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ABSTRACT
Embodied Conversational Agents (ECAs) that make use of co-
speech gestures can enhance human-machine interactions in many
ways. In recent years, data-driven gesture generation approaches
for ECAs have attracted considerable research attention, and related
methods have continuously improved. Real-time interaction is typ-
ically used when researchers evaluate ECA systems that generate
rule-based gestures. However, when evaluating the performance of
ECAs based on data-driven methods, participants are often required
only to watch pre-recorded videos, which cannot provide adequate
information about what a person perceives during the interaction.
To address this limitation, we explored use of real-time interac-
tion to assess data-driven gesturing ECAs. We provided a testbed
framework, and investigated whether gestures could affect human
perception of ECAs in the dimensions of human-likeness, animacy,
perceived intelligence, and focused attention. Our user study required
participants to interact with two ECAs – one with and one without
hand gestures. We collected subjective data from the participants’
self-report questionnaires and objective data from a gaze tracker.
To our knowledge, the current study represents the first attempt to
evaluate data-driven gesturing ECAs through real-time interaction
and the first experiment using gaze-tracking to examine the effect
of ECAs’ gestures.

CCS CONCEPTS
• Human-centered computing → HCI design and evaluation
methods; Interactive systems and tools; • Computing methodolo-
gies → Computer graphics; Animation.
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1 INTRODUCTION
During interpersonal communication, we convey information not
only through speech but also through non-verbal behaviors. It has
been proven that non-verbal behaviors have critical impacts on
interactions, such as revealing personality, emotions, and intimacy
levels [20]. Therefore, numerous studies have focused on enabling
virtual agents to mimic gestural human-to-human communicative
behaviors in addition to verbal communication capabilities, thus
enhancing the user’s perception during interactions [11, 12, 38].
Hand gestures, as one of the most commonly observed nonverbal
behaviors, have received considerable research attention when
designing ECAs [7, 32].

There have been two main approaches to enabling Embodied
Conversational Agents (ECAs) to generate co-speech hand gestures.
One approach is to identify the patterns produced by human cog-
nition and behavior generation, summarize the correspondence
between them, then model them accordingly, which we commonly
refer to as rule-based methods [5, 6, 16, 32]. The other approach
is to employ machine learning algorithms to build models from
large amounts of human communication data, which we regard
as data-driven methods [1, 22, 26, 40]. Both types of methods have
their pros and cons. Rule-based methods are more interpretable
than data-based approaches, and the generated gestures can accu-
rately reflect the agent’s cultural background, gender, and other
identifying characteristics. However, rule formulation requires the-
oretical research and a lot of human labor [8]. On the other hand,
while data-driven approaches address the limitation of a lack of do-
main knowledge, assembling training data and mapping generated
gestures to semantics remain the principal challenges.

Even though the techniques for generating gestures have been
steadily optimized and improved, the methodology for evaluating
their quality remains a research challenge. There is still no stan-
dardized method for quantitatively assessing gesture generation
results [39]. Researchers have used objective measurements to eval-
uate a generative model’s performance, such as comparing the
joint velocity and position of generated and ground truth gestures
[27]. Although the required data can be obtained readily, objec-
tive evaluation cannot represent human interpretation of gesture
performance. Therefore, user studies should also be conducted to
evaluate generated gestures subjectively.

Using subjective evaluation methods to evaluate the effective-
ness of gesture generation serves two principal purposes: First, to
determine if the gestures generated by the proposed model can af-
fect users’ perceptions of interactions in some specific dimensions;
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and second, to compare the performances of different generative
models regarding their perceived qualities in user experience. This
study focused on serving the first purpose to evaluate the impact
of one selected model on the user experience through real-time
user interaction, but the experiment workflow developed in this
research can also be applied to compare different models in the
future.

Moreover, some objective indicators can be used to help com-
pensate for the qualitative nature of subjective observations. For
example, some studies have utilized eye-gazing behavior [9] and
body posture [34] to assess user engagement. We also implemented
an eye tracker to observe the human’s focused attention when in-
teracting with the ECA.

