
Trace All The Rays!
State-of-the-Art and Challenges 

in Game Ray Tracing

Colin Barré-Brisebois

Head of Technology, SEED, Electronic Arts

@ZigguratVertigo

Good morning, good afternoon, and good evening, to wherever you are in the World.
I hope everyone here is doing great and hope you and your families are safe.

My name is Colin Barré-Brisebois and I’m the Head of Technology at SEED, Electronic 
Arts.
In this keynote today I will chat about the dream that many have had for so many 
years where « ray tracing is the future and will ever be », with a focus on video 
games.

I will discuss the state of the art and various challenges we’re facing.  Hopefully my 
talk will give you sense of where we are at in the games industry with some of the 
challenges we’re facing, but also inspire you for your future research in case you want 
it to make its way into video games and other real-time interactive mediums.

Before I begin I would like to thank Ulf and Ari for inviting me, and I would also like to 
thank Peter-Pike and Paul for their great keynotes.

1



Agenda

• SEED’s Research Overview

• State of The Union: real-time ray tracing in games

• The Road Ahead: considerations for real-time ray tracing in games

• Open Problems

Here’s the agenda for today’s talk
First I will give a quick overview of SEED’s reserach
I will then spend a few minutes looking at where we’re at, today, with real-time ray 
tracing in games
I will then talk about the road ahead, and what are some things to consider when
tailoring ray tracing research for making it applicable to games
Finally, I will talk about some of the open problems that remain.  Hopefully this
should spawn some ideas in your head that you can bring up during the Q&A, right 
after the talk. 

2



So let me tell you a bit about SEED.  

SEED stands for the Search for Extraordinary Experiences Division



SEED
Search for Extraordinary Experiences Division

• Applied R&D team at Electronic Arts
• Est. 2015

• ≈30 distributed across 6 offices: 
Stockholm, Montréal, Los Angeles, Redwood Shores, London, Vancouver

• seed.ea.com

• @SEED

• Research
• Cross-disciplinary applied research: art + engineering + creative + research

• Run fast towards the future for the benefit of our games and studios

• 6Mo-5Y+ applied R&D: short, medium, and long-term research portfolio

• Collaborate
• Games Teams (DICE, BioWare, Madden, Motive, Respawn)

• Central Groups (Frostbite, EA Create, EA Digital Platform)

• External (Hardware, Software, Standards, Academia)

• Share
• Present & Publish: 50+ publications & presentations

• Open Source

In case you don’t know who SEED is, we’re a technical and creative research 

division of Electronic Arts Studios. 

Established in 2015 our team of 30 is distributed in 6 locations across the 

world including Stockholm, Montreal, Los Angeles, Redwood Shores, London 

and Vancouver

You can find more info about us at seed.ea.com, or follow us on twitter

SEED exists at EA as a cross-disciplinary team where we combine art, 

engineering, creativity, and research to deliver disruptive innovation, for our 

games and our players. 

We run fast towards the future and run in parallel to the current business 

constraints, 

For the benefit of our games and all EA studios 

By focusing on short, medium, and long term research portfolio gives us an 

opportunity to do research and always be delivering technology artifacts along 

the way

We collaborate with game teams, central groups, as well as many external 

partners in hardware, software, industry standards bodies, and academia. 

Of course as an R&D group we have to present and publish.  Over the years 

we’ve accumulated more than 50 publications and presentations

4



We also open source some of our work, so find us on github.

4



Research Vectors

Deep Testing Future Graphics Advanced Avatars

At SEED our research is split in 3 vectors
Advanced Avatars, Deep Testing, and Future Graphics
I will give you a quick overview of each vector so that you get a better idea about the 
topics we’re focused on

5



Advanced Avatar, the first vector I want to bring up, is based around building a 
revolutionary pipeline for creating emotionally-convincing characters.
At EA and SEED we are focused on transforming how we do performance capture for 
our games.
We use machine learning and compute vision to build artist-friendly assisted 
workflows that enable content creation at scale and quality.
This means character creation technology for accelerating the work of our art 
experts, so that they can do their best work, and iterate as fast as possible to really 
focus on the art.

6

• Transform performance capture at EA 
with machine learning and computer 
vision

• Artist-friendly, computer-assisted 
content creation workflows at scale & 
quality

• Visually-convincing character creation 
tools for accelerating work

Advanced Avatars
Emotionally-convincing Characters with 
Revolutionary Pipelines



Our second vector, Deep Testing, is a direct application of Machine Learning for 
improving how we test games.
It is well known that games are getting bigger and bigger, and that with games 
running as a live-service, that gamers want more content, delivered faster.
And this is where Machine Learning comes in and enables us to improve how we test 
these games at scale and speed, so that we can deliver better content faster and 
hopefully bug free.
Instead of taking a bruteforce approach of just throwing people at the problem, we 
use machine learning to build tools that help our tester’s with tedious tasks, which 
means an overall improvement of quality-of-life for our developers, where they can 
focus on more important and fundamental testing.
Also, with neural networks learning how to play the games by themselves we can 
mimic human-like behaviors that go beyond current automated testing approaches, 
of scripted bots, where the game learns and plays like a human.
This means we find bugs faster, in ways that humans do, before they get out in the 
wild to millions of players.

