
Coverage Bitmasks

for efficient Rendering Algorithms

Thanks to Prof. Dr. Elmar Eisemann giving permission to use the image here.It’s this image I have in mind when I 
talk about the topic.
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This is a presentation where I want to show you something that I found in so many researchers work on rendering 
algorithms. It’s nothing new for some but many don’t even know they could benefit from it or how to use it.

So to show you, I have to reference that existing work. The “Coverage Bitmask” is so versatile and have been used 
for so many application, in very creative ways. That is mostly on the purple slides.
Often they used different names, like Visibility, Occupancy, Occlusion or Blocker masks. I stick to “Coverage” as a 
generalization. 

Please check out those publications as I only can point out a few highlights each time.
There are also more references with web links you can follow to deepen the topic.



I am Martin Mittring and since January I work for Electronic Arts in the SEED team - more about that later.
I am a graphics engineer by heart and have many years experience working for multiple game companies like Crytek 
and Epic Games.
Most of my work was on the engine side implementing real-time rendering algorithms. One day I came across this 
curious image you’ve seen in the title slide..
I understood how clever and simple this was and I went through the full “Gartner Hype” cycle. After spending quite 
some time with this tool,
seeing it in a lot of other people's work but also using it myself, I can tell you all about it.



In case you don’t know what SEED is, we’re a technical and creative research division of Electronic Arts Studios. 
Established in 2015 our team of around 40 is distributed in 6 locations across the world including Stockholm, 
Montreal, Los Angeles, Redwood Shores, London and Vancouver
You can find more info about us at seed.ea.com, or follow us on twitter
SEED exists at EA as a cross-disciplinary team where we combine art, engineering, creativity, and research to 
deliver disruptive innovation, for our games and our players. 
We run fast towards the future and run in parallel to the current business constraints, 
For the benefit of our games and all EA studios 
By focusing on short, medium, and long term research portfolio gives us an opportunity to do research and always be 
delivering technology artifacts along the way
We collaborate with game teams, central groups, as well as many external partners in hardware, software, industry 
standards bodies, and academia. 
Of course as an R&D group we have to present and publish.  Over the years we’ve accumulated more than 50 
publications and presentations
We also open source some of our work, so find us on github.
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Please show of hands: Who knows how triangle rasterization works?
Who wrote a rasterizer?
Do you want to know more about it ?

Triangle Rasterization is the process of turning 3 points in 3d space to colors in a 2D grid.
There are many methods but the fast (because parallelization friendly) method is based on using edge equations and 
generating blocks of work.
We need to test if a pixel center is inside a triangle. A point on an edge is ambiguous and without defining this right it 
can cause holes or double rendering. We can define some extra rules to ensure such cases are
deterministic. If you want to use MSAA for anti aliasing the test is not made for the pixel center but for each sub 
sample in a pixel.
The GPU hardware does this efficiently and this is also tied to framebuffer blending and Z buffer rendering.

Modern rasterization can be also be conservative to find all blocks touching a triangle. Internally a 2x2 block is used 
by the GPU to provide 2x2 blocks called quads. This makes it easy to compute the mip level and anisotropic footprint 
during texture mapping.
Modern GPUs might have multiple levels of culling with conservative rasterization down to per MSAA sample.

Image from http://filmicworlds.com/blog/software-vrs-with-visibility-buffer-rendering/
Image from https://cwyman.org/papers/hpg15_dcaa.pdf
Image from https://therealmjp.github.io/posts/msaa-overview



In my new position at EA I am lucky that I can work on real-time rendering of large detailed worlds.
Stochastic and ray tracing is still an option but why do we only get a binary intersection from the ray triangle 
intersection. While having the data in memory we could compute the result for lets say 32 rays in a narrow bundle.
We could store those 32 bits in an unsigned integer value and return that for all visibility rays. This should result in 
much more efficient rendering or soft shadows. Obviously it’s not simple but that was the idea.

So we want to render many objects. The CPU is too slow for the draw call count so doing GPU based rendering 
seems obvious.
With a lot of details we get a lot of small geometry and we know the hardware  rasterizer get slow with small 
geometry. Nanite shows a 3x speed increase in some cases. So we might want to avoid the HW rasterizer and make 
sure a good view dependent Level Of Detail algorithm keeps the density within reason. Nanite manages clusters of 
triangles on the GPU and gets good quality and performance from that.
So if we roll our own we need to rasterize triangles ourselves and this is where you can use the “Coverage Bitmask”

You see the bitmask shows up in multiple applications:
There is a conservative coverage for a block of pixels to cull away areas that need no processing.
But also we can use a bitmask to test if a pixel or subpixel sample is inside a triangle.
There is also an application for efficient compositing of transparent materials with motion blur and depth of field.