In most cases, rule-based systems are designed for existing plat-
forms that feature interactive virtual agents (e.g. Greta [31]). There-
fore, evaluating such models in interaction was relatively straight-
forward since no additional integration work was required. How-
ever, data-driven approaches present a different situation: move-
ments are typically generated in 3D space, which is more compli-
cated to integrate into an interactive virtual agent. This is probably
why previous systems did not evaluate learning-based models in an
interactive setting. Users evaluating data-driven gesture generation
models were typically asked to watch clips of ECAs’ behaviors, rate
the generated stimuli, or perform pairwise comparisons among
ECAs [39]. In such approaches, humans are positioned as observers
rather than as interactors, which is not as natural as the real-world
scenarios faced by ECAs. In this study, we demonstrate how putting
humans in interactors’ place can be achieved, and we hope to in-
spire others to test their learning-based models in a similar manner
- through interaction.

The main contribution of this study is in evaluating interactively
the use of deep-learning models to generate gestures. Our study
also examines whether it is practical to use real-time interaction
to measure the ECAs’ performance and compare the effect of their
gesture behaviors on user perception. We also developed a testbed
for future researchers to benchmark their models. The link to the
video shows the experimental procedure used in our user study:
www.yaeh.io/research/hci/presentingbot

2 RELATEDWORK
In this section, we review both subjective and objective methods
applied in previous studies to evaluate ECA with gestures. Then we
discuss effective approaches to user studies, including common ex-
perimental settings, measurement tools, and evaluation dimensions,
from which we can draw lessons for our own evaluation.

2.1 Evaluation for ECAs with Gestures
Most researchers use both objective and subjective methods to eval-
uate ECAs. On one hand, the researchers evaluate the performance
of data-driven models objectively. On the other hand, researchers
can understand how users perceive the system through subjective
assessment, which is crucial for implementing systems in real-world
applications.

Huang et al. conducted a subjective experiment to compare the
human perception of a robot under four modal conditions [17]. The
study results indicated that participants perceived higher levels of

naturalness, effectiveness, and likability when interacting with a ro-
bot that generated gestures based on a data-drivenmodel thanwhen
interacting with a robot that communicated exclusively through
speech.

Levine et al. undertook a user study to evaluate a proposed
HMM-based model. Participants were asked to perform side-by-
side pairwise comparisons to determine which model produced
more realistic gestures [26].

Yoon et al. evaluated the quality of gesture generation models by
both objective and subjective methods. Objectively, the researchers
compared the generated gestures with the ground truth in the origi-
nal video. Subjectively, researchers adopted anthropomorphism and
likeability from the Godspeed questionnaire [4] as measurements
[40].

In 2020, a group of researchers launched the first gesture gener-
ation challenge [24]. This event provided a benchmark for practi-
tioners in the gesture generation domain to compare their models
by using a common dataset, visualization setup, and evaluation
process. User studies were conducted in the challenge by watching
video clips of different model results. In our study, we also focused
on conducting user experiments, but through real-time interaction.

2.2 Approaches to Conduct User Studies on
ECAs with Gesture Functions

2.2.1 User Study through Interaction. Real-time interactions with
users are an effective means of assessing the performance of an
ECA system or robot. In evaluating gesture-generation methods, it
is also common to have participants rate the interaction experience.
As an example, Salem et al. required participants to interact with a
humanoid robot in both unimodal (speech only) and multimodal
(speech with consistent or inconsistent gestures) conditions. The
participants were then asked to rate a variety of aspects, including
human-likeness, likeability, shared reality with the robot, judgments
of acceptance, and future contact intentions [33]. Asly and Tapus
examined personality traits (introversion and extroversion) in the
design of gestural representations of robots, and corresponding
user studies were conducted via real-time interactions [2].

Nevertheless, our literature reviews found that real-time inter-
action studies tend to focus on rule-based methods. In the case of
measuring data-driven methods, user research is often conducted
only in a one-way manner without the ability to communicate in
real-time with the users. As an example, in Le and Pelachaud’s
perceptual experiment, participants were asked to rate the perfor-
mance of gesture generation after viewing a video of an NAO robot
narrating a fairy tale [25]. GENEA 2020 Gesture-Generation Chal-
lenge [24] organizers provided participants with a user interface
for measuring performance. This allowed them to rate their perfor-
mance after viewing a video of the ECA, although the experiment
did not involve interaction [19]. A potential reason why data-driven
methods were barely evaluated in real-time interactions could be
the absence of appropriate testbeds. Due to the fact that data-driven
methods are applied to generate gestures, the feedbacks from the
ECAs are not fully predictable based on user input, which makes it
more difficult to bind animations to ECAs. To tackle this limitation,
Nagy et al. developed a modular framework in the Unity3D envi-
ronment that enabled the ECA to communicate with data-driven
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models in real-time [28]. Hence, it provided an infrastructure for
future researchers to evaluate data-driven gesture generation mod-
els by adding modules. In this study, we adopted this framework
and modified it to suit our scenario.