7

Deep Testing
Human-Like Behavior Simulation for 
Game Testing

• Use ML to drive improvements to how 
we test games at scale

• Tools to help our testers find bugs faster, 
and improve overall product quality

• Human-like behavior that goes beyond 
current testing approaches



And finally, our last research vector, Future Graphics, is built around building novel 
content creation techniques and breakthrough visuals.
Real-time ray tracing comes to mind, but also other things like real-time global 
illumination, realistic physics simulations at a fraction of the cost, and new ways of 
authoring content.  More on this at upcoming conferences.
Here we try to push the boundaries of real-time visuals and simulation, to enable 
building and playing in worlds that we could only dream before
As programmers we tend to want to optimize, which means sometimes coming up 
with approaches that are not always friendly for content creators. Having to build 
LODs for example, or having to unwrap UVs is one of those tasks that comes to mind. 
Here we explore radical shifts in how we build content, with a focus on making these 
new approaches artist-friendly and pain-free.
We also explore how these techniques can benefit some of the latest hardware, with 
next-generation consoles, well I guess current generation consoles now, but also 
future hardware architectures.

8

Future Graphics
Breakthrough Visuals & Novel Content 
Creation Techniques

• Push the boundaries of real-time visuals 
& simulation

• Technology to build & play in worlds that 
we could only dream of before

• Explore artist-friendly and pain-free 
paradigm shifts in how we build content



State of The Union
Let’s talk about real-time ray tracing in games

Now that you know a bit more about SEED and what we do at EA, let’s switch gears 
and talk about real-time ray tracing in games.

9



State of the Union

• 2018 – DirectX Raytracing (DXR) announced

• 2018 – Ray tracing hardware announced

• 2018 – Initial round of RT-powered PC titles

• 2019 – DXR v1.1 spec announced

• 2020 – Consoles ray tracing hardware announced

• 2020 – Vulkan Ray Tracing API spec finalized

Looking back, this journey of bringing real-time ray tracing to life has been quite 
awesome
From the initial announcement of DirectX Ray Tracing back in 2018, where we 
partnered Microsoft, NVIDIA, to bridge the API, the GPU with the software, and also 
the great work from our friends at Epic, Future Mark and Remedy
To hardware acceleration being announced and an initial round of PC blockbusters 
supporting ray tracing like Battlefield 5, this was a good start to 2018!
Then in 2019 people had more time to play around with the API, and it evolved it 
with all the conversations with developers, which led to the version 1.1 of the DXR 
spec
Then, in 2020 a new generation of consoles got announced, with ray tracing support, 
which helped solidify and reinforce that real-time ray tracing is happening across 
consumer entertainment platforms
Then, in 2020, beyond DirectX, the Vulkan API ray tracing spec finalized by the 
committee and the various members from industry and the community feedback. 

10



[SEED 2018]

[Epic Games, NVIDIA, ILMxLAB][SEED, Electronic Arts]

Looking back at these original 4 demos, at SEED we felt very lucky to have been involved 
early on with Microsoft and NVIDIA, to see what could be done with this technology. 
Speaking for ourselves the hybrid rendering pipeline we built for our PICA PICA demo, at the 
top left here, allowed us to create visuals that are augmented with ray tracing and feature an 
almost path-traced quality look, at 2.5 samples per pixel. 
This was really challenging to build, but extremely fun too! 
One can also not forget about the amazing demo from the folks at Epic, NVIDIA and ILMxLAB
built in the Star Wars universe, which featured film-like visuals in Unreal Engine 4.

There was also this really cool demo from our Finnish friends at Remedy, featuring a 
bunch of ray tracing techniques in their Northlight engine, including reflections, 
ambient occlusion, indirect lighting and ray traced shadows. 
Similarly another great demo from the folks at Futuremark, who always come up with 
really impressive showcases to push your GPU as far as it can



50+ games and counting…

As mentioned, DICE’s Battlefield 5 was one of the first game that shipped with real-
time hybrid ray tracing using DXR, powered by EA’s Frostbite engine. It features really 
awesome hybrid ray-traced reflections. 
And now beyond the initial round of games, a myriad of games followed suit and 
showcase ray tracing.
I counted 50, not all listed here, but the list keeps growing .
This is really encouraging to see, and totally understandable why everyone is exciting 
about what real-time ray tracing can enable.



