
Leveraging Large Language Models for Efficient
Failure Analysis in Game Development

Leonardo Marini1, Linus Gisslén2, and Alessandro Sestini2
1Frostbite, 2SEED - Electronic Arts (EA)

leonardo.marini@frostbite.com, {lgisslen, asestini}@ea.com

Abstract—In games, and more generally in the field of software
development, early detection of bugs is vital to maintain a high
quality of the final product. Automated tests are a powerful tool
that can catch a problem earlier in development by executing
periodically. As an example, when new code is submitted to
the code base, a new automated test verifies these changes.
However, identifying the specific change responsible for a test
failure becomes harder when dealing with batches of changes –
especially in the case of a large-scale project such as a AAA game,
where thousands of people contribute to a single code base. This
paper proposes a new approach to automatically identify which
change in the code caused a test to fail. The method leverages
Large Language Models (LLMs) to associate error messages
with the corresponding code changes causing the failure. We
investigate the effectiveness of our approach with quantitative
and qualitative evaluations. Our approach reaches an accuracy
of 71% in our newly created dataset, which comprises issues
reported by developers at EA over a period of one year. We
further evaluated our model through a user study to assess the
utility and usability of the tool from a developer perspective,
resulting in a significant reduction in time – up to 60% – spent
investigating issues.

Index Terms—Natural language processing, Validation, Trac-
ing, Games, Software Quality, Software development

I. INTRODUCTION

In software development, it is crucial to identify and resolve
a bug as quickly as possible. Several factors can impede the
early detection of bugs: the size of the code base, the number
of contributors involved in writing code and the frequency
of their contributions. Especially in video game development:
AAA games are constantly growing in size, resulting in very
complex software with a vast amount of interconnected sub-
systems, which must communicate and work with each other.
In this scenario, full testing coverage is not achievable by sole
manual human intervention. Automated testing can free up
human resources to allow for more meaningful testing at a
high level: measuring game balance, difficulty, and potential
retention rate.

Automated tests can verify that existing functionalities do
not break by running periodically and catching a problem
earlier rather than later. In game development, there are many
different automated tests that game development teams may
wish to perform. For example, a usual test in 3D games is to
apply a force to an object and verify that it reacts as expected
based on its physical properties. Modern AAA games contain

numerous objects and multiple physical interactions. Thus, the
number of tests can increase exponentially with the size of
the game in this context. Additionally, a game engine like
Frostbite, which supports several platforms (e.g. old and new
generations of PlayStation and Xbox, Nintendo Switch, and
mobile systems like Android and iOS), needs repeating tests
to cover the most common hardware and operating systems.
These requirements contribute to an increasing number of
tests.

The resources and costs needed to execute these tests
constrain the frequency of their execution. Therefore, when
new code submissions are too frequent, and the resources
become scarce to run tests for every new submission, changes
from multiple developers are batched and tested together. A
new problem then arises: how can one tell which one of the
changes is the one that contains a bug when a test starts
failing?

Nowadays, every game developer should monitor their
changes as they are tested and submit a fix if they notice a
failure. This task becomes increasingly difficult when dealing
with hundreds of tests, without even considering the amount
of time required for all of them to complete their execution.
A way to mitigate this issue is to develop systems that
automatically give a notification when a test starts failing.
A naive approach could be to notify every developer who
submitted a change when the test started failing. However, this
solution can be noisy when the number of tests and batched
commits is large.

Natural Language Processing (NLP) can be used to under-
stand the meaning of a text [1]. Recently automatic triaging
of code bugs with NLP is gaining interest in research and
industry community: some notable previous works have been
conducted by Ubisoft to prevent the introduction of bugs in
game development [2] and by Mozilla to automatically triage
bugs, categorizing them based on the title, description, and
additional fields filed by the reporting user [3]. Moreover,
recent works have shown that these Machine Learning (ML)
models can also apply to Programming Languages (PLs) as
well, e.g. to understand code [4] and translate it into Natural
Language (NL) or other PLs [5]. Such approaches suggest that
it could be possible to analyze errors and commit messages,
like a human would do. For instance, identifying which one
of the commits caused the test to fail. Thus producing a more
educated guess and notifying a smaller number of developers
who, consequentially, will be able to act faster and fix the bug979-8-3503-5067-8/24/$31.00 ©2024 IEEE

ar
X

iv
:2

40
6.

