Spatiotemporal Blue Noise Masks

Alan Wolfe NVIDIA, EA SEED Nathan Morrical NVIDIA, University of Utah Tomas Akenine-Möller NVIDIA Ravi Ramamoorthi NVIDIA, University of California, San Diego

Blue Noise Samples vs. Masks

Real Time: Always Wanting To Do More With Less

Real Time Global Illumination with RTXGI https://developer.nvidia.com/rtx/ray-tracing/rtxgi

Fast probe grid GI + ray tracing probe updates

Real Time Direct Illumination with RTXDI <u>https://developer.nvidia.com/rtx/ray-tracing/rtxdi</u>

Solves "many lights" direct illumination by making each pixel learn where to shoot rays for best results.

Stochastic Algorithms Allow Tuning Quality vs Speed

1 sample

2

More Speed Higher Quality

Project PICA PICA <u>https://www.ea.com/seed/news/seed-project-picapica</u>

8

128

Anti Correlated Blue Noise >> Independent White Noise

"Blue-noise Dithered Sampling", Georgiev & Fajardo, 2016

Anti Correlated Blue Noise >> Independent White Noise

White Noise Dithered

Blue Noise Dithered

1 bit per color channel, Gaussian blurred

Real Time Is Animated & Amortized Over Time

"A Survey of Temporal Antialiasing Techniques" Yang et al, 2020

Animated Blue Noise - Frequencies

Void And Cluster: Scalar Noise Algorithm

Simplified algorithm (see paper for full version):

- 1. Start with zero energy field
- 2. Place a point at the lowest energy and update energy field
- 3. Repeat #2 until all points are filled in
- 4. Order of point insertion determines pixel value (remap to texture range).

Our modified energy function:

$$E(\mathbf{p}, \mathbf{q}) = \begin{cases} \exp\left(-\frac{\|\mathbf{p}-\mathbf{q}\|^2}{2\sigma^2}\right), & \text{if } \mathbf{p}_{xy} = \mathbf{q}_{xy} \text{ or } p_z = q_z \\ 0, & \text{otherwise,} \end{cases}$$

"The Void-and-Cluster Method for Generating Dither Arrays", Ulichney, 1993

Simulated Annealing: Vector Noise Algorithm

- 1. Initialize texture to uniform white noise vectors (*)
- 2. Pick 2 pixels at random, swap them if doing so improves overall energy
- 3. Repeat #2 until overall energy low enough, or enough swaps have occurred.

Our modified energy function:

$$E(\mathbf{p},\mathbf{q}) = \begin{cases} \exp\left(-\frac{\|\mathbf{p}-\mathbf{q}\|^2}{\sigma_i^2} - \frac{\|\mathbf{V}_p - \mathbf{V}_q\|^{d/3}}{\sigma_s^2}\right), & \text{if } \mathbf{p}_{xy} = \mathbf{q}_{xy} \text{ or } p_z = q_z \\ 0, & \text{otherwise.} \end{cases}$$

* Can use non uniform noise for importance sampled masks. More on that later!

"Blue-noise Dithered Sampling", Georgiev & Fajardo, 2016

Animated Blue Noise - Simple Function Convergence

Rendered Results - Dithering

Rendered Results - Stochastic Convolution

Rendered Results - Ray Traced Ambient Occlusion

Rendered Results - Heitz and Belcour

(a) Heitz and Belcour w/ STBN

(b) 2D BN

(c) STBN (Ours)

(d) Ground Truth

"Distributing Monte Carlo Errors as a Blue Noise in Screen Space by Permuting Pixel Seeds Between Frames" Heitz and Belcour, 2019 A Challenge With Moving Pixels & 1 SPP

TAA (Still) TAA (Moving) White White Vector STBN Vector STBN 2^{-1} 2-1 Vec2 Blue2D x White Vec2 Blue2D x White White x Sobol White x Sobol BRMSE 2-2 RMSE 2^{-2} 2^{-3} 20 2² 24 20 2² 24 26

26

Frames

Frames

Other Results: Scalars, Vectors and Importance Sampling

Other Results: Higher dimensionality

Other Results: Thresholded Spatiotemporal Point Sets

Summary

- STBN is a drop-in replacement for traditional Blue Noise Masks
- Optimized temporally to be "better than white noise"
- Can be scalar or vector, uniform or importance sampled

Future Work

- Optimize for other filters (box blur? Unsharp mask?), rendering techniques, content
- Temporal optimization targeting TAA / EMA or others better
- Address convergence of moving pixels

How/Why Do Blue Noise Masks (Textures) Work?

- 1. If x is a pixel's random seed and f(x) is the shaded output of the pixel...
- 2. The assumption is that if x correlated with x', then f(x) will also be correlated with f(x').
- 3. Blue noise mask values are anti correlated among neighbors, so the rendering results have that property too.

See next images...

Does STBN Stay Blue As It Converges?

Blue Over Space, Stratified Over Time

Vector Blue Noise Through Curve Inversion