Reflections

• Hybrid: screen-space reflections (SSR) 
& ray tracing

• If valid screen ray
• Use SSR with BRDF importance sampling 

[Stachowiak 2015]

• else
• Trace in world & evaluate BRDF

• Results should blend and match, 
depending on shortcuts you’ve taken 
in your BRDF evaluation

Ray Traced Reflections in Battlefield V  [Deligiannis 2019]

Let’s talk a bit about the two most common techniques these games support, starting 
with reflections, which undeniably add a lot to the image
One can do perfect mirror reflections, though the more complex case here is to tackle 
rough and smooth surfaces.
This is typically done in a hybrid way, for performance reasons, by figuring out which 
pixels on screen can rely on screen-space reflections first.
So, if the ray coming from the camera into the scene and its reflection end up on 
screen, like the puddle of water here from Battlefied V, with the results highlighted in 
orange, then you can use existing screen information for that reflection.
Otherwise, you trace a ray in the world and evaluate the BRDF. Here in blue.
Results are then merged, and technical should blend & match, but this all depends on 
some of the shortcuts you might’ve taken along your BRDF evaluation. Hopefully they 
fit well with each other.

13



Reflections

• Achieve performance
• Variable Rate Tracing

• Instead of 1:1 rays:pixels

• Ray Binning
• Launch rays in direction buckets

• Shadow map sampling
• Sample rasterized shadow maps 

(ie. CSM, local lights) instead of 
launching secondary rays

Variable Rate 
Tracing

0.37ms

Generate Rays

0.19ms

Ray Binning

0.15ms

Screen Space 
Hybrid

0.36ms

Intersect/ 
Material Data

1.98ms

Defrag

0.08ms

Lighting

0.46ms

Spatial Filter

1.45ms

Temporal Filter

0.24ms

Image Filter

1.00ms

Battlefield V’s ray tracing pipeline [Deligiannis 2019]

As you probably guessed this approach is taken mainly for performance reasons
Other tricks to achieve performance are needed.
Variable rate tracing, where you evaluate where you should launch more (or less) rays 
on the screen
Ray Binning, where you launch reflection rays pre-sorted by direction buckets, to help 
drive the GPU with a more predictable intersection workload.
You can even sample the shadow maps, instead of launching a secondary ray for the 
reflection’s shadows.  
As you can see, many tricks here and from the image below this is a glimpse of the 
who pipeline that was built to have real-time reflections at performance in Battlefield 
V. 
Please check out the talk from Johannes and Jan on this topic, for even more details 
on the whole pipeline.

14



Shadows

• Shadows really help in making a visually-
convincing and cohesive image

• Contact-hardening, from sharp to rough
• Hard shadows are great but… 
• Soft shadows convey scale and more 

representative of the real world

• Simple case: sun light
• Launch ray towards light
• If hit, you’re in shadow

• Complicated case: area lights!
• Probabilistic sampling of the area
• Will require denoising [Olejnik & Kozlowski 2020]

Unreal Engine 4

Call of Duty Warzone

https://www.nvidia.com/en-us/geforce/guides/call-of-duty-modern-warfare-pc-graphics-and-performance-guide/

https://docs.unrealengine.com/en-US/RenderingAndGraphics/RayTracing/index.html

Shadows is another popular real-time ray tracing technique, mainly for its 
“simplicity”, between quotes. 

Here I say between quotes because at its core this is not too complicated to 
implement. Just launch a ray from the surface towards the light, and if the hits 
something you’re in shadow, or alternatively if it misses you’re not in shadow.

Hard shadows are great… but soft shadows are definitely better to convey scale and 
more representative of what happens in the real world

Though maybe your art direction wants hard shadows too, with minimal penumbra.
The simple case of a directional sun light can be implemented by sampling random 

directions in a cone towards the light, treating it like an area light
The wider the cone angle, the softer shadows get but the more noise you’ll get, so 

we have to filter it
You can launch more than one ray, but will still require some filtering
As you probably guessed the complex case is area lights, where you need to sample 
across the area.  Here you need denoising, but you’ll get really nice and soft shadows 
like the image on the right here, from Call of Duty.  Really awesome blend of sharp 
and rough shadows, as you’d expect from real-world lights.

15



The Road Ahead
Considerations for real-time ray tracing research targeting games

Now that we’ve talked about the state of real-time ray tracing in games I would like to 
talk about some aspects of the road ahead for real-time ray tracing, from the angle of 
research
To be more precise, hopefully some of the items mentioned in the next slides should 
give you some insight into what we think about as game developers when it comes to 
ray tracing for our games
And some of our challenges.  Also, how this could potentially drive and tailor some of 
your research in case you want to target games or other real-time mediums.