07
08

4v
1

 [
cs

.L
G

]
 1

1
Ju

n
20

24

earlier in development.
In this paper, we propose a method based on BERT [1] that,

given an error message as context and multiple descriptions
of code changes, can infer the most likely cause of the error.
By employing this method, we can pinpoint and associate the
error message with the specific description of the code change
responsible for the test failure, thereby directly notifying
the developer who should address the issue. This method
effectively reduces the turnaround time for this otherwise
cumbersome operation. Our model achieves an accuracy of
71% on our newly created dataset, consisting of issues reported
by developers of the Frostbite engine that we collected over
a year. We implement the model in a preexisting framework
which assists developers in tracking their code submissions.
We assess the quality of the tool with a user study, which re-
vealed that the new approach saves them roughly 41% ∼ 60%
of the time when investigating the cause of an issue.

To summarize, the contributions of this paper are:
• we introduce a model designed to learn from an error

description and multiple commits to identify the one
responsible for the error;

• we demonstrate the integration of our model into an exist-
ing development framework, providing valuable support
for professional developers in their daily workflow;

• we perform a quantitative analysis comparing various
NLP models, as well as a qualitative analysis to evaluate
the utility and usability of our integrated approach within
the preexisting framework.

The rest of the paper is organized as follows: Section II
reviews work from the literature most related to our contri-
butions. Section III formalizes the problem, describing the
challenges and the method we used to solve them. Section
IV gives an idea of what data we used to train the model,
describes the metrics used for evaluation to compare multiple
models, and presents the quantitative results. We also define
the user survey and interpret its qualitative results. Finally,
Section V summarizes all the results, list the limitations of
the model, and propose a direction for future works.

II. RELATED WORK

The potential of NLP for software development has been
gaining interest from both the research and industry commu-
nities. Here, we review work from the literature most related
to our contributions.

Several approaches employ NLP techniques for bug de-
tection and identification. Schroter et al. [6] empirically
demonstrated that developers can benefit significantly from
stack trace information during debugging. Gegick et al. [7]
present a method that utilizes text mining on natural-language
descriptions of bug reports to train a statistical model for iden-
tifying high-priority security bugs. CrashDroid [8] generates
reproducible steps by translating the call stack, which contains
all method calls from software launch to software crash.
CrashTranslator [9] advances this concept by automatically
reproducing mobile application crashes directly from the stack
trace using large language models. Consequently, numerous

research papers have proposed automated approaches to iden-
tify the links between crashes and their cause, thereby aiding
developers [2, 10, 11, 12].

Recently, many Large Language Models (LLMs) [1, 13]
have been developed and used specifically for problems related
to code and code bases. Models such as AlphaCode, CodeGen,
OctoPack and StarCoder [14, 15, 16, 17] are examples of
LLMs that have been fine-tuned for program synthesis across
multiple programming languages. At the same time, many
encoder-only transformer architectures [18] have been used
for code understanding, mainly focusing on code retrieval,
classification, and program repair. Some notable examples
are: Kanade et al. [19] propose a model to obtain a high-
quality contextual embedding of source code, mainly used for
program understanding; Feng et al. [4] propose a bimodal pre-
trained model for PLs, namely CodeBERT; Clement et al. [20]
describe a single model that can both predict whole methods
from natural language documentation strings and summarize
code into docstrings of any standardized style, specifically
for Python; and CodeT5 [21], a unified pre-trained encoder-
decoder transformer model that leverages the code semantics
conveyed from the developer-assigned identifiers.

To the best of our knowledge, no existing research addresses
the problem we have outlined: given an error message as
context and multiple descriptions of code changes, determine
the most probable cause of the error among the changes.
Motivated by the significance of this issue and inspired by the
recent success of LLMs in code generation and interpretation,
we present a novel approach for identifying the code change
responsible for the error in a specific failed test. The most
relevant related work is CLEVER by Nayrolles and Hamou-
Lhadj [2], which employs a two-phase process to intercept
risky changes before they reach the central repository. How-
ever, this approach is relatively complex, involving multiple
systems communicating with one another. Furthermore, it does
not fulfill our requirements: CLEVER aims to anticipate and
intercept a change before it generates an error, whereas our
goal is to identify the change that caused the error after the
failure has occurred.

