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SEED is a cross-disciplinary R&D team
We explore the future of interactive entertainment
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Future Graphics

Cinema-quality 
& artist-friendly 
content at Scale
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Hybrid Ray Tracing
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Advanced Avatars

End-to-end pipeline for 
visually convincing avatars
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Deep Testing

Human-like behavior 
for improving 
game testing

ÿ
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Deep Testing
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Why do we test games?

Examples of bugs/exploits:

Player stuck

Missing collision box -> Player walks through walls

Players falling through the ground

Imbalances (maps, characters, etc.)

Visual bugs

Load test (map coverage)

Etc.
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Motivation: Automated vs. human 
playtesting

Automated testing

Faster testing -> Shorter time to market

Less shipped bugs 

Less “exponential growth” cost in testing 

with growing games/live services

Less manual/mundane labor

More time for “meaningful” testing

Happier employees

Reduces risk 
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Goal with our research

 Research human-like automated game testing. 
 as we want to test as closely to how players perceive our games..

Use ML to accelerate game testing at scale & breadth, freeing human 
playtesters from repetitive tasks, moving towards more meaningful work.

Research AI-powered methods to help developers find bugs faster, 
and improve overall product quality, in real-time.

Use testing as a springboard to develop ML-based AI in games.

øù

In short:
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Visual Testing & Validation
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What leads to a graphical issue/bug?
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 Result:. 
Goggles 
are missing texturesAny error in the steps within 

the rendering pipeline, 
production pipeline, art 
pipeline, and asset database, 
etc. could potentially lead to 
rendered glitches. 

Basically it’s an aggregation 
of everything that can 
possibly go wrong

Art 
Pipeline

Rendering 
Pipeline

Production 
Pipeline

Asset 
Database
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Replacement/Missing texture

When an texture is missing the default 
texture is the fallback

Example From Production
Jira ticket search: 20k+ on graphical issues for one game

Stretched texture

Stretching of textures are 
commonplace

Low res texture

Compared to surrounding texture the 
texture has a lower resolution
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2 Ways For Getting Data For Training

Gather in-game 
graphical glitches 

Pros
Closer to “real” data

Cons
Fewer samples

No/little control over data

Hard/slow to create new data sets

Risk of biased data set

Unbalanced

Generating synthetic data 
with known glitches

Pros
Control over data: objects, lightning, rotation, 
background

Automate data gathering: can easily gather ø÷÷k+ 
images in a short time

Can be generated with game assets in game engine

Balanced

Cons
Not “real” data
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Training 
Samples
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1. Unsupervised Learning

Good for seeing previously un-seen errors

Ideal, but very hard to train and not practical yet

2. Anomaly detection approaches

Good for finding “outliers” i.e. something completely unexpected

Not practical

3. Supervised Learning: Image detection  <- Our pick.

Control over data makes this approach very effective

Types:
● Object detection - Not beneficial
● Semantic segmentation - Very computationally costly
● Classification  <- Our pick.

Model
Selecting Approaches
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 To summarize: Keep it simple!.

Training data

https://docs.google.com/file/d/14DcOrHQDLmFilJsOjpeBL4onJTCxMctR/preview
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Model

There are 200+ SL architectures, we studied 5 architectures:

ø. AlexNet (ù÷øù) Input ùüýxùüý, ý÷M parameters

ù. VGG-øý (ù÷øû) Input ùùûxùùû, øúúM parameters

ú. ResNet øÿ-ü÷ (ù÷øü) Input ùùûxùùû, øøM-ùü.ýM parameters

û. ShuffleNetVù (ù÷øý) Input ùùûxùùû, þ.ûM parameters
 Our pick.

ü. MobileNet (ù÷øĀ) Input ùùûxùùû, û.üM parameters

Training:

● ø Machine with dual GeForce GTX ø÷ÿ÷ Ti.

● <ø÷h training time (Shufflenet)

● Inference/run-time on ShuffleNet ý÷fps.

For more details see:

“Using Deep Convolutional Neural 
Networks to Detect Rendered 
Glitches in Video Games” 
Garcia Ling et. al AIIDE-ù÷ù÷
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Results

Previously seen objects, but in different 
environment, shadowing, lightning, angles, etc.

General: Binary accuracy of ÿý.ÿ%, detecting ÿÿ% 

of the glitches with a false positive rate of ÿ.þ%

Multi-class classification breakdown (see figure)

Good performance with missing/placeholder textures

Some confusion with Corrupted (Stretched + LowRes) 
textures

For more details see:

“Using Deep Convolutional Neural 
Networks to Detect Rendered 
Glitches in Video Games” 
Garcia Ling et. al AIIDE-ù÷ù÷
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Results

21

https://docs.google.com/file/d/1i3p3hYo-06DD6shDc9z8HgkRXhZds1Tw/preview
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Gameplay testing with 
Reinforcement Learning



“In Battlefield V testing all maps and modes for ø hour requires ùú÷ûh 
of testing. ùÿÿ people to test that every day. If we add more maps 
and modes this number will be larger.” Jonas Gillberg DICE (An EA Studio)

RL learns from interactions with the environment therefore:

It can find exploits without explicitly being “told”.

Training a policy using reward functions can be more intuitive than scripting. 
Also:

● Can learn things that are not scriptable.
● Allows to test games without extensive scripting.
● No need to rewrite scripts every time the environment changes

Learning to play a game requires exploration, adapting, trying stuff, etc. which 
gives a more “human like” testing and better coverage.

Scale and speed - Play hundreds of games simultaneously.