16



Gamedev RT vs Film RT

Production ray tracing solutions don’t always
map 1:1 to game ray tracing

• Film
• Many courses at SIGGRAPH on production ray 

tracing, lately with a focus on path tracing
• Complex shading, millions of lights, volume 

rendering…
• 24hr+ frame times
• Custom techniques to handle lack of 

convergence or noise, sometimes with no 
robust solution, where throwing more rays 
means significant production costs (time/$)

• Games
• Initial breadth of DXR games support a limited 

set of ray tracing features
• Still ways to go before we move to full PT

Production raytracing solutions don't always map one to one to game Ray tracing 
solutions 
For film you will find many courses at SIGGRAPH on production rendering with a 
focus on path tracing where we talk about complex shading, handling millions of 
lights, difficult volume rendering scenarios.
Really difficult usecases that render in 24 hour render times on massive clusters
Now, in games, we have a much more limite set of ray tracing features in order to fit 
in 33 or 16 milliseconds
Still ways to go before we move to full path tracing, like film, but we’ll get there 
someday.

17



The first thing is that most of the work we do is tailored around maximizing the hardware that we 
have. Whether that’s on PC or consoles.
A common denominator to achieve performance with these techniques is that they are built on this 
concept of a hybrid pipeline, where different aspects of rendering are solved with the best tool at 
hand
For example, you might use rasterization for some of the rendering. Rasterization is very good at what
it does, and GPUs do it very well, so let’s use it to its full potential.
Compute shaders as well, and the programmability that they unlock, for some aspects of the pipeline.
Some techniques might also mix and match various stages, and that’s OK if that’s what is needed for 
performance.

18

Hybrid Ray Tracing

Hybrid Rendering for Real-Time Ray Tracing [Barré-Brisebois et al. 2018]

• A common denominator to current ray tracing in games

• Rely and combine the best of each stage

• Foreseen path for ray tracing at performance for the next (few) years



The Game Ray Tracing Elephant (vs Academia)

Elephant in the room

• Ray tracing can diverge to how we
currently think of rendering in games

• What you look at is often what is assumed

• With RT, now need to have everything
upfront & available for tracing rays

• A lots of systems are not designed for this
• Need to know all materials upfront
• Rays can hit things that are really far –

need to handle LODs
• Also, need to handle animations outside

the viewport

Now, the elephant in the room here, as we go through this transition and add more 
ray tracing to our games, at its core ray tracing can diverge to how we currently think 
of rendering in games
In games what you look at is often what is assumed to require processing
But, with ray tracing many systems need to be adapted where everything is expected 
to be available and provided upfront
Rays can end up anywhere in the scene, meaning that materials need to be known 
upfront
Rays can also hit objects that are really far, so you need to handle various Level of 
Details for geometry and textures, maybe things you don’t typically have loaded and 
resident in memory
Animations is another one that comes to mind, of which I’ll cover in a few slides

19



Adapting Game Systems to RT – World State

• What you look at is often what is assumed
• « Don’t render things you don’t see »

• Can’t solely rely on frustum culling since rays are in world space

• Cost: prohibitive update of all objects in BVH
• Animations & dynamic geometry

The first one that comes to mind is how you handle world state
Typically you don't render or even load things you don't see, which sounds pretty 
obvious.
With ray tracing now you can't rely on rendering workload reduction only with 
frustum calling, because rays are launched in world space and again can go behind or 
outside the frustum
And just loading everything and updating everything is not really a solution, and it’s 
actually quite prohibitive to constantly update a BVH 
This means you need to handle animations and dynamic geometry to the best of your 
ability, predict what needs updating, and clever do so to manage performance

20



https://twitter.com/willmesilane/status/1328638138286104577

Here’s an example where in this game you can notice that some of the characters in 
the reflection are in what we call T-pose, meaning they are in a default state and are 
not being animated
Their position in the world is right, but the animation was not updated. 
Some other characters look like they are walking, so it’s clearly driven by what is 
being budgeted per frame for updating animations with some sort of round-robin 
prioritization.  
You can also notice that some objects are also lower resolution in terms of shading
Again, most likely for performance reasons of not having everything loaded at highest 
quality and being able to update every dynamic object, every frame, for a big chunk 
of the game world that can be reflected in that window.

21



Updating a BVH is Not Free

• Bounding Volume Hierarchy (BVH)
• Responsible for accelerating ray traversal
• Supported by hardware ray/triangle, 

ray/AABB intersection testing

• TLAS / BLAS Battlefield V [Deligiannis 2019]

• TLAS: 20 000 instances
• BLAS: 5000 meshes
• Naive TLAS + BLAS build : 60ms
• Staggered full & incremental BLAS rebuild

• N-frames incremental before full rebuild
• Don’t rebuild if matrices haven’t changed
• BLAS: 50/frame
• TLAS: 2800/frame
• TLAS + BLAS build (GPU): 1.15ms
• RayGen (GPU): 0.7ms → 0.8ms 

Mesh 1 Mesh 2 Mesh 3

Bottom-Level

Acceleration Structure

(BLAS)

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

Top-Level

Acceleration Structure 

(TLAS)

