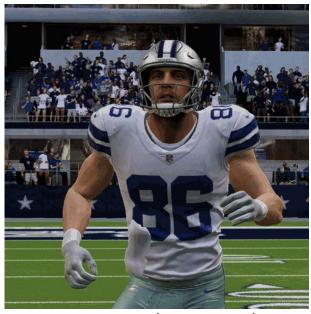


Figure 1: Player jerseys in Madden NFL 21 simulated using our system.

Swish: Neural Network Cloth Simulation on Madden NFL 21. C. Lewin, J. Power, J. Cobb. ACM SIGGRAPH 2021.



Results in-game (Madden 21)

Electronic Arts

SFFD

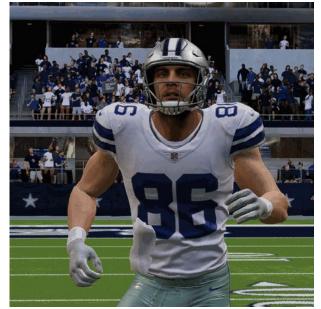
19

Swish: Neural Cloth Simulation on Madden 21-24

Adding wrinkles in Jerseys with ML

Potential future research:

- More loosely fit garment: dresses, capes, scarves, etc.
- Other cloth objects such as flags and tents
- Other types such as trees, grass, waves, etc.



Results in-game (Madden 21)

Swish: Neural Network Cloth Simulation on Madden NFL 21. C. Lewin, J. Power, J. Cobb. ACM SIGGRAPH 2021.

Self-Learning Agents

Data driven behaviour generation

Benefits over traditional methods (scripting):

- No scripting/programming needed: more accessible to everyone
- Re-train instead of re-script: Less manual work
- Automated (can run overnight): potentially faster
- Can solve problems that scripting can not: adds functionality

Self-Learning Agents for Game Al

Some lessons learned from adding RL to Battlefield 2018:

- Artists needs explicit control over behaviours/visuals
- Inference (run-time) took too much resources
- Player facing ML is difficult, no room for failures
- It did not fit in into the existing pipeline of game creation
- Expertise on the "receiving" end did not exist, i.e. hard to retrain when needed

*RL agents playing Battlefield 1

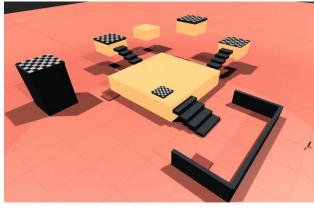
Electronic Arts SEED SEED

^{*}Imitation Learning with Concurrent Actions in 3D games, J Harmer, et. al CoG 2018

Self-Learning Agents for Game Testing

- No artist needs to see the failures
- No run time needed, at least not critical
- Not player facing
- Needs to fit into existing pipeline
- Expertise on the "receiving" end needed

3/5 is not too bad odds!



Test-bed for game testing algorithms

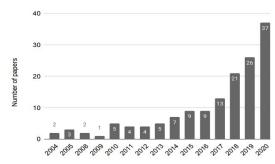
First use-case: Automated Game Testing

"In Battlefield V testing all maps and modes for 1 hour requires 2304h of testing. **288**people to test that every day. If we add more maps and modes this number will be larger."

All for Testing: The Development of Bots that Play 'Battlefield V' Jonas Gillberg - GDC 2019

Problem statement:

- Automatic testing is difficult, requires scripting of bots
- Large game and open world games with procedural content doesn't scale well with current solutions
- Testing of user generated content requires new solutions, something that can adapt



Trend in research: exponential growth in published papers on "Automated game testing"*

25

^{*}Towards Automated Video Game Testing: Still a Long Way to Go C. Politowski, YG Guéhéneuc, F Petrillo, ICSE Workshop on Games 2022 Electronic Arts

Automated Game Testing with Reinforcement Learning (RL)

Goal for RL is to maximize reward -> exploitation

Finding exploits without being "told" (see right)