I will not go deeper into this work and focus on the “Coverage Bitmask” here instead.



Now you might ask: Is this relevant for mobile or ML? Maybe, let me try to convince you in one slide.
Performance on mobile is a problem and many draw calls cost CPU time so this IS a mobile problem.
Nanite shows very good performance on desktop and console by moving the bulk of the work to GPU. They didn’t yet 
on mobile as the hardware is not as programmable
and features sets are fragmented across the many devices, often running with old drivers. 
If you are a “Mobile GPU Architect”, a “Mobile Rendering Engineer” or a “ML Engineer” you should find some useful 
knowledge in my slides.
It’s just a tool to process binary decision is bulk, more efficiently.

You might even use it under a different name. MSAA rasterization happens in the GPU and you might not see the 
bitmask involved but you can adjust the mask already.
“Alpha 2 Coverage” can add a dithering pattern to the MSAA sample mask to emulate partially see through surfaces.
With Coverage Out and Coverage you can make your own better A2C in the shader. You can use this for crossfading 
LODs or fading out objects in the distance.

I believe most desktop / console features come to mobile, for sure GPU driving rendering would be a big one. 
Shadow mapping is also draw call heavy and ray tracing hardware is already
available for mobile. Once you have the ray tracing data structures created you don’t need the CPU to submit draw 
calls any more.

Mobile hardware is even leading with Machine Learning as smart phones make good use of ML inference. This might 
mean your upsampling and denoising passes can run for free or at least more power efficient.
You might know that mobile hardware is often rendering the screen in “tiles”. This saves memory traffic as the frame 
buffer memory can be kept more locally without affecting the memory bus to main memory.
Usually the application doesn’t see this trick as all draw calls are still submitted once per frame - this is called 
“immediate mode”, in contrast to “retained mode” where the scene delta - the changes - per frame are submitted.
Image mode tiled rendering is only efficient if the draw call count and mesh density is low. With more details this is no 
longer the case. Thankfully with ray tracing we have all the data structures to not require
the per frame draw call submission.
So Nanite on mobile seems possible but requires some different work from IHV and application side.

A2C  Image from https://twitter.com/_kzr/status/1709844771974574564



All slides with a purple background are referencing a specific work by others where someone cleverly used a 
bitmask. I try to point out the key takeaway that are relevant for the bitmask topic here.

I interleave some application of coverage bitmasks. This work is using SIMD and shows a pattern you can see in 
many other implementations.

This SIMD paper describes an algorithm that is similar to the one we used at Crytek to cull objects on the CPU.
Here is uses a 32x8 tile stored and processed in the AVX2 SIMD unit. With 256 bit in parallel the CPU can process a 
high resolution frame buffer efficiently.
THe rasterization outputs it’s data into a compressed form of a z buffer with z min, z max and the bitmask per tile. All 
occluders are getting rasterized into the buffer and occludees - objects you want to test if visible
are getting tested against the buffer. Occuders use triangle rasterization but a more conservative test for occludees 
based on the bounding box can be made. This is culling objects on the CPU - early -
Allowing to cull draw calls and their setup cost. This is efficient under certain conditions. The test needs to be fast 
and the saved cost needs to make up for the cost spent on doing this.

The Crytek we found such a system was better than a precomputed PVS, worked in outdoor unlike portals, saved a 
lot of CPU and GPU performance.
We used manually simplified geometry for the occluders. On consoles we managed to implement a readback of the 
GPU z buffer (after downsampling with max) to the CPU and some reprojection and hole filling. So some of the work 
moved to GPU. 
This trick saves a lot of CPU performance cost but it adds latency as the GPU runs after the CPU commands are 
issued and the result can arrive one or more frames late. On console this is less of a program than with desktop PCs 
so it’s more suitable there.