If we talk about numbers, here’s what I mean when I mention that updating a BVH is 
not free
As you know a BVH is the structure used to accelerate ray traversal in the scene
Latest generation GPUs accelerate this by providing hardware ray/triangle and 
ray/box intersection
This is supported by a two-layer structure, top and bottom
In Battlefield 5, the example here is 20 000 top-level instances and 5000 bottom-level 
meshes
A naïve update of the whole BVH is 60 milliseconds
Instead of updating the whole thing, by cleverly balancing rebuilds and refits, you can 
bring this down to 1.15ms/frame while slightly augmenting the cost of your trace
This means that the BVH is not perfect every frame, but you’ve significantly reduced 
the update cost without affecting tracing too much

22



Adapting Game Systems to RT - Streaming

Z4

Z6

Z7

Z5

Z2

Z3

Z1

Z12

Z14

Z15Z10

Z11

Z9

Z8 Z13

Z16

Z17

• Rays can go in any direction
• Off-screen mirror reflections

• No more concept of loading based on camera orientation
• Can’t prioritize based on user-driven view
• Ie.: camera, weapon scope

• Much higher resource residency required

Z20

Z22

Z18

Z19

Z21

Z24

Z25

Z23

Z27

Z26

Z29

Z30

Z28

Z32

Z31

Z34

Z35

Z33

LOD 0 - Near

LOD 1 - Mid

LOD 2 - Far

LOD 3 - Distant
LOD 4 - Vista

Streaming is another case that comes to mind that needs to be adjusted for ray 
tracing.
The well-used concept of positional loading prioritized by camera orientation goes
out the window
Ultimately this means that more resources need to stay resident at a high enough
resolution so that visuals (and transitions) are coherent

23



Adapting Game Systems to RT – Lights

• Which (most affecting) lights to choose?

• Acceleration structure-based selection
• Unity: camera-oriented acceleration structure

[Benyoub 2019] [Tatarchuk 2019]

• BFV: horizontal plane light list [Deligiannis 2019]

• Light Importance Sampling
• Dynamic Many-Light Sampling for Real-Time 

Ray Tracing [Moreau 2019]

• Stochastic Lightcuts [Yuksel 2019]

• Spatiotemporal reservoir resampling
[Bitterli 2020]

”It Just Works”: Ray-Traced Reflections in Battlefield V
[Deligiannis 2019]

Camera-oriented Acceleration 

Structure for Lights 

[Tatarchuk 2019] [Benyoub 2019]

How to handle lights is another one that comes to mind.
So how do you choose which lights to sample when a ray hits a surface?
You can use a camera-oriented acceleration structure, like what Unity does
Or you can use a horizontal plane with per-cell light lights
Another approach is to treat this as an importance sampling problem, with some 
great papers by Moreau and Yuksel
And lately the spatiotemporal reservoir resampling paper from Bitterli, that shows 
how reservoir sampling can accelerate convergence for both biased and unbiased use 
cases, and handle millions of lights in milliseconds.

24



Adapting Game Systems to RT – Materials
• Game engines rely heavily on artist-

authored material graphs

• Procedural Geometry
• Vertex displacement, instance vertex animation

• Transparency / alpha-mask
• Transparency, particles, vegetation
• Rasterization as a way to avoid geometry 
• RT: use any-hit shaders for parametric ray 

termination
• Requires shader invocation at hit

• Derivatives
• ddx(x), ddy(x): texture sampling

• Ray Differentials [Igehy 1999]

• Ray Cones [Amanatides 1984]

• Improved Shader and Texture Level of Detail 
Using Ray Cones [Akenine-Möller 2021]

Unreal Engine Material Graph

Ray Differentials [Igehy 1999]

Ray Cones [Amanatides 1984]

Another item here is material graphs
Game engines heavily rely on artist-driven material graphs where a lot of features 
assume concepts easily available for rasterization but not for ray tracing
Procedural geometry like vertex displacement or instance vertex animation in a 
shader affects the geometry in the BLAS, so it will require refits and rebuilds.  A refit 
or a rebuild is not something a shader can typically trigger.
Transparency where the mask is used to clip is another example.  That concept is 
much more complex to implement with any-hit shaders, and requires shader 
invocation which can affect performance.
Or pixel quad derivatives, to choose which mip level when sampling a texture.  No 
pixel quad for ray tracing. 

25



Towards Decoupled Real-Time Ray Tracing

Generate Rays Bin Rays Launch Rays Sort Hits Shade Hits Output

CS RGSCS CS CS CS

• A generalized pipeline for decoupled ray tracing [Eisenacher 2013]
• Sort large out-of-core ray batches & ray-hits for deferred sharing & 

shading

• Group work items together that make sense to optimize GPU workloads, 
occupancy, and overall performance

• 6 stages that can be adapted based on your needs

3 years in now into real-time ray tracing, and now that APIs are moving towards being 
able to launch rays from any shader stage, a trend is to move towards more 
decoupled ray tracing
Here’s a high-level example of a generalized pipeline where large out-of-core ray 
batches & ray-hits are sorted for deferred sharing & shading
Group work items together that make sense, to optimize GPU workloads, occupancy, 
and overall performance
Basically 6 stages that can be adapted based on your needs

26



CS RGSCS CS CS CS

Towards Decoupled Real-Time Ray Tracing

Generate Rays Bin Rays Launch Rays Sort Hits Shade Hits Output

• Generate Rays
• Build a list of rays that are required for ray tracing

• Launch in (X) space: screen/view, texture, etc. 