2.2.2 Measurements to Evaluate Gesturing ECAs. Gestures have a
variety of effects on humans, including cognitive, emotional, and
behavioral, as well as on their performance of tasks [35]. However,
because human communication is inherently multimodal, it is diffi-
cult to measure the contribution of gestures to human perception
in isolation. To the best of our knowledge, there is still no unified
questionnaire that can directly evaluate the quality of gestures
in ECAs. Still, existing questionnaires can indirectly measure the
role that gestures play in the system by assessing people’s overall
perception of ECA [14].

Researchers typically choose the tools for evaluation based on
their research interests. Aly and Tagus’ focus was on checking
whether people can accurately identify robots that match their per-
sonality through non-verbal cues, and on testing whether gestures
can improve expressiveness. In this study, experimenters used the
Big 5 Inventory Test to distinguish between introverted and extro-
verted participants. Then experimenters adopted a questionnaire
including 24 questions on a seven-point Likert scale to evaluate the
gestures generation model, which is mapped by human personal-
ity traits. The survey covered user preferences, robot personality
congruence, user engagement, robot expressiveness, robot gesture,
voice synchronization, etc. [2]. Salem et al. investigated the impact
of robot gestures on humans’ perceptions of anthropomorphism
and likability. Researchers developed two sets of questionnaires to
assess participants’ perception of the robot and their performance
on task-accomplishing interactions in the experiment. Perception-
related questions included humanlikeness, likeability, shared reality
[10], and future contact intentions. To assess task performance, the
authors used both objective and subjective ratings. The subjective
indicator was a five-point Likert-scale question asking participants
to rate their capacity to solve the challenge. The objective metric
was the error rate of task completion [33].

Due to the lack of a standard evaluation scale, most studies have
used self-developed questionnaires to assess gesture generation.
Fitrianie et al. reviewed 81 papers relating to intelligent virtual
agents, and found that more than 76% of these studies employed
measurement instruments that were only applied once [13]. Self-
designed questionnaires do not have any guarantee of reliability.
Additionally, constantly creating new measurement tools rather
than reusing well-tested instruments makes it harder to replicate
and compare experiments. Therefore, we applied validated and
commonly-used measurements to our study to ensure its rigour
and to facilitate comparison with other studies.

2.2.3 Evaluating ECAs through Behavior Observation. Researchers
can complement questionnaires with behavioral observations. Kooi-
jmans et al. developed a software that can collect a variety of ob-
jective data in human-robot interactions, including sound, vision,
person identification, motion, body contact, and robotic behavior
[21]. Some other commonly utilized behavioral indicators include
proxemics, postures [34], eye-gazes, etc. Bailenson et al. measured
the social distance between a person and a virtual agent to deter-
mine co-presence in a virtual environment [3]. Nakano et al. used

eye-gaze behavior as an objective indicator of a person’s attention
when talking to a virtual agent [29]. Behavioral indicators have
been shown to be an effective complementary investigation method
in conjunction with subjective questionnaires.

3 SYSTEM DESIGN AND IMPLEMENTATION
The design and development of our ECA system were based on
a realistic scenario of a virtual robot making a presentation. The
virtual agent can present to participants six classical Roman mon-
uments according to the participant’s voice command. The script
and the experiment system will be open-sourced.