Note:
PVS: Potentially Visibility Set, can be precomputed but precomputation time / storage and more conservative and 
cannot handle dynamic objects well



This work is also rasterized triangles but not on CPU, here it it on GPU using the NVidia CUDA API. The goal is to 
emulate the hardware rasterizer with the compute units. This is a difficult as the fixed function unit in the GPU is 
made for that purpose and shader units time is spent instead. A precomputed 8x8 coverage bitmask is used and with 
some clever mirroring the algorithm saves memory allowing the precomputed data to stay in efficient cache memory.
Multiple stages of culling make the method fast but you can see in the graph the hardware rasterizer is still after, 
especially with larger triangles.
The result may not be as fast as the hardware but it allows to run more flexible frame buffer blending to to customize 
the rasterization. 



I mentioned the precomputed edge mask in the former slide and that is different from the math CPU solution I 
mentioned. The title slide shows the precomputed edge bitmask.
It’s important to understand this concept as it’s a bit trick that makes the coverage bitmask fast.

You can find more about it in the Eisemann reference, That one references also mentioned the Waller reference as 
an earlier source.
In order to make a lookup into a 2d texture or 2d array you need 2 values. You can compute the 2 values from an 
edge and later combined the 3 triangle edges from the 3 edge bitmasks.
The edge defines a half space in 2D and can be parametrized with an angle and a distance to the center of the pixel. 
This is called the Hough Transformation - see the patent reference.
Once you have the bitmasks for the 3 edges you can binary AND the result and get the triangle bitmask.
A small 16x6 texture is enough for quality, the small approximation error from the limited resolution can be mitigated.
With this method you can implement any convex shape.
As an optimization you can also implement a quad made out of 2 triangles with only 4 edge lookups.

Image from https://graphics.tudelft.nl/Publications-new/2007/ED07c/PreprintEG2007.pdf



The “Visibility Bit Mask” prototype works well for a small number of triangles. It’s meant to work on tiny triangles but 
here you can see it also works on larger ones. 
The video shows the 2D rasterization of a animated mesh. It has high quality anti-aliasing and by scaling the AA filter 
kernel is it’s even possible to blur the geometry. This could be useful to render cone traces, approximated by 32 rays. 
The method relies on a precomputed 2d texture.



The video shows two precomputed bitmasks. The top line shows a conservative bitmask to accelerate the per pixel 
method.  You can see how the regular grid is conservative, only if a pixel is clearly behind the plane it can switch the 
bit to 0.
The second square shows the precomputed bitmask is 32x32. The lookup position on the half space is visualized as 
a white circle. The third square is reconstructing the bitmask to 8x8 pixel blocks and you can see a much better than 
8x8 blocky images as the bits hold more information.

The bottom line shows the antialiased sampling mask used per pixel. In this early prototype a rotated grid was used 
but later this became a carefully crafted tiling sample pattern that is optimized for edges in any direction.
With 3 texture lookups, one per edge of a triangle you get 3 bitmask and combining those results in the triangle 
bitmask.
The second square shows the precomputed bitmask is 16x16. The next two squares show antialiased circles and 
lines to validate the antialiasing quality.



With 32bit you get 32 shades or 30 if you don’t count the fully see through and fully opaque as a shade. The HLSL 
function countbits()/31 gives you a value between 0 and 1.
But you can also use the 32bits and distribute them over 2x2 pixel blocks. This gives only 8 shades per pixel but you 
have only a quarter number of texture lookups - for larger triangles anyway.
This might be a good low quality opinion. This is like 8x MSAA which looks quite good for most content.

Or watertight rasterization *no holes or double rendering” you can flip edges pointing downwards and invert the 
bitmask. This disambiguates  the edge cases .

I found the atan needed for the Hough Tranformation to be quite costly. I made a simple approximation. The angle I 
defined to be in 0..1 range, not in -PI to +PI for easier texture lookups. You can see the red slices (approximation) is 
a bit more dense every 90 degree but it’s minor.
The SinCos approximation is computing a position on a 45 degree rotated square and normalized the vector to s 
circle and the atan2 approximation is doing the inverse.
This can be optimized further but I solved by bottleneck, see Waller00 in the reference a alternative.



