
SEED // Stockholm - Los Angeles - Montreal - Vancouver - Remote ø

Towards Advanced
Automated Game Testing
with AI
Linus Gisslen - SEED
Konrad Tollmar - SEED

Presenters

SEED at GTC ùø

Linus Gisslén
Sr Research Engineer

SEED / EA

Konrad Tollmar
Research Director SEED / EA

Associate Professor KTH

ù

Outline

The Talk & Who We Are?

Introduction to EA and SEED

What is video games testing?

Visual testing: Graphical glitches

Game play testing with RL: Possibilities and Challenges

Adversarial RL for Procedural Content Generation

Using curiosity for better game coverage

Future Work & Challenges

Summary

Q&A

úúSEED at GTC ùø

ûûSEED at GTC ùø

SEED is a cross-disciplinary R&D team
We explore the future of interactive entertainment

û

SEED // Stockholm - Los Angeles - Montreal - Vancouver - Remote

Future Graphics

Cinema-quality
& artist-friendly
content at Scale

ü

SEED // Stockholm - Los Angeles - Montreal - Vancouver - Remote

Hybrid Ray Tracing

ý

Advanced Avatars

End-to-end pipeline for
visually convincing avatars

þ

Deep Testing

Human-like behavior
for improving
game testing

ÿ

ĀSEED at GTC ùø

Deep Testing

ø÷

Why do we test games?

Examples of bugs/exploits:

Player stuck

Missing collision box -> Player walks through walls

Players falling through the ground

Imbalances (maps, characters, etc.)

Visual bugs

Load test (map coverage)

Etc.

ø÷SEED at GTC ùø ø÷

Motivation: Automated vs. human
playtesting

Automated testing

Faster testing -> Shorter time to market

Less shipped bugs

Less “exponential growth” cost in testing

with growing games/live services

Less manual/mundane labor

More time for “meaningful” testing

Happier employees

Reduces risk

øøøøSEED at GTC ùø

Goal with our research

 Research human-like automated game testing.
 as we want to test as closely to how players perceive our games..

Use ML to accelerate game testing at scale & breadth, freeing human
playtesters from repetitive tasks, moving towards more meaningful work.

Research AI-powered methods to help developers find bugs faster,
and improve overall product quality, in real-time.

Use testing as a springboard to develop ML-based AI in games.

øù

In short:

øùSEED at GTC ùø

øúSEED at GTC ùø

Visual Testing & Validation

øû

What leads to a graphical issue/bug?

SEED at GTC ùø

 Result:.
Goggles
are missing texturesAny error in the steps within

the rendering pipeline,
production pipeline, art
pipeline, and asset database,
etc. could potentially lead to
rendered glitches.

Basically it’s an aggregation
of everything that can
possibly go wrong

Art
Pipeline

Rendering
Pipeline

Production
Pipeline

Asset
Database

øüøü

Replacement/Missing texture

When an texture is missing the default
texture is the fallback

Example From Production
Jira ticket search: 20k+ on graphical issues for one game

Stretched texture

Stretching of textures are
commonplace

Low res texture

Compared to surrounding texture the
texture has a lower resolution

SEED at GTC ùø

2 Ways For Getting Data For Training

Gather in-game
graphical glitches

Pros
Closer to “real” data

Cons
Fewer samples

No/little control over data

Hard/slow to create new data sets

Risk of biased data set

Unbalanced

Generating synthetic data
with known glitches

Pros
Control over data: objects, lightning, rotation,
background

Automate data gathering: can easily gather ø÷÷k+
images in a short time

Can be generated with game assets in game engine

Balanced

Cons
Not “real” data

øýSEED at GTC ùø

øþøþSEED at GTC ùø

Training
Samples

øþ

1. Unsupervised Learning

Good for seeing previously un-seen errors

Ideal, but very hard to train and not practical yet

2. Anomaly detection approaches

Good for finding “outliers” i.e. something completely unexpected

Not practical

3. Supervised Learning: Image detection <- Our pick.

Control over data makes this approach very effective

Types:
● Object detection - Not beneficial
● Semantic segmentation - Very computationally costly
● Classification <- Our pick.

Model
Selecting Approaches

18SEED at GTC ùø

 To summarize: Keep it simple!.