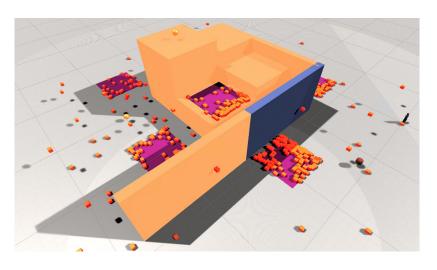
Algorithm learns, therefore:

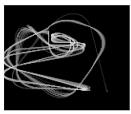
- No scripting required
- Retrain instead of rewriting scripts
- Unpredictable and teachable: more "human like" control
- Explorative: by figuring out how to play it covers more game states

Courtesy: Open Al blog Faulty reward functions in the wild

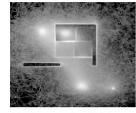
Automated Game Testing

High game state coverage -> more bugs found -> better testing. A RL case study.

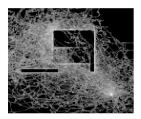




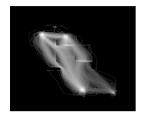
(a) Scripted NavMesh agent.



(c) RL agent after 30 M steps.



(b) RL agent after 5 M steps.



(d) RL agent fully trained.

Augmenting automated game testing with deep reinforcement learning J Bergdahl, C Gordillo, K Tollmar, L Gisslén. CoG 2020

Problem: RL does not always generalize well

Inspiration:

- Idea: That training on procedurally generated content improves generalization in RL agents*
- Idea: That RL can be used for PCG**
- 3. Idea: Posing increasingly difficult (progressive PCG) problems increase learning capacity***

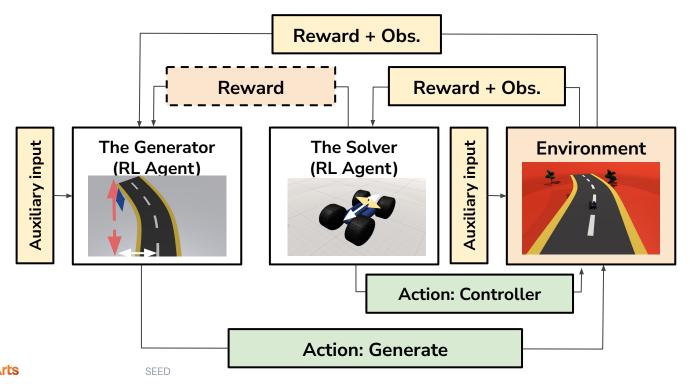
Proposed solution: Generator RL and Solver RL pair. With the feedback from the Solver the Generator can learn to make difficult but not impossible maps.

^{*} Increasing Generality in ML through PCG. Risi S & Togelius J Nature Machine Intelligence 2020

^{**} Pcgrl: Procedural content generation via reinforcement learning Khalifa A, Bontrager P, Earle S, Togelius J. AlIDE 2020

^{***} Illuminating generalization in deep reinforcement learning through procedural level generation Justesen, Niels, et al. ArXiv 2018

ARLPCG: Adversarial RL for Procedural Content Generation

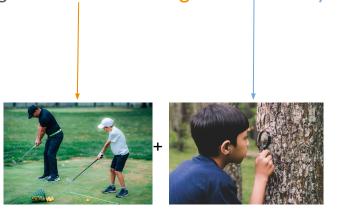


Electronic Arts

30

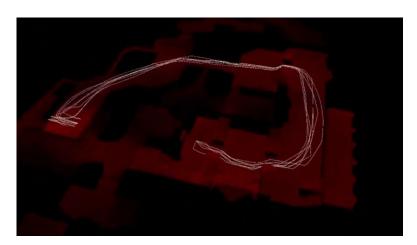
Automatic Gameplay Testing with Curiosity-Conditioned Proximal Trajectories

Combining Imitation Learning and Curiosity for guided exploration.

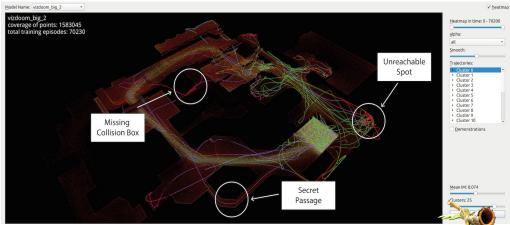


Automatic Gameplay Testing with Curiosity-Conditioned Proximal Trajectories

Combining Imitation Learning and Curiosity for guided exploration.