Motivation for RL in Game Play Testing
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An RL trained agent that learned to exploit the game
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Challenges: Our Research Directions
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Generalization Interpretation: 
Analytics

Fine-tuning 
of Behavior

Skill 
Level

Control 
& Human-like 

Behavior
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Training RL agents on a fixed map -> Memorization -> 
No Generalization -> We need to re-train every new environment

Good for some problems but not all. 
RL is notoriously hard to train for generalization.

Use-cases for improved generalization:

● In testing/playing previously unseen maps. 

● Real-time applications where there is not time to retrain.

● Guided Content generation. It’s better to find bugs directly 

in production rather than later

 Good generalization is necessary!.

Problem Statement Generalization
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Example on bad generalization ability

25

https://docs.google.com/file/d/1xZVy45qptQLRZxtvBPnKzH8apE_jhYPL/preview


Problem Statement Generalization
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RL agent does not 
generalize well when 
trained on static levels

One solution is to 
procedurally generate 
new levels to train to 
increase generality (ù)

PCG only is no 
guarantee it is a good 
training environment 
with challenging yet 
not impossible maps

Proposed Solution: 

Let another RL create 
the map and with 
observation and 
feedback from the 
solving RL it can learn 
to make difficult but 
not impossible maps

2) Increasing Generality in ML through PCG. Risi et. al CoG 2020
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Requirements for training a good RL Agent:

Environments that are neither impossible 
nor trivial

Diverse environment so that the RL Agents 
becomes more robust to novel situations

Control over generation (bonus)

The Model
Adversarial RL for Procedural Content Generation (ARLPCG)
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1. Generator + Solver Approach

Ensures that environments are not impossible 
but at the same time challenging

2. Auxiliary input

Introduces control over generation

Varying auxiliary input -> Diverse environment

27



Architecture: Reinforcement Learning
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Action: Controller

Reward + Obs.

The Solver
(RL Agent)

Environment
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Architecture: RL Solver & RL Generator 
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Action: Controller

Reward + Obs.

Action: Generate

Reward

The Generator
(RL Agent)

The Solver
(RL Agent)

Environment
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Architecture: ARLPCG
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Reward + Obs.

Action: Generate

Reward

The Generator
(RL Agent)

The Solver
(RL Agent)

Environment
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Generalization: Adversarial RL for PCG
Results published in Conference on Games (CoG) 2021

For more details see:

“Adversarial Reinforcement 
Learning for Procedural Content 
Generation” 
Gisslén et. al CoG-ù÷ù÷

https://docs.google.com/file/d/1ybEA9wJz-UQo2InAApCj_4Od2kBh8JTM/preview


Improving Playtesting Coverage 
via Curiosity Driven 
Reinforcement Learning Agents
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Camilo Gordillo
Joakim Bergdahl
Konrad Tollmar
Linus Gisslén



Problem Statement

Good exploration leads to better game state coverage

Good exploration leads to less biased game state visits

Without exploration we will miss a lot of bugs that are on 
the edges of the environment

 Good exploration is necessary! (1).

Exploration
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ø) Augmenting Automated Game Testing with Deep 
Reinforcement Learning Bergdahl et. al CoG ù÷ù÷

Summary:
● With RL and scripted often exploration is driven by 

randomness
● RL improves game state coverage compared to 

scripted bots, but..
● Introducing curiosity lead to even more purposeful 

exploration and better test coverage (ù)

ù) Improving Playtesting Coverage via Curiosity 
Driven RL agents Gordillo et. al CoG ù÷ùø

Pictures taken from (ø)

33
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https://docs.google.com/file/d/1j37C-ToRxNT4d1EqeGWW3kCBnHYrbr3p/preview


Novelty seeking RL (Curiosity)

Encouraging RL agents to maximize coverage:

● Classical Proximal Policy Optimization (PPO) algorithm
● Reward proportional to the transition’s novelty

○ Low and decreasing reward for visiting previously 
explored locations

○ High reward for reaching new areas or triggering 
new events

Data collection while training takes place

● The final model is not important (and maybe even 
useless)

● The collected data, however, can be very useful!

Playtesting through data analysis

Paper
 Improving Playtesting Coverage via Curiosity Driven.
 Reinforcement Learning Agents.

35
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Previously visited position
𝞽 Discretization threshold (üm)

𝞽

0 Expected Reward                       Rmax
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https://docs.google.com/file/d/1v5I3M4Pxl1fdwfb0sKKWchiui-turxb7/preview
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Results Coverage

37

Deploying 320 agents
~90% coverage in about ùû hours

https://docs.google.com/file/d/12kVdRyYI7BDcdw76pZ5LHQdXfFwnpxCc/preview
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Results Coverage

38

RL policy

RL policy

 Simple navigation strategies are unlikely to solve complex navigation challenges.

Random policy
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Results
 Connectivity Graph.
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https://docs.google.com/file/d/1NqDoVB4uWTZmj5ATwavVGz5PiWHGDuiQ/preview
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Summary
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Summary

Machine Learning has the potential to greatly improve automated testing as well as game-AI

Simple techniques like CNN for glitch detections works well and could be applied today

RL agents can find exploits without explicitly being “told” (ie. scripted)

Learning to play a game requires exploration, adapting, trying stuff, etc. which gives a more 
“human like” testing and better coverage.

RL agents can not only be used to play and test games but also to generate them

Data analysis and proper visualizations are key to make sense of the outcome of these experiments
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Future Work & Challenges

Going from Research 
to Development: 
Integration into 
existing game 
development pipeline

Scaling on breadth 
(across different 
games) and height 
(local -> cluster)

Generalization and 
fine tuning of skills 
so we do not have to 
re-train

Analytics and 
automated reporting 
of found bugs

Different Personas 
for better 
understanding how 
different players play 
the same game



Thank You / Q&A
...and yes we are hiring! 
https://www.ea.com/seed
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Contact
ktollmar@ea.com
lgisslen@ea.com
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