3.1 System Architecture
The system was based on the modular framework developed by
Nagy et al [28] 1. The modified system architecture could be trans-
planted to any situation that involves a presenter, such as a lecturer
or a museum guide. The system architecture consisted of four mod-
ules (see Figure 1). Module 1 was the gesture generation model
known as Gesticulator developed by Kucherenko et al. [23]. Ges-
ticulator is a data-driven method that can automate hand gestures
based on both audio and text. Module 2 contained the speech syn-
thesis model developed by Székely et al. [36], which was used to
generate the agent’s audio output. This synthesizer was selected
because it shared the same training dataset with our chosen gesture
generation model, Gesticulator [23]. Module 3 was in charge of
communication with other modules and contained presentation
content. We developed a database in the Unity3D engine using C#.
The database allowed system users to customize the presentation’s
content by providing corresponding command words, pictures, au-
dio, and speech text. Module 4 provided the virtual scene, which
could be replaced by any customized 3D model. In this scene, the
Gesticulator can communicate with the virtual robot through the
ActiveMQ message broker. The current scene contains a virtual
robot standing in front of a painting frame. The paintings are some
famous Roman monuments. During interaction with participants,
the painting content would swap like a presentation slider.

3.2 Modules Communication and Information
Flow

To avoid the system latency in response to participants’ voice com-
mands, we generated gestures in advance rather than in real-time.
We input both presentation text and audio files into Gesticulator,
and Gesticulator exported the generated gestures as joint angle
rotations in CSV files.

Before starting the experiment, we prepared four groups of pre-
sentation data. First, we wrote the presentation contents and saved
them as text files. Second, we synthesized speech from the text us-
ing the speech synthesizer [36] and saved the outputs as audio files.
Third, we selected pictures that would be shown in the presentation.
Fourth, we decided on the keywords that can invoke ECA’s actions.
We stored the four groups of resources and generated gestures in
the database of Module 3.

When the presentation system (Module 3) receives a keyword
from a participant, it would send the related audio clip and image

1https://github.com/nagyrajmund/gesturebot
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Figure 1: The system architecture.

to the user interface (Module 4), while enabling the ECA to perform
the corresponding gesture motion.

4 USER STUDY
4.1 Experiment Conditions and Hypotheses
The purpose of this study was to evaluate the effects of co-speech
gestures of the ECA system on user perception through interacting
in real-time. Therefore, we identified two experimental conditions
and referred to them as ‘Gesturing Condition’ and ‘Idle Condition’.

In both conditions, the virtual agent presents the Roman mon-
uments selected by the participant’s voice command. During the
‘Gesturing Condition’, the virtual agent produces gestures while
introducing the monument displayed on the painting. During ‘Idle
Condition,’ the virtual agent’s hands merely hang naturally without
gestures, accompanied by natural breathing and body microdynam-
ics when presenting.

In order to collect each participant’s subjective opinion towards
both conditions, we applied a within-subjects experimental method,
where each subject was exposed to two conditions. Instead of com-
paring different data-driven models, this study focused on examin-
ing the feasibility and approaches for evaluating data-driven gesture
generation models in real-time, but the system design left room for
future comparisons of multiple models.

In the study, each participant was assigned to both conditions.
To exclude potential bias caused by ordering, we controlled the
occurrence order of the two conditions. Fourteen participants were
exposed to the gesturing condition first, followed by the idle condi-
tion; the remaining 14 participants were exposed to the opposite
condition sequence. The robot body colors in both experimental
conditions were set to blue and green, respectively, so that users
could differentiate the two conditions. In order to avoid potential

bias resulting from color preference, we counterbalanced the two
colors and the two experimental conditions.

There was no significant difference in all those dimensions. The
exact analytical values are shown in Figure 2.

We assumed that the ECA’s hand gestures could improve human
perception of the agent’s realism and attract more attention during
the interaction. To test this assumption, we propose two major
hypotheses.

H1. The ECA with data-driven generated gestures is perceived
better in likeability, animacy, perceived intelligence, and human-
likeness than the ECA standing with idle posture.

H2. The ECA with data-driven generated gestures can attract
more participant’s attention than the ECA standing with idle pos-
ture.

4.2 Selection of Measuring Instruments
To ensure our study’s rigour, validity, and reproducibility, we chose
to use a validated scale as our primary measurement tool.