Human demonstration in VizDoom



Algorithm exploration includes a unknown passage

Automatic Gameplay Testing with Curiosity-Conditioned Proximal Trajectories

Technical Challenges of Deploying Reinforcement Learning Agents for Game Testing in AAA Games

• Time: 13:50, Wednesday August 23rd. Location: ISEC 102

Technical Challenges of Deploying Reinforcement Learning Agents for Game Testing in AAA Games J Gillberg, J Bergdahl, A Sestini, A Eakins, L Gisslén. Conference on Games (CoG) 2023

Self-learning Agents for Game Design

The Problem

- Game testing is today often a long process with long lead times. Testing happens often in another phase than design phase.
- Test results comes too late for it to be efficient use of data, and sometimes too late for corrections to be added in production.

Proposed solution

- Let expert (game designers) demonstrate how level should be played.
- ML agents learn from that data, and plays the game accordingly.
- Move the testing "upstream" i.e. in the hands of the creators/designers.

Self-Learning Agents for Game Design

Requirements for this use-case

- End-user (game designers, etc.) does not know ML (so reward shaping is difficult)
- No, or little, exploration and exploitation is desirable
- Speed: Has to be fast enough to be used in production
- Generalization: Small changes should not lead to re-training
- Controllability: Human Personas is important in game design. This should be incorporated.

Imitation Learning for Game Design

Towards Informed Design and Validation Assistance in Computer Games Using Imitation Learning

• 11:00, Thursday August 24th. Location: ISEC 140

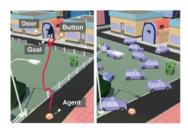
Towards Informed Design and Validation Assistance in Computer Games Using Imitation Learning

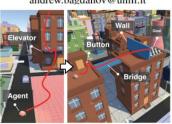
Alessandro Sestini¹, Joakim Bergdahl¹, Konrad Tollmar¹, Andrew D. Bagdanov², Linus Gisslén¹

**ISEED - Electronic Arts (EA), ²Università degli Studi di Firenze

**{asestini, jbergdahl, ktollmar, lgisslen}@ea.com

**andrew.bagdanov@unifi.it*



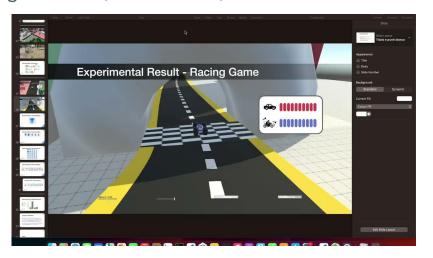


Towards Informed Design and Validation Assistance in Computer Games Using Imitation Learning A Sestini, J Bergdahl, A Bagdanov, K Tollmar, L Gisslén. Conference on Games (CoG) 2023

Electronic Arts SEED 39

Generating Personas for Games with Multimodal Adversarial Imitation Learning

• 09:40 Thursday August 24th (Best of CoG). Location: ISEC 102



Generating Personas for Games with Multimodal Adversarial Imitation Learning W Ahlberg, A Sestini, K Tollmar, L Gisslén Conference on Games (CoG) 2023

Electronic Arts SEED 40

Potential use cases/research for ML in games

Caveat

My prediction (in 2011, when I started in AI):

2025

Unloading dishwasher Cleaning Self-driving cars

SEED

2050

Poetry Art Music

Caveat

The NeverEnding Game: How Al Will Create a New Category of Games

by Jonathan Lai

Reality (now):

2025

Poetry Art Music

2050

Unloading dishwasher Cleaning Self-driving cars

Future of ML in games and game production Dialogues with NPCs

GPT4 for NPCs demo from May 2023 Courtesy: NVIDIA

Possible use-cases for LLMs:

- NPC dialogue (see video)
- Player coach
- Brainstorm tool
- Side-quest generator
- Game commentator
- Etc. etc.