• Handle any resolution

First step, in a compute shader, is to build a list of rays that you need for ray tracing
Here because this is general you can think of launching rays in screen space, in 
texture space or any other parametrization of your choice
Can also do this at any resolution

27



CS RGSCS CS CS CS

Towards Decoupled Real-Time Ray Tracing

Generate Rays Bin Rays Launch Rays Sort Hits Shade Hits Output

• Bin Rays
• Group rays that are directionally aligned to maximize coherency 

[Deligiannis 2019] [Benyoub 2019] [Majercik 2019]
• Sort rays in octahedral space for ray direction binning

A Survey of Efficient Representations for 
Independent Unit Vectors 

[Cigolle 2014]

Then you bin the rays to maximize coherency 
One way to do this is to sort rays in some kind of space that allows you to bucket 

them by direction. 
Octahedral space is perfect for this.
Binning can go beyond directions, like ray types that you know will do similar work, 
but direction is definitely a common way to do this

28



CS RGSCS CS CS CS

Towards Decoupled Real-Time Ray Tracing

Generate Rays Bin Rays Launch Rays Sort Hits Shade Hits Output

• Launch Rays
• For each bin, launch rays

• Coherency
• Adjacent work performing similar 

operations & memory access

• Primary rays

• Shadow Rays

• Reflection Rays

• …

Then, for each bin you launch the rays
This is to manage coherency which is key for performance
So grouping things together that perform similar operations and memory accesses

29



CS RGSCS CS CS CS

Towards Decoupled Real-Time Ray Tracing

Generate Rays Bin Rays Launch Rays Sort Hits Shade Hits Output

• Sort Hits
• By material ID

• GPUs like predictable workloads
• Switch the focus to what costs: evaluating 

materials 

• To maximize GPU occupancy & wavefronts

• Group and batch a series items to 
later shade

Beads by BEADNOVA (Etsy)

Then, hits are gathered and sorted, by material ID, for example
You don’t shade just yet, but instead sort all the unsorted hits, into something more 
organized and regrouped
GPUs like predictable workloads and shading random materials from random rays 
doesn’t really align here
This is why this stage is important. By batching similar things, the overall GPU 
occupancy will later be improved

30



CS RGSCS CS CS CS

Towards Decoupled Real-Time Ray Tracing

Generate Rays Bin Rays Launch Rays Sort Hits Shade Hits Output

• Shade Hits
• Compute shader that runs based on each hit “type” 

to shade

• Secondary rays
• Hits might require secondary shading (ie.: 

reflections, shadows, GI)

• Queue secondary rays to Generate Rays stage

Beads by BEADNOVA (Etsy)

This next stage is when hits are shaded, where basically a compute shader runs based 
on each hit type to shade
By grouping common work items together, like materials of a certain type, you’re 
helping the GPU
This is also where you might launch secondary rays, for things like reflections or 
shadows, or global illumination
And those would enqueue back into the ray generation stage

31



CS RGSCS CS CS CS

Towards Decoupled Real-Time Ray Tracing

Generate Rays Bin Rays Launch Rays Sort Hits Shade Hits Output

• Output
• Reconstruction & reuse

• Merge with other non-RT (ie.: volumetric)

• A pipeline that can be customized for you needs, 
oriented towards maximizing the GPU

Beads by BEADNOVA (Etsy)

Finally the last stage where the final result is put together
You might also handle reconstruction at different resolutions, reusing results, and 
merging with non-ray tracing effects
The devil is in the details, of course, especially when it comes to reusing and merging 
results at different rates and resolutions to reduce variance
But overall this should give you a good idea of a general decoupled pipeline for real-
time ray tracing in games

32



Open Problems
Fun things to think about.  Maybe you can help solve?

33



General RTRT Open Problems

• Scheduling 
• Instruction cache, occupancy
• SIMD / data cache coherence 
• Just-in-time BLAS construction

• Traversal Shaders to build the entire AS when necessary 
[Lee 2020]

• Decoupling
• Reuse of intermediate results across paths & 

frames

• Noise
• Optimal MIS to reduce variance [Pharr 2018]
• Prefiltering + sampling + denoising

There are still a ton of general open problems

34



Open Problem #1

Massive & Custom Geometry Renderers
• Specialized “software” rasterizers
• Micro-polygon renderer

• Strand-based Hair
• Strand-based software rasterizer
• Geometry needed for BVH build

• Micro-polygon Geometry
• Micro-polygon renderer
• Constant streaming of geometry detail
• “Pixel is the new triangle”

• How do we handle these?