To examine hypothesis 1, we selected likeability, animacy, and
perceived intelligence dimensions from the Godspeed questionnaire
[4] and asked a direct question regarding human-likeness, which we
took from the GENEAChallenge 2020 [24].We asked participants to
rate the interaction task subjectively in each condition. To evaluate
hypothesis 2, both subjective and objective methods were adopted.
Subjective assessment was measured using seven entries in the
focused attention dimension of User Engagement Scale (UES) [30];
Objective assessment was inferred from the gaze data collected by
the eye tracker. It is believed that a longer gaze duration attracts
more focused attention.
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Figure 2: The questionnaire results on likeability, animacy, perceived intelligence, focused attention and human-likeness

4.3 Experiment Procedure
Participants were exposed to two experimental conditions in suc-
cession. First, a selection menu guided the participant to select a
keyword of interest. The participant would use a voice command
to execute the selection. After receiving the command, the virtual
robot would start presenting. Each speech segment lasted about
40 seconds. Each condition consisted of two selection interactions.
After completing each experimental condition, the participant rated
the interaction with each agent. From the start of the system, the
user’s eye gaze data was continuously recorded by a Tobii eye
tracker at the bottom of the screen [37].

After the experiment, we interviewed each participant about
preferences and perceived differences between the two conditions.

At the end, the experimenter gave a short debriefing to each
participant to explain the intention of the study.

4.4 Participants
A total of 28 participants (10 female, 18 male) were recruited by
online and offline posters published in the university community
(Facebook forums, Whatsapp groups, Telegram groups, advertise-
ment boards and building doors on campus). After completing the
experiment, participants were rewarded with a voucher from a local
supermarket.

Participants were diverse in age (18–36, Mean=24.39, SD=13.71)
and nationality. To ensure the quality of the experiment, all partici-
pants were required to speak and listen to English at an excellent
level.

5 RESULTS AND FINDINGS
5.1 Quantitative Results
5.1.1 Questionnaire. The animacy subscale consisted of six items
(𝛼 = .90), the likeability subscale consisted of five items (𝛼 = .91),
the perceived intelligence subscale consisted of five items (𝛼 = .85),
and the focused attention subscale consisted of seven items (𝛼 = .88).
The measurements in all dimensions had good internal consistency.

We used a t-test to rule out a possible ordering bias to the data.
Then, we performed the Shapiro-Wilk normality test on the mean
values of each dimension. The results showed that animacy and
focused attention could be considered to obey a normal distribution
and could be tested by the paired t-test. In contrast, the distributions
of the other three dimensions did not have normality and were
suitable to be tested by a non-parametric test.

Figure 3: The heatmap shows gazing time (User 1 as example).

Figure 4: The division of presented object (painting) and the
presenter (robot)

A paired samples t-test was performed to compare animacy and
focused attention in ‘Gesturing’ and ‘Idle’ conditions.

An exact Wilcoxon-Pratt Signed-Rank Test was performed to
compare likeability, perceived intelligence and human-likeness in the
‘Gesturing’ and ‘Idle’ conditions.

5.1.2 Eye-gazing Analysis. The original gaze data was recorded
in the format of x, y coordinates for each frame. To establish an
overall understanding of the subject’s gaze behavior, we generated
a separate heatmap (see Figure 3) for the two sets of coordinate data
corresponding to each subject. Then, we divided the coordinate
area corresponding to the screen into two parts, the presented
object (painting) and the presenter (robot) (see Figure 4). We obtain
the ratio of gaze time corresponding to the two areas to the total
interaction time and we subsequently express this proportion in
terms of gazing time.

Figure 5 displays the distribution of results of eye gazing time
on the virtual agent (presenter) and the painting (presented object)
respectively.

A paired samples t-test was performed to compare eye gazing
time on virtual agent (presenter) in ‘Gesturing’ and ‘Idle’ conditions.
There was significant difference in eye gazing time on virtual agent
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(presenter) between ‘Gesturing’ (M = 0.250, SD = 0.096) and ’Idle’
(M = 0.199, SD = 0.074); t(df) = 2.794, p = 0.009.

A paired samples t-test was performed to compare eye gazing
time on the painting (presented object) in ‘Gesturing’ and ‘Idle’
conditions. There was no significant difference in eye gazing time
on the painting (presented object) between ‘Gesturing’ (M = 0.484,
SD = 0.114) and ‘Idle’ (M = 0.533, SD = 0.141); t(df) = -1.844, p =
0.076.

Figure 5: The boxplots of eye gazing time on presenter and
presented object.