This is more readable version of the code:

// diamond shape, see sincosApprox()
// correct for 0, 90/360, 180/360, 270/360 and 360/360 but inbetween a bit distorted
// @return unitAngle 0..1 for -PI .. PI
float atan2Approx(float y, float x)
{

// diamond shape in -0.5 .. 0.5 range
float temp = x / (abs(x) + abs(y));
// 0..0.5
float squareUnitSide = temp * 0.25f + 0.25f;
return (y > 0) - sign(y) * squareUnitSide;

}

// diamond shape, see atan2Approx()
// @param unitAngle 0..1
// @return approximates float2(sin(unitAngle * PI * 2 - PI), cos(unitAngle* PI * 2 - PI))
float2 sincosApprox(float unitAngle)
{

float2 vec;
// cos() approximation, zigzag pattern around 0.5f, scaled to -1..1 range
vec.y = 1 - abs(unitAngle * 4 - 2);
vec.x = abs(abs(3 - 4 * unitAngle) - 2) - 1;
// this make the crude zigzag pattern much smoother
return normalize(vec);

}



This is a blog post about efficient font rendering and caching of glyphs
Coverage Bitmask quite naturally solve 2D font rendering with anti-aliasing. Many implementations cache all 
characters (glyphs) with 8 bit alpha value and blit those to pixel snapped positions.
This work keeps the glyphs with the coverage mask allowing for sub pixel positioning. With small fonts or slowly 
moving text this can make a big difference.
A 4x4 mask is enough for 16 shades.
The blog post shows a CPU and a GPU implementation.
The sample points are not in an axis aligned grid but in a rotated grid giving more quality for near vertical and near 
horizontal edges. It also helps with the sub pixel offset in font rendering. Those are common for font rendering.
Two small 1D tables are used instead of a larger 2D table.



Compared to anti-aliasing we need more bits to avoid banding or noise. The 3D volume used here is to implement a 
3d half space. A triangle shadow can be defined by 4 3D planes and 
In this methods a single lookup provides a 128 Bit mask for an 3D plane. This requires a rather large 128x128x128 
texture. This is trashing the cache but I believe you can optimize this quite a bit.
As soft shadows can be large on screen this method uses 128 bits and further adds random rotation to the pixels 
trading noise for banding. It looks better and noise can be blurred in a postprocess.
I think this work has the seed for spending up ray traced shadows and a lot of potential.



This work solves the primary visibility. Geometry can be rendered in the classic image mode and occlusion is solved 
during rasterization.
It’ basically a deferred renderer that maintains 4 GBuffer values per pixel. Each of those 4 surfaces also has a 
coverage mesh and a plane equation for depth. The mask allows to have surface merging with very little occlusion 
error.
The plane equation is stored to allow for z buffer intersection.
The paper is from NVidia and it seems to me with special hardware support this could be much faster.
This paper is interesting but rather high quality and expensive.

The 64 bit coverage mask could have been 32 bit but even better someone could used the 4 samples for 4 pixels 
making this much faster at the cost of quality.
As you have the coverage mask you how to distribute the colors to the 4 pixels after shading.



This work is using a 3d grid bitmask to accelerate intersection with geometry. As the limited resolution is causing 
approximation errors the result is not perfect.
You can implement shadows and Ambient Occlusion this way and if you additionally store geometry attributes (not 
part of bitmask) and implement lighting you also can implement
glossy reflections or indirect lighting.
The method has 3 steps happening each frame:
1) All geometry is rendered into a voxel representation and a single bit is enough to store occlusion. Multiple methods 
are possible 
TODO

The method recreates the data every frame with some jitter making it less approximate and smooth when the result is 
combined over multiple frames.

hit position  in O(1) from bitmask AND and getting first bit

No hierarchy, no knowledge what was hit, cascades possible



Looking at the mentioned applications there are some patterns to observe. To categorise the different methods you 
can group the using of the coverage maske in spatial (position), temporal (time) and probability (random decision).
Spatial can be a n-dimensional domain. 2D is good for pixel anti-aliasing (see top image) but also for Bokeh Depth-
Of-Field (see middle image where stochastic rasterization is used). With 3D coverage mask you can store the 
coverage of a 3d objects in a axis aligned bounding volume to accelerate ray tracing [Yoshimura23]. A 4D space is 
formed by two 2D portal surfaces and there you can store the visibility between the points on the portals. 1D can be 
used to compute shadows from a line light.
You can render different primitives like lines, triangles, Spheres. You can render any convex object with half spaces 
or you can render concave objects with holes with another method (more about that later)

The temporal axis can be used for motionblur, see stochastic rasterization on the bottom image.