III. METHOD

In this section, we start by defining the problem and the
technical terminology used throughout the section. Then, we
present our method to solve the mentioned problem and how
developers can interact with it to improve their workflow in
triaging errors.

A. Definitions and Preliminaries

Given an error message e and Nc(e) > 1 code submissions
ci, or commit, related to e, we want to determine which
submission is the most likely cause of the error. The error
message e, which consists of a text describing why the test
failed, is output by a test designed in such a way as to
either succeed or fail. In the latter, it will output an error
message. As previously mentioned, a usual test in 3D games
could verify if an object reacts as expected based on its

physical properties when a force is applied to it, while an
example of an error message for that test could be: Testcase:
“TestApplyTerrainDestructionInDSub” asserted with message:
Testcase had error in runtime!

The test runs continuously: it will gather the latest changes
submitted since the test last ran and bundle them together so
that Nc(e) multiple plausible causes of the failing test are
available. A description ci accompanies each code submission
– i.e. commit message of submission i – that describes what
the change is about, with i ∈ [1, Nc(e)]. This description helps
both during code review to understand what has changed in
the code and after to navigate the history of the code base.
Additionally, developers who may want to investigate why a
test is failing will typically start by reading the error message
and the description of the submitted changes when the failure
started occurring before looking into the code itself.

It is worth mentioning that once a test fails, developers can
submit new commits, and the test will run again. However,
the same test will continue to fail because of the previous
commits, independently of the subsequent ones. To test later
commits, developers should either (1.) submit another change
that fixes the error or (2.) revert the commit that caused the
first failure. Later commits could introduce new errors, making
it even harder to spot when the latter error was introduced, as
it will not manifest until the former is fixed. As of today, a test
that starts failing will send a notification to every developer
whose changes were being tested.

We hypothesize that by using NLP, we can understand
the error message and the description of the changes, thus
inferring and selecting the most likely cause of the issue,
similarly to what a human developer would do analytically. We
formalize this task as a Multiple Choice Question Answering
(MCQA) task, where we want to train a model Mθ(e, ci) that,
given an error message e and its related commits ci outputs a
score si describing how likely the commit ci caused the error
e, with θ the weights of the model.

B. Model Architecture

We decided to use a Large Language Model (LLM) for our
task. An LLM is a type of Language Model (LM) designed
to predict the likelihood of a sequence of words or tokens in
a text. Unlike traditional Language Models (LMs), LLMs can
pre-process input data, utilizing a vast vocabulary of tokens
and handling a significantly higher number of parameters.
Thus making them more complex and capable [22]. These
models have been pre-trained on extensive text corpora, en-
abling fine-tuning with a smaller amount of data specific to
a given use case. In our preliminary experiments, we tested
multiple LLMs. We chose BERT [1] as our final model as
it outperformed all the others. We describe the experiments
that led us to this choice in Section IV. This model uses
the Transformer architecture [18], specifically the encoder part
with a context window of 512 tokens. An extra layer was added
at the top of the base model to address the specific MCQA
task.

C. Training the Model

To train the model, as previously mentioned, we formalize
the task as an MCQA task. We fine-tune a pre-trained BERT
model plus our additional layer with a dataset composed of
pairs (e, c), where e is an error message and c is the commit
that caused it. For each error message, we present the model
with four possible commit messages {ci | i = 1, ..., 4}: one
that corresponds to the change that caused the error, say ck,
plus three more chosen at random from the original dataset.
The model Mθ(e, ci) then computes four scores {si | i =
1, ..., 4}, one for each ci. The optimal model M∗

θ should output
a high score for ck (the commit that caused the error):

M∗
θ (e, ck) ≥ M∗

θ (e, ci), i = 1, ..., 4. (1)

We then use the SoftMax function over the 4 scores si to get
the probability pi that the commit ci is the one responsible
for the error message e. To train the model, we then use the
Cross Entropy loss:

L = − 1

N

N∑
b=1

4∑
i=1

ti log(pi), (2)

where ti is 1 if i = k, and 0 otherwise, and N is the number
of data samples in our batch.