5.1.3 Findings.

Likeability. As the result of our analysis in the Likeability dimen-
sion shows, the participants did not prefer the virtual agent with
gestures over the one with idle micro-movements. Figure 2 shows
more participants rated the gesturing robot with low scores than
the idle robot in likeability dimension, though the mean score of
the gesturing robot was still higher. The result was consistent with
the opinions received from the after-experiment interviews.

Human-likeness. We found no significant difference between the
two conditions. Both agents received extreme ratings in human-
likeness dimension.

Animacy. In the analysis, the virtual agent with gestures received
higher mean scores in animacy. However, these differences did not
reach statistical significance.

Perceived Intelligence. Perceived intelligence was the only dimen-
sion, where the ‘Idle’ robot received slightly higher mean score
than the ‘Gesturing’ robot. But the difference was not significant.

Focused Attention. According to the questionnaire results, nei-
ther condition received more attention than the other. Neverthe-
less, eye gazing data analysis showed a significant difference when
comparing gazing time on the agents and on the screen. Figure
2 illustrates that participants spent more time on the presenter’s
body than presented object under ‘Gesturing’ condition and vice
versa.

5.2 Qualitative Result
Two questions were asked in the after-experiment interviews:

Q1. Have you noticed the difference between two robots?
Q2. Which one do you prefer and why?

Regarding Q1, out of 28 participants, 24 mentioned color differ-
ences, 17 thought the two virtual agents’ voice (pitch and tone)
was different, and 15 called attention to the difference in hand
movements.

Regarding the Q2, 13 participants preferred the virtual agent with
gestures because it was more vivid, more natural, more expressive,
friendlier, and that the movement could reduce boredom. Nine
participants preferred the virtual agent without gestures because it
looked calmer and less distracting. Six participants reported that it
was hard to saywhich robot they preferred or that they liked neither
of them. One of the participants explained that in this experiment,
the virtual agent with gestures was too intensive and not natural
enough. He argued that human-like gestures should only appear at
specific times and not be continuously and uninterruptedly output.
The virtual agent in the idle condition, on the other hand, was
too stiff. One participant pointed out that the gesture animation
appeared random and not anthropomorphic enough due to the
virtual agent’s inability to make iconic and deictic gestures.

As the result of our analysis in the likeability dimension, the
participants did not prefer the virtual agent with gestures over the
one with idle micro-movements. Figure 2 showed more participants
rated the gesturing robot with low scores than the idle robot in
likeability dimension, though the mean score of the gesturing ro-
bot was still higher. The result was consistent with the opinions
received from the after-experiment interviews.

We found no significant difference between the two conditions.
For both agents, participants gave either very high or very low
scores on the human-likeness dimension.

In the analysis, the virtual agent with gestures received higher
mean scores in animacy. However, these differences did not reach
statistical significance.

Perceived intelligence was the only dimension, where the ‘Idle’
robot received slightly higher mean score than the ‘Gesturing’ robot.
But the difference was not significant.

According to the questionnaire results, neither condition re-
ceived more attention than the other. Nevertheless, eye gazing data
analysis showed a significant difference when comparing gazing
time on the agents and on the screen. Figure 2 illustrates that partic-
ipants spent more time on the presenter’s body than the presented
object under ‘Gesturing’ condition and vice versa.

6 DISCUSSION
In this section, we discuss the results within the context of the
proposed hypotheses and discuss the validity and usefulness of the
suggested experimental methodology.

6.1 H1: Improvement of likeability, animacy,
perceived intelligence, and human-likeness

Although the mean scores showed a slight indication that the ECA
with data-driven generated gestures was perceived better in like-
ability, animacy and human-likeness dimensions and that the ECA
with idle posture received higher mean rate in the dimension of
perceived intelligence, the results were not statistically significant.
Hence, we could not confirm H1.

Other researchers, however, experienced different findings. For
instance, in Salem et al.’s study, participants perceived the robot
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that gestured while it talked to be more likeable than the robot
that only spoke verbally [33]. Huang and Mutlu found that robots
with gestures were more likeable than those without gestures [17].
Salem et al. [33] and Ishi et al. [18] reported that a robot that could
make co-speech gestures was considered more human-like than a
standstill robot.