Training data

https://docs.google.com/file/d/14DcOrHQDLmFilJsOjpeBL4onJTCxMctR/preview

19SEED at GTC ùø

Model

There are 200+ SL architectures, we studied 5 architectures:

ø. AlexNet (ù÷øù) Input ùüýxùüý, ý÷M parameters

ù. VGG-øý (ù÷øû) Input ùùûxùùû, øúúM parameters

ú. ResNet øÿ-ü÷ (ù÷øü) Input ùùûxùùû, øøM-ùü.ýM parameters

û. ShuffleNetVù (ù÷øý) Input ùùûxùùû, þ.ûM parameters
 Our pick.

ü. MobileNet (ù÷øĀ) Input ùùûxùùû, û.üM parameters

Training:

● ø Machine with dual GeForce GTX ø÷ÿ÷ Ti.

● <ø÷h training time (Shufflenet)

● Inference/run-time on ShuffleNet ý÷fps.

For more details see:

“Using Deep Convolutional Neural
Networks to Detect Rendered
Glitches in Video Games”
Garcia Ling et. al AIIDE-ù÷ù÷

19

20SEED at GTC ùø

Results

Previously seen objects, but in different
environment, shadowing, lightning, angles, etc.

General: Binary accuracy of ÿý.ÿ%, detecting ÿÿ%

of the glitches with a false positive rate of ÿ.þ%

Multi-class classification breakdown (see figure)

Good performance with missing/placeholder textures

Some confusion with Corrupted (Stretched + LowRes)
textures

For more details see:

“Using Deep Convolutional Neural
Networks to Detect Rendered
Glitches in Video Games”
Garcia Ling et. al AIIDE-ù÷ù÷

20

21SEED at GTC ùø

Results

21

https://docs.google.com/file/d/1i3p3hYo-06DD6shDc9z8HgkRXhZds1Tw/preview

ùùSEED at GTC ùø

Gameplay testing with
Reinforcement Learning

“In Battlefield V testing all maps and modes for ø hour requires ùú÷ûh
of testing. ùÿÿ people to test that every day. If we add more maps
and modes this number will be larger.” Jonas Gillberg DICE (An EA Studio)

RL learns from interactions with the environment therefore:

It can find exploits without explicitly being “told”.

Training a policy using reward functions can be more intuitive than scripting.
Also:

● Can learn things that are not scriptable.
● Allows to test games without extensive scripting.
● No need to rewrite scripts every time the environment changes

Learning to play a game requires exploration, adapting, trying stuff, etc. which
gives a more “human like” testing and better coverage.

Scale and speed - Play hundreds of games simultaneously.

Motivation for RL in Game Play Testing

23SEED at GTC ùø

An RL trained agent that learned to exploit the game

23

Challenges: Our Research Directions

24SEED at GTC ùø

Generalization Interpretation:
Analytics

Fine-tuning
of Behavior

Skill
Level

Control
& Human-like

Behavior

24

Training RL agents on a fixed map -> Memorization ->
No Generalization -> We need to re-train every new environment

Good for some problems but not all.
RL is notoriously hard to train for generalization.

Use-cases for improved generalization:

● In testing/playing previously unseen maps.

● Real-time applications where there is not time to retrain.

● Guided Content generation. It’s better to find bugs directly

in production rather than later

 Good generalization is necessary!.

Problem Statement Generalization

25SEED at GTC ùø

Example on bad generalization ability

25

https://docs.google.com/file/d/1xZVy45qptQLRZxtvBPnKzH8apE_jhYPL/preview

Problem Statement Generalization

26SEED at GTC ùø

RL agent does not
generalize well when
trained on static levels

One solution is to
procedurally generate
new levels to train to
increase generality (ù)

PCG only is no
guarantee it is a good
training environment
with challenging yet
not impossible maps

Proposed Solution:

Let another RL create
the map and with
observation and
feedback from the
solving RL it can learn
to make difficult but
not impossible maps

2) Increasing Generality in ML through PCG. Risi et. al CoG 2020

26

Requirements for training a good RL Agent:

Environments that are neither impossible
nor trivial

Diverse environment so that the RL Agents
becomes more robust to novel situations

Control over generation (bonus)

The Model
Adversarial RL for Procedural Content Generation (ARLPCG)

27SEED at GTC ùø

1. Generator + Solver Approach

Ensures that environments are not impossible
but at the same time challenging

2. Auxiliary input

Introduces control over generation

Varying auxiliary input -> Diverse environment

27

Architecture: Reinforcement Learning

28SEED at GTC ùø

Action: Controller

Reward + Obs.

The Solver
(RL Agent)

Environment

28

Architecture: RL Solver & RL Generator

29SEED at GTC ùø

Action: Controller

Reward + Obs.