Because the model computes a score for each potential
choice, it remains independent of the number of commits
Nc(e) related to an error message during inference. This factor
is of fundamental importance during deployment as it means
that the model can accept more – or eventually less – than
four commits as input and still be able to guess which commit
caused the error. The highest score among the possible options
determines the final choice of the model. The decision to
model the problem as an MCQA task stems from the fact that
in real-world scenarios, there are often multiple submissions
per failed test, and usually only one of them is the root cause
of the reported error message in the output.

D. Implementation of the tool

To evaluate the method, we made it available to developers
by incorporating it into a preexisting framework. This new
feature allowed for an easier transition without changing too
much of the workflow that the developers are used to. Figure
1 shows a simplified visualization of the framework.

The framework keeps track of every change submitted to
the code base, which means that for each submission, the
framework updates a record corresponding to the commit with
all the tests that pass and fail. This way, a developer can
monitor the progress of their commit as it completes the tests,
which are initially all in a pending state and will be updated to
either pass or fail. When all the tests have finished running, the
developer knows how well their change performed based on
this metric. Additionally, developers will receive a notification
as soon as one of their changes causes a new breakage (i.e. a
test that started failing when testing a batch of changes that
included their change), so they do not need to wait for all the

Fig. 1: Mock-up of the tool showing the main existing features and the additional “Identify” button (in (a)). Each entry in the
view represents a failed test. At the top of each entry, we can see the error message e. Below the message, the framework
shows a list of IDs: each ID corresponds to a commit ci. Once a user presses the identify button, the model will execute, and
the estimated ID that caused the error will be highlighted (i.e., number 134 in (b)). Once a user identifies the correct ID, they
can claim it, and the view will display “Claimed by: ID”.

tests to finish running to take action and start working on a
fix.

All of the errors are collected and presented in a secondary
view (Figure 1(a) shows an example) that provides every user
access to all of the issues occurring on the test farm. Each
issue includes a list of suspects, namely the changes that were
submitted when the test started failing. Usually, a user would
attempt to resolve the issue by reading the error message and
then going through all the suspects, including the description
of all the commits until they find one that is most likely to
have caused the error. As previously mentioned, this process
is time-consuming and prone to possible errors since a user
needs to read all the commits for all the issues.

To speed up the process and reduce errors, we added the
feature as a button to every issue appearing in the secondary
interface that will send a request to identify the most likely
cause of that issue when clicked (Figure 1(a)). Once the model
completes the prediction, it will highlight the corresponding
change (Figure 1(b)). The request sent to the model contains
the error message e relative to that particular issue and
all the commit messages ci associated with that error. As
mentioned, our training methodology makes the model entirely
independent of the number of ci inputs because the model
computes a score for each commit rather than a probability.
This design allows the model to accept more than the standard
four commits used during training. The higher the score, the
more likely that particular commit caused that issue. With
this information, the framework automatically highlights the
primary suspect to developers. This way, the user gets a
suggestion of the most likely suspect that may not correspond
to the truth, and he is free to ignore the suggestion and analyze

the rest of the suspects.

IV. EXPERIMENTS

This section presents the data used to conduct the exper-
iments and the methodology employed to collect such data.
We then detail the metrics used to measure the quantitative
results, followed by a presentation of the results comparing the
different LLMs employed in this study. Finally, we showcase
the results gathered from a user study we conducted to assess
the value of our method as a tool to assist developers.

A. Data

We collect a dataset of historic errors via the framework
mentioned in Section III-D. For every new issue appearing on
the tool, developers can claim any such issue if they think they
caused it, or specify a commit if they are sure about which
one caused it. We select only those records that include the
faulty commit. All collected records were previously reported
manually by developers. Thus, we can infer that the labels
that we use for training are correct. We collected n ≈ 2500
records matching these requirements over the past year.