Use case: NPC dialogue (pauses are cut).

GPT3 demo from Feb 2021. Courtesy: Lee Vermeulen

SFFD

- The industry is moving from manual and scripted to data driven methods
- Data driven content generation + data driven behaviour.
- As ML tools becomes more available -> domain knowledge will be more important

Courtesy: Midjourney Al Art

Electronic Arts

Challenges for data driven solutions

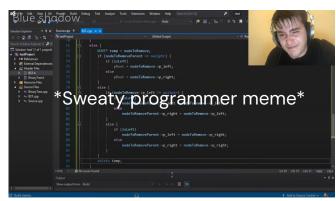
- **Curation:** how do we filter? Guard-rails for player facing ML.
- **Speed:** Generation might be expensive and slow, especially in real-time applications.
- Control: How can we control the output and make sure it fits with the narrative
- **Data:** Acquisition or generation of data is a non-trivial process and highly affects the quality of the models

SPECULATIVE: Game creation will change significantly in 5–10 years

- As algorithm becomes more "intelligent" game devs and designers role will become more a of a movie director rather than to explicit instruct/create
- Devs will be able to instruct by natural language and show by examples

Current state

- Programming of behaviours
- Largely manually creation of assets



"If(playerDistance < attackDistance) Attack(player);"

Future

- Demonstrating behaviours
- Showing examples to generate new assets
- Instructing through natural language

"Attack the player when they come too close"

Summary

We believe that ML and AI has the potential to radically change the way we create games

So far the industry have only explored a fraction of what's possible using ML/AI

Change is coming to game production, you better **be prepared**:)

Thank you for listening!

seed.ea.com

Contact: Linus Gisslén (lgisslen@ea.com)

References

- 1. Generating Personas for Games with Multimodal Adversarial Imitation Learning W Ahlberg, A Sestini, K Tollmar, L Gisslén Conference on Games (CoG) 2023
- 2. Technical Challenges of Deploying Reinforcement Learning Agents for Game Testing in AAA Games J Gillberg, J Bergdahl, A Sestini, A Eakins, L Gisslén. Conference on Games (CoG) 2023
- 3. Towards Informed Design and Validation Assistance in Computer Games Using Imitation Learning A Sestini, J Bergdahl, A Bagdanov, K Tollmar, L Gisslén. Conference on Games (CoG) 2023
- 4. Neural Synthesis of Sound Effects Using Flow-Based Deep Generative Models S Andreu, M Villanueva Aylagas AllDE 2022
- 5. Voice2Face: Audio-driven Facial and Tongue Rig Animations with cVAEs Monica Villanueva Aylagas, Hector Anadon Leon, Mattias Teye, Konrad Tollmar
- 6. Swish: Neural Network Cloth Simulation on Madden NFL 21. C. Lewin, J. Power, J. Cobb. ACM SIGGRAPH 2021.
- 7. Imitation Learning with Concurrent Actions in 3D games, J Harmer, L Gisslén, J del Val, H Holst, J Bergdahl, T Olsson, K Sjöö, M Nordin. Conference on Computational Intelligence and Games 2018
- 8. Augmenting automated game testing with deep reinforcement learning J Bergdahl, C Gordillo, K Tollmar, L Gisslén. Conference on Games CoG 2020
- 9. Improving Playtesting Coverage via Curiosity Driven Reinforcement Learning Agents C Gordillo, J Bergdahl, K Tollmar, L Gisslén. CoG 2021
- 10. Automated Gameplay Testing and Validation with Curiosity-Conditioned Proximal Trajectories A Sestini et. al 2022
- 11. Adversarial Reinforcement Learning for Procedural Content Generation L Gisslén, A Eakins, C Gordillo, J Bergdahl, K Tollman
- 12. Automatic Testing and Validation of Level of Detail Reductions Through Supervised Learning, Tamm et. al CoG 2022
- 13. Using deep convolutional neural networks to detect rendered glitches in video games, C. Ling, K. Tollmar, L. Gisslén AIIDE 🐲