A bitmask also can be used to express multiple random binary decision - it can express a probability. This way you 
can express translucent objects. Hardware Alpha To Coverage is a simple ordered grid but you can craft your own
and permute for each object to get better compositing of many layers [Enderton11].

Images from https://casual-effects.com/research/Enderton2012Stochastic/Enderton2012Stochastic.pdf



Using the Coverage Bitmask you can make conservative decisions like: should I process a triangle in this grid cell?
You can make multiple stochastic decision to approximate a non binary value with reduced noise, 2x more bits 
means ½ the noise.
You can make some exact decision like which pixels a triangle covers in a 2d block.

You can vary the bit cound and you can make use of the bit order. Remember [Zeng23] where the first 1 bit gives 
you the approximate hit location for a ray.

With precomputed bitmasks it’s easy to place the sample point at any location. This can be used to implement a filter 
kernel that is not a box filter, much cheaper
a math solution, at least a software math solution. 

If you want to approximate a value and the number of bits is not enough to give a result without banding (e.g. area 
light shadows), you can add per instance variation like
Adding a random rotation or shift. The result is some high frequency noise, spatial or temporal or both. This might be 
acceptable or something a following denoise pass
can remove easily. Denoise for binary decision are common but quality and performance can be better if you have 
many binary decision (e.g. 32 bits).

Coverage masks can be generated with the help of memory and/or math. Depending on the available resources 
either one can be the right choice.



A classic graphics programming solution to the point in polygon test is to draw a line from the point to some point 
outside and if you count the number of intersections. If this is a odd number you are inside.
Remember using the binary AND of edges tests only works for convex objects.
This in contrast works with concave objects, with holes and objects in objects. But you need to have a closed mesh 
and the intersection test should not double count in some corner cases.

When doing this on a ordered grid you can use math to implement bitmask updates. It’s easiest to think about each 
line separately. You want a bitmask that has all bits 0 left to the edge and all bits 1 right to the edge.
This can be implemented in math with a shift of a all-1 bitmask. This bitmask can be xor-ed with the existing bitmask 
(all former edges). The result is a bitmask that has 1 for inside and 0 for outside.
With SIMD multiple lines can be processed in parallel.

Some of the mentioned papers did this with a precomputed mask. To reduce the number of dimensions you can 
lookup a halfspace and implement the masking of where the edge starts and ends with math.
Here it’s best to make use of the order of bits in the bitmask. This even allows for irregular distributed sample points.

Again the domain can be multi dimensional. 
2D for font rastization - concave shapes would be very limiting here.
3D can be used to implement efficient voxelization (xor binary frame buffer blend, output up to 128 bit mask from 
triangle depth at this pixel, someone mighty say this is 1D but it comes with a 2D grid so it’s 3D)
A single bit 1D was used for stencil shadows in Doom. The lack of anti-aliasing, soft shadows and unpredictable 
performance characteristics made this short lived. Shadow maps replaced stencil shadows.
But this can be (and has been) extended to use a 2D coverage mask to implement high quality area light shadows.

The amiga coprocessor Blitter had an interesting feature. It was able to fill polygons quickly by rendering (xor-ing) all 
polygon edges with 1 bit per line.
After all edges have been drawn a full screen pass was filling in all bits between the edges. This 2 pass method can 
be faster than the 1 pass method in some conditions. Nowadays it would be simple to implement this pass
vertically using integer math on the CPU or GPU.

Note that if you don’t need the bits but only need the area / weight (e.g. font AA) you can implement a analytical 
rasterizer that simply adds / subtract areas.



Amiga Blitter polyfill explained: https://www.youtube.com/watch?v=H7QB_pslX10









Thanks to …







CPUs and GPUs have hardware feature to make a HW or SW version of this efficient.
CPUs are normally Single instruction, single data but they can process 32 or 64 bits in parallel. Mostly for multi core 
thread synchronization they also have atomics which can do bitmask math without having to use expensive critical 
sections.

Modern CPUs also have Single instruction, multiple data like SIMD or AVX where multiple machine words (8 / 16/ 32 
/ 64 bit wide) are processed in parallel (e.g. 4 / 8 / 16 elements at once).