Action: Generate

Reward

The Generator
(RL Agent)

The Solver
(RL Agent)

Environment

29

Architecture: ARLPCG

30SEED at GTC ùø

Action: Controller

Reward + Obs.

Action: Generate

Reward

The Generator
(RL Agent)

The Solver
(RL Agent)

Environment

A
ux

ili
ar

y
in

p
ut

A
ux

ili
ar

y
in

p
ut

Reward + Obs.

30

31SEED at GTC ùø

Generalization: Adversarial RL for PCG
Results published in Conference on Games (CoG) 2021

For more details see:

“Adversarial Reinforcement
Learning for Procedural Content
Generation”
Gisslén et. al CoG-ù÷ù÷

https://docs.google.com/file/d/1ybEA9wJz-UQo2InAApCj_4Od2kBh8JTM/preview

Improving Playtesting Coverage
via Curiosity Driven
Reinforcement Learning Agents

úùSEED at GTC ùø

Camilo Gordillo
Joakim Bergdahl
Konrad Tollmar
Linus Gisslén

Problem Statement

Good exploration leads to better game state coverage

Good exploration leads to less biased game state visits

Without exploration we will miss a lot of bugs that are on
the edges of the environment

 Good exploration is necessary! (1).

Exploration

33SEED at GTC ùø

ø) Augmenting Automated Game Testing with Deep
Reinforcement Learning Bergdahl et. al CoG ù÷ù÷

Summary:
● With RL and scripted often exploration is driven by

randomness
● RL improves game state coverage compared to

scripted bots, but..
● Introducing curiosity lead to even more purposeful

exploration and better test coverage (ù)

ù) Improving Playtesting Coverage via Curiosity
Driven RL agents Gordillo et. al CoG ù÷ùø

Pictures taken from (ø)

33

úûSEED at GTC ùø

https://docs.google.com/file/d/1j37C-ToRxNT4d1EqeGWW3kCBnHYrbr3p/preview

Novelty seeking RL (Curiosity)

Encouraging RL agents to maximize coverage:

● Classical Proximal Policy Optimization (PPO) algorithm
● Reward proportional to the transition’s novelty

○ Low and decreasing reward for visiting previously
explored locations

○ High reward for reaching new areas or triggering
new events

Data collection while training takes place

● The final model is not important (and maybe even
useless)

● The collected data, however, can be very useful!

Playtesting through data analysis

Paper
 Improving Playtesting Coverage via Curiosity Driven.
 Reinforcement Learning Agents.

35

SEED at GTC ùø 35

Previously visited position
𝞽 Discretization threshold (üm)

𝞽

0 Expected Reward Rmax

úýSEED at GTC ùø

https://docs.google.com/file/d/1v5I3M4Pxl1fdwfb0sKKWchiui-turxb7/preview

37SEED at GTC ùø

Results Coverage

37

Deploying 320 agents
~90% coverage in about ùû hours

https://docs.google.com/file/d/12kVdRyYI7BDcdw76pZ5LHQdXfFwnpxCc/preview

38SEED at GTC ùø

Results Coverage

38

RL policy

RL policy

 Simple navigation strategies are unlikely to solve complex navigation challenges.

Random policy

39SEED at GTC ùø

Results
 Connectivity Graph.

39

https://docs.google.com/file/d/1NqDoVB4uWTZmj5ATwavVGz5PiWHGDuiQ/preview

û÷SEED at GTC ùø

Summary

41SEED at GTC ùø

Summary

Machine Learning has the potential to greatly improve automated testing as well as game-AI

Simple techniques like CNN for glitch detections works well and could be applied today

RL agents can find exploits without explicitly being “told” (ie. scripted)

Learning to play a game requires exploration, adapting, trying stuff, etc. which gives a more
“human like” testing and better coverage.

RL agents can not only be used to play and test games but also to generate them

Data analysis and proper visualizations are key to make sense of the outcome of these experiments

42SEED at GTC ùø

Future Work & Challenges

Going from Research
to Development:
Integration into
existing game
development pipeline

Scaling on breadth
(across different
games) and height
(local -> cluster)

Generalization and
fine tuning of skills
so we do not have to
re-train

Analytics and
automated reporting
of found bugs

Different Personas
for better
understanding how
different players play
the same game

Thank You / Q&A
...and yes we are hiring!
https://www.ea.com/seed

SEED // Stockholm - Los Angeles - Montreal - Vancouver - Remote

Contact
ktollmar@ea.com
lgisslen@ea.com

ûú

https://www.ea.com/seed
mailto:ktollmar@ea.com
mailto:lgisslen@ea.com