Frostbite Engine Hair [Taillandier 2020]

Unreal Engine 5 Nanite

In this world of hybrid pipelines we see more and more implementations of custom 
geometry renderers
The amazing strand-based hair that the Frostbite team has presented and shipped 
with the EA Sport’s FIFA team is a good example of a very optimized compute-based 
software rasterizer.  With ray tracing now, this software rasterizer has to interface and 
feed into the ray tracing acceleration structures, which are triangle and AABB-based, 
and not just render the final pixel on screen
Also recently, Unreal Engine 5’s micro-polygon geometry renderer Nanite, is bringing 
super high level of details to real-time where pixel is the new triangle.  This means 
constant streaming of geometry detail, and in the world of ray tracing as we saw can 
greatly affect acceleration structures and performance. Same thing here.
So, how do we handle these new trends?

35



Open Problem #2

Limitations of two-level hierarchies
• A tree blowing in the wind?
• 2-level hierarchy 

• Increased storage via unique data
• Increased pressure on building the 

BLAS
• Top: forest
• Bottom: tree

• 3-level hierarchy
• Top: forest
• Mid: tree branches/trunk

• Refit
• Bottom: leaf

• Instance transform

• “All problems in computer 
science can be solved by another 
level of indirection”

The next open problem is around challenges of a two-level hierarchy 
Let’s take the example of a tree blowing in the wind
You can implement this with a 2-level hierarchy where in the top level lives all the 
trees, so the forest really, 
And the bottom is the actual tree, which needs rebuilds over time as it animates in 
the wind
This leads to increased pressure of rebuilding the bottom level as the leaves animate, 
and a lot of unique geometry

Alternatively, with a 3-level hierarchy where you can split the forest, the tree and its 
branches, and narrow down and reduce how much rebuilds and refits you need.

I’m sure you can think of other examples where another level of indirection could 
help.

What’s the saying again “All problems in computer science can be solved by 

another level of indirection”?

36



Open Problem #3

Lenses (rifle/scope) & mirrors VS LODs & Streaming
• Expanding lens and impacts on LOD/streaming

https://commons.wikimedia.org/w/index.php?curid=18200682
By ŠJů, Wikimedia Commons, CC BY-SA 3.0

https://pixabay.com/photos/binoculars-looking-man-discovery-1209011/

Another interesting problem is lenses and mirrors.
Because of reflections and refractions, it’s now very difficult to predict where a ray 
will end up in the scene, and the impacts on LODs and streaming
A ray could end up reflecting or refracting into an unpredictable area, and considering 
that ray tracing expects things to be known upfront this can be an issue
Not necessarily a crash, but more adverse effects like things popping-in, or not 
visually being coherent
Users can notice this, and this can greatly affect the overall experience.

37



Open Problem #4

Mesh Shaders vs Ray Tracing

• Enables geometry 
expansion/reduction

• Brings exciting & new possibilities

Arbitrary data packet that expands into 
an arbitrary set of primitives

• Hit shader
• Hit a meshlet, require to invoke Task / 

Mesh Shader
• Non-trivial expansion for ray-test (versus 

hardware ray-triangle or ray-AABB)
• Trigger / feed-into BVH build?

Lastly, mesh shaders and ray tracing.
The concept of mesh shaders is a new exciting concept that simplifies the traditional 
rasterization pipeline with its vertex, tessellation and geometry shader stages and 
replaces it with 2 stages, task shaders and mesh shaders.
The challenge here between mesh shaders and ray tracing is the fact that arbitrary 
data packets, or meshlets, can expand into an arbitrary set of primitives. 
In the case of building games with both mesh shaders and ray tracing, and trying to 
keep things coherent, a hit shader that arbitrarily hits a meshlet would then have to 
invoke a task or mesh shader, which means a non-trivial expansion for ray testing, 
compared to the hardware support for ray-triangle and ray-AABB.  Sounds like quite 
the performance challenge, and so, maybe there is need for such an expansion to 
dynamically feed into the BVH builder for performance?

Some things to think about here.

38



Summary

• Real-time ray tracing adoption in games has significantly moved
forward since 2018

• Many games on PC

• Adoption on consoles too!

• Still have many challenges to solve

• We’re in this together
• Let’s work together on this!

39



Thank You

• Ulf Assarsson (Chalmers)
• Ari Silvenoinnen (Activision)
• Jon Greenberg (SEED) 
• Vicki Ferguson (SEED)
• Henrik Halén (SEED)
• Keven Villeneuve (SEED)
• Chris Lewin (SEED)
• Uma Jayaram (SEED)
• Jim Preston (SEED)
• Yuriy O’Donnell (Epic Games)

I would like to thank the following individuals, who were part of making this talk 
happen

40



SEED
seed.ea.com 

@SEED

Of course, check out our website, seed.ea.com and on twitter @ SEED

41



References
• [Aalto 2018] Aalto, Tatu. Experiments with DirectX Raytracing in Remedy’s Northlight Engine, GDC 2018.