By combining the participants’ interview feedback with our
analytical results, we speculate that the following factors may af-
fect participants’ ratings. First, the gesture-generation model we
selected produced too many gestures that did not pause appropri-
ately. In the presentation scenario, the presenters’ excessive body
movements may have distracted people from focusing on the pre-
sentation’s content. Second, the dialogue system we adopted was
not natural enough, and unexpected delays and lags could have
affected the participants’ likeability.

6.2 H2: Increased attention
Even though H2 was not supported by questionnaire results, it
was confirmed by the result from eye gaze data. As the eye gazing
results indicated, the gesturing agent attracted more attention to
its body. On the other hand, the idle agent enabled participants to
focus on the object being presented.

We were aware that using two different measurement tools could
lead to contrasting results. The reason might be that when the user
interface is complicated, the information obtained by the ques-
tionnaire is merely a general impression. We cannot know exactly
which element on the interface is making the perceptual difference.
In this case, the behavioral observation tool can be more sensitive
for identifying the aspects that affect human perception.

6.3 Experimental Methodology
Our study also demonstrated the feasibility of evaluating data-
driven motion generation models through real-time interactions.
The experiment system worked smoothly and without unexpected
interruption. From our experience in this study, we concluded three
advantages to conducting evaluation practices through real-time
interaction rather than watching video clips.

First, evaluating through real-time interaction is more natural
than watching video clips because it simulates real-world commu-
nication with humans. Participants notice more details when they
interact with agents. For example, the way a virtual agent reacts
to some human behaviors can be perceived as an indication of
intelligence.

Second, the interaction process can be designed to adapt to the
actual use scenarios. Evaluating specific use scenarios could lead to
varied results. For example, likeability could be highly dependant
on the use scenario. A virtual agent that is designed to be extremely
vivacious might be perceived as likeable when presented as a dance
teacher but less likeable as a technical expert.

Third, involving real-time interaction in evaluation practices
allows for more possibilities to employ behavioral observation
methods. By analyzing human responses to the system during the
interaction, such as posture and eye gazing, experimenters could
obtain richer results.

7 LIMITATIONS AND FUTUREWORK
The current study has several limitations. The small number of
participants meant that we could not get a sufficiently diverse
sample. Our literature review shows that different cultures and
sexes perceive gestures differently. In light of this, we speculate
we will obtain richer results if we can recruit more participants. If
there is a chance for a follow-up study, we will launch the existing
test system online to reach more participants.

This study evaluated only one data-driven model for its impact
on user perception due to time constraints. The existing system
design permits the integration of multiple virtual robots and gesture
models, enabling future comparisons between the models.

The experiment was conducted in a desktop environment, where
users could not interact in a fully immersive way with the virtual
robot. As indicated by our findings, objective user behavior data
can be beneficial for supplementary and productive outcomes. For
further study, it could be useful to enable the system to collect
multiple types of data. Virtual reality environments may be able to
immerse users while also collecting objective data on user behavior
(e.g., social distance).

8 CONCLUSION
In this paper, we proposed an approach for evaluating data-driven
gesture generation models in an interaction. To test the framework
we compared two conditions: one with idle gestures and one with
gestures generated by a machine-learning model. Even though the
questionnaire results did not indicate a significant difference in
all the dimensions, the analysis of eye gazing data has supported
the second hypothesis — the ECA with data-driven generated
gestures can attract more participants’ attention in certain
areas than the ECA standing with idle posture.

The finding can be used as an empirical basis for the design of
ECA applications in presentation scenarios. For example, a math
teacher agent would require students to pay more attention to the
slides than to the agent, so gestures would be less of a factor. In
contrast, an NPC in a game that tells the history of a particular world
may benefit from incorporating gestures to attract the player’s
attention and make the character more expressive.

In addition to subjective questionnaires, objective data can pro-
vide valuable insight. Our study discussed and validated the use of
objective behavioral data to complement structured questionnaire
data. Our study used gaze time to infer focused attention — longer
gaze times are considered to indicate greater focus [15].

Our experimental setup serves as an example of how real-time
evaluations of data-driven gesture models can be performed effi-
ciently and effectively. The results of our study suggest that con-
ducting user studies with behavioral observation methods, such as
eye-tracking, can be beneficial.
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