Each record i, with i = 1, ..., n, in the dataset is composed
of an error message ei, the description of the commit (i.e.
commit message) ci that caused it, three additional commit
messages (cj | j ∈ [1, n] ∧ j ̸= i) picked at random from
the same dataset – to compose an MCQA task – and a label
y ∈ [1, 4] to identify which one of the commits is the culprit
of the error. Each pair {(ei, ck) | k = [1, 4]} was truncated
to 512 tokens before being input into the model, as that is a
limitation imposed by the base BERT model. It is important
to note that we construct the dataset having the commit that

TABLE I: Model Comparison. This table highlights the
performances of different tested models in terms of training
loss, evaluation loss – the loss during the validation phase –
and general accuracy using the test set. As the table shows,
the BERT model outperforms all the others, making it the
best-performing language model among those tested. A down
arrow indicates that lower values are better, while an up arrow
indicates that higher values are preferred. The Random Agent
baseline in the last row represents the performance achieved
by a random guess.

Training Loss ↓ Evaluation Loss ↓ Accuracy ↑
BERT [1] 0.72 1.11 0.71
XLNet [23] 1.41 1.39 0.31
BigBird [24] 1.39 1.38 0.31
MEGA [25] 1.39 1.39 0.22
Random Agent – – 0.25

caused the issue at a random position within the range of [1, 4].
Specifically, in the final dataset, the correct answer appears an
equal number of times across all positions.

Unfortunately, the data we collected is proprietary and
may not be shared. However, we provide some representative
examples in Appendix A to enable others to reproduce our
results.

B. Experimental Setup

In all the experiments, each model was trained for three
epochs, with a learning rate of 5e−5 and batch size of 8.
We split the dataset composed of n ≈ 2500 records into
three subsets: training, validation and test with a ratio of
80%:10%:10%. For each model, we perform early stopping
based on the accuracy of the validation set.

C. Quantitative Evaluation

For our quantitative analyses, we use an accuracy metric to
evaluate the performance of the models on our dataset. More
precisely, the proportion of correctly guessed examples over
the total number of examples. As mentioned in Section IV-A,
each sample includes four possible candidates which may have
caused the error. Thus, we can expect a model that gives
random guesses to attain a score of 25%. Another valuable
metric is the time saved for finding the correct cause. We will
analyze this metric later in the document, in Section IV-D.

Table I shows a comparison of the pre-trained models we
experimented with – BERT [1], XLNet [23], BigBird [24],
and MEGA [25] – in terms of training loss, evaluation loss,
and accuracy. The first value of each row is the final training
loss at the end of the 3rd and last epoch. The latter two
numbers of each row represent the loss on the validation set
and the accuracy in the test set based on the epoch in which
the model performed best with the validation one. The loss
function, shown in Equation 2, is the inverse of the score and
what we want to minimize. In contrast, the accuracy is the
metric used to rank the models and what we want to maximize.
Note how all the models perform similarly, except for BERT,

(a)

(b)

Fig. 2: Time saved by each participant. In (a), the percentage
indicates the amount of time saved by each participant com-
pared to the previous manual approach. In (b), the time spent
investigating an issue with the previous manual approach and
after our framework. For both plots, the X-axis represents the
participants (e.g. P1 means participant 1).

which vastly outperforms the others: it is more than twice as
accurate (accuracy = 71%) compared to the others (accuracy
≤ 31%). All hyperparameters were chosen after a set of
preliminary experiments made with different configurations for
each model. Of note is that all the tested models except for
BERT outperformed the random agent baseline only slightly,
and MEGA performed even less effectively. During training,
these models demonstrated a rapid overfitting to the training
dataset, which decreased their generalization performance to
the test set.

D. User Study

In order to assess the usability and effectiveness of the
proposed method, we carried out a user study utilizing a survey
that consisted of 17 closed-ended questions accompanied by
an optional open-ended question for additional feedback. The
majority of the questions employed a Likert scale ranging from
1 to 5 for responses, while the remaining questions featured

TABLE II: Summary of participants for the user study. All participants are experts in the tool, and one of the main duties in
their daily workflow is to manually identify the cause of an error in case of a test failure. The number reported in this table
represents the mean and standard deviation of the answer received during the user study.