• [Akenine-Möller 2021] Akenine-Möller, Tomas. Crassin, Cyril. Boksansky, Jakub. Belcour, Laurent. Panteleev, Alexey. Wright, Oli. Improved Shader and Texture Level of Detail Using Ray Cones, Journal of Computer Graphics Techniques (JCGT), vol. 10, no. 1, 1-
24, 2021.

• [Amanatides 1984] Amanatides, John. Ray Tracing with Cones, SIGGRAPH 1984.

• [Barré-Brisebois 2018] Barré-Brisebois, Colin. Halén, Henrik. Wihlidal, Graham. Lauritzen, Andrew. Bekkers, Jasper. Stachowiak, Tomasz and Andersson, Johan. Hybrid Rendering for Real-Time Ray Tracing, Chapter 25 in Ray Tracing Gems, edited by Eric Haines 
and Tomas Akenine-Möller, Apress, 2019. 

• [Benyoub 2019] Benyoub, Anis. Leveraging Ray Tracing Hardware Acceleration In Unity, Digital Dragons 2019.

• [Bitterli 2020] Bitterli, Benedikt. Wyman, Chris. Pharr, Matt. Shirley, Peter. Lefohn, Aaron. Jarosz, Wojciech. Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM Transactions on Graphics, 2020.

• [Deligiannis 2019] Deligiannis, Johannes. Schmid, Jan. ”It Just Works”: Ray-Traced Reflections in Battlefield V, GDC 2019.

• [Epic 2018] Epic Games demonstrates real-time ray tracing in Unreal Engine 4 with ILMxLAB and NVIDIA, GDC 2018.

• [Epic 2020] A first look at Unreal Engine 5, https://www.unrealengine.com/en-US/blog/a-first-look-at-unreal-engine-5.

• [Eisenacher 2013] Eisenacher, Christian. Nichols, Gregory. Selle, Andrew. Burley, Brent. Sorted Deferred Shading for Production Path Tracing, EGSR 2013.

• [Igehy 1999] Igehy, Homan. Tracing Ray Differentials, SIGGRAPH 1999 Proceedings.

• [Keller 2019] Keller, Alexander. Viitanen, Timo. Barré-Brisebois, Colin. Schied, Christoph. McGuire, Morgan. Are we done with ray tracing? Course, SIGGRAPH 2019.

• [Karis 2020] Karis, Brian. Nanite. https://twitter.com/BrianKaris/status/1283057629506367488?s=20.

• [Lee 2020] Lee, Won-Jong. Liktor, Gabor. Lazy Build of Acceleration Structures with Traversal Shaders, SIGGRAPH Asia 2020.

• [Majercik 2019] Majercik, Alexander. Guertin, Jean-Philippe. Nowrouzezahrai, Derek. McGuire, Morgan. Dynamic Diffuse Global Illumination with Ray-Traced Irradiance Fields. Journal of Computer Graphics Techniques (JCGT), vol. 8, no. 2, 1-30, 2019.

• [Microsoft] DirectX Raytracing (DXR) Spec: https://github.com/microsoft/DirectX-Specs/blob/master/d3d/Raytracing.md.

• [Olejnik 2020] Olejnik, Michał. Paweł, Kozłowski. Raytraced Shadows in Call of Duty: Modern Warfare, Digital Dragons 2020.

• [Pharr 2018] Pharr, Matt. Adopting Lessons from Offline Ray-Tracing to Real-Time Ray Tracing for Practical Pipelines, “Advances in Real-Time Rendering in Games” course, SIGGRAPH 2018.

• [Schreier 2017] Schreier, Jason. Horizon Zero Dawn Uses All Sorts Of Clever Tricks To Look So Good. Frustum Culling Video, Kotaku, online. 2017.

• [Stachowiak 2015] Stachowiak, Tomasz. Yuludag, Yassin. Stochastic Screen-Space Reflections, Advances in Real-Time Rendering Course, SIGGRAPH 2015.

• [Tatarchuk 2019] Tatarchuk, Natalya. Towards Filmic Quality at 30 FPS: Real-Time Ray Tracing for Practical Game Engine Pipelines, GDC 2019.

• [Taillandier 2020] Taillandier, Robin. Valdes, Jon. Every Strand Counts: Physics and Rendering Behind Frostbite’s Hair, Digital Dragons 2020.

• [Yuksel 2019] Yuksel, Cem. Stochastic Lightcuts, HPG 2019. 

42



Merci!
Thank You!

Colin Barré-Brisebois
Head of Technology, SEED, Electronic Arts

@ZigguratVertigo

43