GPUs use a close relative of SIMD, SIMT, something that emerged out of vector processors. Here the processor has 
more flexibility to plan many thread in flight to improve throughput, at the cost of latency. When you have a lot of the 
same units (like pixels, triangles or vertices) to process
this is much more efficient.
GPUs also have atomics but as the latency in a GPU is higher anyway they don’t cause as much of a performance 
issue. In comparison they are more lightweight to the CPUs atomics. Also there is no guarantee about execution 
order between atomic operations for different memory locations
making them more efficient when working on different (no collision) data.
GPUs also allow for some bitmask usage within the thread group and this is even faster but also harder to use.

A old GPU feature is the stencil buffer with 1 or 8 bits.
Raster Order View is a modern GPU feature that ensures memory operations are executed in the order rasterization 
would do. This can be slower than frame buffer blending but it’s more flexible.
If you only need AND/OR/XOR operation you are better off using the new binary frame buffer blending feature. The 
hardware can implement this faster or they might optimize it in the future when enough developers us this 
functionality. 



If you use bitmasks for culling work - you can the bitmask in different ways. Let’s say you want to rasterize a triangle 
and find all pixels triangle intersections.
A conservative result is acceptable - meaning we accept false positives.

Then you can work on all those pixels and do more work, like doing antialiasing with multiple samples per pixel.

Like in tiled rendering two phases are needed. If we run on a GPU we can choose a thread group size 
In Phase 1 we process 64 Quads in parallel. For each quad (two triangles) we loop over all affected grid elements 
and set the right bit with an atomic OR. For very small quads (micropoly) this is fast.
In Phase 2 we process pixels in parallel. Using the mask we know which quads we need to consider. Here is the 
code to do that.

We have some options on how we use the bitmask.
a) as comparison you can brute force the work, consider all triangles for each pixel. It will work but is not very fast.
b) Better is to use a 2D bitmask for each pixel in some block. A 64bit bitmask works for 8x8 pixel block
c) Much more efficient for small quads is to use two 1D bitmasks and AND those. Now we can process a 64x64 pixel 
block with the same bitmask memory.

This memory is in group shared memory and option b) and c) need the same amount of memory (8x8 uint = 2 * 32 
uint).

Option c) allows to fill a larger grid of pixels and scales linearly and not quadratically in size for Phase 1.

while(mask) {
bit=firstbitlow(mask);
mask &= ~(1u<<bit);
work(bit*2); work(bit*2+1);

}





Screen Space Ambient Occlusion is a well known method to compute Ambient Occlusion - invented by Vladimir 
Kayalin.
Ambient Occlusion is a percentage that expresses how much the nearby geometry is occluding a specific surface 
point. You can compute it with ray tracing but
That can be costly. SSAO is cheaper as it uses only a depth buffer (and a normal buffer, if available). Visually AO 
approximates indirect lighting but at a much smaller cost.
SSAO wants to integrate the occlusion of the depth buffer samples in a specific direction - this can be computed with 
a min and a max angle.
This paper chooses to use a bitmask and it results in better quality.
I personally implemented SSAO and was able to avoid the artifact without a bitmask but I think this method is better.
I also seen the bitmask for tracing ScreenSpace depth buffer uses in [Sannikov] - more about this later.

Image from https://www.arxiv-vanity.com/papers/2301.11376

GTAO: Ground Truth AO is treating depth buffer like heightmap with some falloff (the example image might have 
been tweaked for illustration)



This indirect lighting method is very performant and quite high quality. It uses a coverage bitmask during the screen 
space ray marching step like the SSAO paper a few slides ago.
Multiple cascades are use to approximate near and far lighting. Take a look at the 2D example, it’s similar to a 3D 
version: 
The near cascades have high spatial resolution, the orange shows 16 samples with 4 directions.
The one level further cascaded have lower spatial resolution but high directional resolution, here 8 directions.
This is stored in the same amount of memory The result is a combination of many cascades and you get good quality 
at good performance.



This video shows a side view of a single 20 pixel line in a 2d renderer. On the top you can see multiple patches with 
different colors. They overlap, the viewer is on the top, looking down. This is why geometry can be occluded (dark 
grey).
One patch is animated, another one is moving. 

Below you can see multiple 20 pixel lines that show different methods. A color pixel is shown as gradient  to express 
the HDR ness of a color. You see the red patch has some very bright white pixels. Those could be specular 
highlights.
As they are sub pixel in size and all geometry is pixel size we should see extreme aliasing if nothing special is done. 
You can see this in the noAA line.
The other lines shows different methods and visualizations that helped during development to assess the quality of 
different rasterization methods.