Time inspecting
issue Experience Machine learning

knowledge
Frequency of use

of the tool

Average 16.0 ± 4.18 minutes 2.6 ± 3.57 years ∼ Medium ∼ Multiple times per day

TABLE III: Results of some of the most important answers of the user study. Most questions expected a value between 1
and 5 as an answer. For question number 2, the participants could answer either with an interval of 20% between 1% and
100% (e.g. 41% - 60%) or 0%. µ represents the mean of the values answered by participants; σ is the standard deviation of
the answers; and Mo is the mode of these values.

Nr. Question µ σ Mo

1 How useful did you find this new feature? 4.6 ±0.55 5

2 Based on how much time you used to spend on investigating issues, how much time did you save? 41% ∼60% - -

3 Did you feel the need to double check the identified suspect before assigning an issue? 3.8 ±0.84 4

4 Do you find it valuable to have the framework suggest you one most likely suspect, even when it is wrong? 4.4 ±0.89 5

5 How often did you end up using the model compared to what was already available to you? 4.2 ±0.84 4

6 Would you like to keep using this new feature? 5.0 ±0.00 5

multiple-choice answer options. The survey was divided into
four distinct sections, as follows:

• 3 questions about the user’s background
• 5 questions about the user’s current workflows
• 7 questions about our new proposed method
• 3 questions about future improvements
The purpose of the first part is to put the rest of the answer

in perspective of the user’s prior knowledge: senior developers
could be less keen on changing their workflow simply due to
the fact that they have gotten used to working in a certain way
for a long time. These questions ask about the user’s role and
seniority level within the company, and level of knowledge of
ML.

The following five questions probe how familiar the user is
with using the existing framework. Developers who have never
used a particular feature will likely give a neutral answer to
later questions that compare the new workflow to the existing
one. These questions help us identify those answers whose
score is irrelevant because the user would have skipped if they
could. Thus, we can exclude from the final result to prevent
altering the average score over the entire population. The third
part of the survey evaluates the quality of the proposed method.
The questions range from requesting a personal evaluation of
the user’s experience to more detailed questions that assess the
magnitude of the benefits of the proposed approach, such as
time saved. Finally, we ask the user for potential feedback to
gather and prioritize ideas later mentioned in Section V for fu-
ture works. Five in-house professional developers volunteered
to try the new tool and completed our user study. Although
they represent a small sample, they were the perfect candidates
for this study as they are the primary users of the tool and
the principal developers who look at the error messages and
manually assign a commit to the error. As shown in Table II,
the knowledge level of the tool is high, with participants using

the tool several times during the day. On average, each user
spends at least 15 minutes detecting the commit that caused
one error. However, their ML knowledge ranges from low
to medium. The users tested the proposed framework over a
period of 30 days. In our qualitative evaluation, we assume that
each user is 100% accurate in identifying the correct commit.
Any amount of time saved implies that the tool was successful
in pointing them to the correct commit in less time than what
developers typically require.

Table III illustrates the main results of this user study.
Overall, the proposed method was very well received, with
significant improvements and minimal drawbacks. With our
approach, the turnaround time dropped from an average of
16 minutes – as shown in Table II – to approximately 8
minutes: an improvement of 41% ∼ 60% as reported in
Table III. In Figure 2 we illustrate the time saved for each
of the participants. All participants found the approach very
useful, and all of them would be willing to continue using it
in the future. This is even though the participants felt the need
to verify the identified suspect after our model suggestion. It
is interesting to note, as the table shows, that the suggestions
were still useful, and the participants found the tool valuable,
even when the model was wrong. We would also like to
emphasize that developers repeat this process multiple times
during the day. Consequently, although the time saved on a
singular issue may not appear substantial, the cumulative effect
over a day’s work can result in a considerable reduction in
time. Of particular note are the answers from Participant 5 (P5
in Figure 2). This developer is the one who saved less time
(between 1%∼20%), but he expresses a high desire to continue
using the approach (5/5 for question 6 in Table III). We
motivate these answers with a quote from the same participant:
“It was quite nice that the framework highlighted the most
probable cause of breakage. However, I still had to double-

check if it was correct. Also because even though I love
automation and machine learning I have some trust issues
and I rather double-check carefully”.

V. CONCLUSIONS AND LIMITATIONS

In this paper, we propose a practical method to improve
software development efficiency by assisting developers in
tracking changes that cause issues in the code base manifesting
as failing tests. Our model achieves an accuracy of 71%
over the dataset of real issues we collected. A simple user
study shows that the proposed method resulted in a significant
reduction in time spent investigating failures: up to 60% of
time saved to investigate a failed test and identify its cause.
Moreover, the approach does not bring any relevant drawbacks
to the existing framework.

While our tests demonstrate the good performance of our
approach, the framework suffers from some limitations that
will be addressed in future works. The input to our model is
limited: 512 tokens are easily filled with the error message
and one description of a change. With the possibility of using
larger inputs, it would be interesting to see if the model per-
forms better by including more information, such as the name
of the failed test, a description of what it tests, the names of
the files that were changed, as well as the differences between
files. Another interesting approach to consider involves the
abbreviation of error messages. Given that these messages
frequently consist of similar syntax, a potential area for future
exploration could involve the automatic truncation of these
messages without sacrificing meaning.

There are many things that future research could improve
upon our work. As mentioned in Section III-C, we wanted our
model to resemble the real-case scenario as closely as possible.
However, there are limitations to doing so. For instance, we
assume that for every error occurring in a test, there is always
one, and one only, commit that introduced it. In reality, some
of the errors could have been generated by a fault in the
machine that was running it, or even that the test was not
designed correctly and its result is non-deterministic. In these
cases, there would not be any submission causing the error,
and our model does not account for that.

REFERENCES

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

[2] M. Nayrolles and A. Hamou-Lhadj, “Clever: Combining code metrics
with clone detection for just-in-time fault prevention and resolution
in large industrial projects,” in 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR). Gothenburg,
Sweden: IEEE, 2018, pp. 153–164.

[3] M. Castelluccio and S. Ledru. (2019) Teaching machines to triage
firefox bugs. Mozilla. [Online]. Available: https://hacks.mozilla.org/
2019/04/teaching-machines-to-triage-firefox-bugs/

[4] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[5] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified pre-
training for program understanding and generation,” 2021.

[6] A. Schroter, A. Schröter, N. Bettenburg, and R. Premraj, “Do stack
traces help developers fix bugs?” in 2010 7th IEEE working conference
on mining software repositories (MSR 2010). IEEE, 2010, pp. 118–121.

[7] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports
via text mining: An industrial case study,” in 2010 7th IEEE Working
Conference on Mining Software Repositories (MSR 2010). IEEE, 2010,
pp. 11–20.

[8] M. White, M. Linares-Vásquez, P. Johnson, C. Bernal-Cárdenas, and
D. Poshyvanyk, “Generating reproducible and replayable bug reports
from android application crashes,” in 2015 IEEE 23rd International
Conference on Program Comprehension. IEEE, 2015, pp. 48–59.

[9] Y. Huang, J. Wang, Z. Liu, Y. Wang, S. Wang, C. Chen, Y. Hu, and
Q. Wang, “Crashtranslator: Automatically reproducing mobile applica-
tion crashes directly from stack trace,” arXiv preprint arXiv:2310.07128,
2023.

[10] L. Gong, H. Zhang, H. Seo, and S. Kim, “Locating crashing faults based
on crash stack traces,” arXiv preprint arXiv:1404.4100, 2014.

[11] Y. Gu, J. Xuan, H. Zhang, L. Zhang, Q. Fan, X. Xie, and T. Qian,
“Does the fault reside in a stack trace? assisting crash localization by
predicting crashing fault residence,” Journal of Systems and Software,
vol. 148, pp. 88–104, 2019.

[12] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “Crashlocator: Locating
crashing faults based on crash stacks,” in Proceedings of the 2014
International Symposium on Software Testing and Analysis, 2014, pp.
204–214.

[13] O. J. Achiam, S. Adler, and S. A. et al., “Gpt-4 technical report,”
2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:
257532815

[14] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago et al., “Competition-
level code generation with alphacode,” Science, vol. 378, no. 6624, pp.
1092–1097, 2022.

[15] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “Codegen: An open large language model for code with
multi-turn program synthesis,” arXiv preprint arXiv:2203.13474, 2022.

[16] N. Muennighoff, Q. Liu, A. Zebaze, Q. Zheng, B. Hui, T. Y. Zhuo,
S. Singh, X. Tang, L. Von Werra, and S. Longpre, “Octopack: Instruction
tuning code large language models,” arXiv preprint arXiv:2308.07124,
2023.

[17] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim et al., “Starcoder: may the source
be with you!” arXiv preprint arXiv:2305.06161, 2023.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[19] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, “Learning and
evaluating contextual embedding of source code,” in International
conference on machine learning. PMLR, 2020, pp. 5110–5121.

[20] C. B. Clement, D. Drain, J. Timcheck, A. Svyatkovskiy, and N. Sun-
daresan, “Pymt5: multi-mode translation of natural language and python
code with transformers,” arXiv preprint arXiv:2010.03150, 2020.

[21] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” arXiv preprint arXiv:2109.00859, 2021.

[22] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[23] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language
understanding,” Advances in neural information processing systems,
vol. 32, 2019.

[24] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti,
S. Ontanon, P. Pham, A. Ravula, Q. Wang, L. Yang et al., “Big bird:
Transformers for longer sequences,” Advances in neural information
processing systems, vol. 33, pp. 17 283–17 297, 2020.

[25] X. Ma, C. Zhou, X. Kong, J. He, L. Gui, G. Neubig, J. May, and
L. Zettlemoyer, “Mega: moving average equipped gated attention,” arXiv
preprint arXiv:2209.10655, 2022.

APPENDIX

Here we provide two examples of failed tests, plus some
potential commits that could be the cause of the failed tests.

https://hacks.mozilla.org/2019/04/teaching-machines-to-triage-firefox-bugs/
https://hacks.mozilla.org/2019/04/teaching-machines-to-triage-firefox-bugs/
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815

Error Message

Testcase: “AutoTest SplitScreen” asserted with message: Testcase AutoTest SplitScreen failed with result: Failed -
(Please set FailureMessage on TestCaseEntity to provide reason)

Commit 1

[ES] Implement support for ShaderBlend-
Mode PremultipliedColor Resolves ERROR-192388
Add missing transmittance input to lit root node
Resolves

Commit 2

[CharacterPhysics] Replace terrain in Autotest levels
with a large ground box as it is unnecessary (and
causing failures on some IOS devices)

Commit 3

Move MixinRuntimeComponent to an internal Run-
timeVariations detail, refactor internals to capture in-
dividual variant layers’ entity ranges.

Commit 4

[Localization] Timestamp Formatter Entity

(a)

Error Message

Assert: (m meshDeformerMap.find(serializationType) != m meshDeformerMap.cend())
(m meshDeformerMap.find(serializationType) != m meshDeformerMap.cend())

Commit 1

[MeshOperate] LodGenerator: Improved shadow mesh
generation. Added a separate container of shadow
LODs per submesh. Whereas the existing LOD collec-
tion of a component contains conventional LODs for
use in building conventional LOD output meshes.

Commit 2

[Movie] Fix dependency issues for Movie source data
modules - Updated movie screenshots as background
has changed.

Commit 3

[Appereance] Added Generic Recipe Item and
RecipeItemComposer/ Decomposer Entities Reviewed
by A. Reds.

Commit 4

[MeshDeformer] Add support for multiple types of
GPU compute deformers. Simply adding new deform-
ers to MeshStream would be a lot less code. However,
that would mean that World.Base would have to depend
on all types of GPU compute deformers we’d like.

(b)

Fig. 3: Two examples of error messages and relative commits. In red is the error message, and in green is the commit that
caused the error. The model takes as input the couple (e, ci) for each ci and outputs a score indicating how probable that
commit caused the error message.

	Introduction
	Related Work
	Method
	Definitions and Preliminaries
	Model Architecture
	Training the Model
	Implementation of the tool

	Experiments
	Data
	Experimental Setup
	Quantitative Evaluation
	User Study

	Conclusions and Limitations
	Appendix

