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ABSTRACT
Recovering 3D face models from in-the-wild face images has numer-
ous potential applications. However, properly modeling complex
lighting effects in reality, including specular lighting, shadows, and
occlusions, from a single in-the-wild face image is still considered as
a widely open research challenge. In this paper, we propose a convo-
lutional neural network based framework to regress the face model
from a single image in the wild. The outputted face model includes
dense 3D shape, head pose, expression, diffuse albedo, specular
albedo, and the corresponding lighting conditions. Our approach
uses novel hybrid loss functions to disentangle face shape identi-
ties, expressions, poses, albedos, and lighting. Besides a carefully-
designed ablation study, we also conduct direct comparison ex-
periments to show that our method can outperform state-of-art
methods both quantitatively and qualitatively.
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1 INTRODUCTION
Faithfully recovering 3D dense models of human faces from in-
the-wild images is a long-standing research challenge in computer
graphics, computer vision, and multimedia communities, and such a
technology has shown its power in many applications, for example,
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3D avatar creation [6, 15, 32], face recognition [3, 19, 35, 48], facial
video editing [2, 17, 31], and 3D facial animation [8, 9, 28]. Due
to the lacking of 3D information in 2D images, inferring the 3D
face shape from a single face image in the wild is particularly diffi-
cult. The emergence of 3D Morphable Models (3DMMs) [5, 18, 29],
which define a space of continuous face deformations and pro-
vide low-dimensional parametric representations, makes the face
reconstruction problem computationally solvable. Conventional
optimization approaches [14, 15, 27, 47] search for the optimal align-
ment between the projected model and the image through inverse
rendering in the space defined by the 3DMMmodels. However, such
a high-dimensional optimization process is often error-prone to lo-
cal minimums and thus largely depends on initialization. In addition,
most of existing 3D face reconstruction methods [7, 17, 41, 44, 46]
only model a diffuse albedo and diffuse lighting, and they also put
limited effort on the reconstruction of facial expressions. With nei-
ther specular albedo nor specular lighting, the accuracy of 3D face
reconstruction is limited.

Inspired by the above challenge, in this paper we propose a
new deep learning based framework to automatically infer 3D face
models with expressions and albedos from an input 2D face im-
age. Specifically, we design novel hybrid loss functions in the deep
learning framework to simultaneously infer realistic face shapes,
expressions, diffuse and specular albedos, and lighting conditions
from a single in-the-wild face image. We also conduct various ex-
periments to evaluate the effectiveness and accuracy of our method
and benchmark its performance.

The main contributions of this work include: (i) A CNN-based
network that reconstructs the face model from a single in-the-wild
image with accurate dense 3D shape, head pose, expression, diffuse
albedo, specular albedo, and the corresponding lighting conditions.
(ii) The proposed method is the first-of-its-kind framework to auto-
matically entangle diffuse albedos from specular albedos, as well
as their corresponding light conditions, from a single face image
input. (iii) Novel loss functions are designed to accurately train the
deep learning models for 3D face reconstruction tasks, including
the photometric loss, inner mouth loss, and the uniform loss.

2 RELATEDWORK
Generally, the goal of 3D face reconstruction is to estimate the face
identity, expression, and albedo, based on various types of inputs,
such as a single image, multi-view images, monocular video, or
RGB-D sequences. Existing methods can generally be classified
into two categories: 1) optimization based methods, and 2) deep
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learning based methods. Conventional optimization approaches fit
a model to given images by optimizing energy functions. In the
early years, Romdhani and Vetter [39] proposed a multi-features
fitting algorithm by utilizing multiple types of information in the
images, such as edges and specular lighting, to reduce local minima.
Garrido et al. [15] proposed a multi-layer optimization method to
generate detailed 3D face rigs from monocular video. Thies et al.
[47] and Ma and Deng [31] presented optimization algorithms and
systems to achieve real time facial reenactment from live video.
But the limitations of conventional optimization methods restrict
their further improvement. It is well known that, the convergence
of iterations is quite sensitive to initial conditions. Thus, the above
non-linear optimization methods may be less robust to handle a
variety of inputs in practice.

Deep learning based regression methods that reconstruct 3D
faces from 2D images have produced many promising results. Deep
learning based methods can be further classified into two groups:
1) supervised learning, and 2) unsupervised learning. Supervised
learning methods [34, 38, 43] generally require ground truth data
as the reference. But often it is practically difficult to collect a large
amount of dense human face scans due to the expense and the time-
consuming labor work. Thus, many researchers resorted to the
generation of synthetic data using morphable models[11]. The syn-
thetic data usually cannot cover high diversity such as in-the-wild
images; as a result, the performance of such trained models is often
limited. To tackle the above limitations, unsupervised and weak-
supervised methods have been introduced in recent years. Tewari
et al. [46] proposed a parametric model-based decoder, which is
fully analytical and differentiable, to enable unsupervised end-to-
end training. Genova et al. [17] proposed a model that is trained at
the perceptual level. They only impose the similarity of identity fea-
tures between the input and the learned output, which is extracted
from a face recognition network. Gecer et al. [16] presented a GAN
model combined with a hybrid content loss function. Sanyal et al.
[41] proposed the RingNet architecture, which utilizes a controlled
human face collection to enforce the shape to be clustered to the
same identity. Feng et al. [12] presented a Detailed Expression Cap-
ture and Animation model to robustly produce an UV displacement
map from a low-dimensional latent space.

Different from the previous works that directly regress 3DMM
coordinates from input, several recent works [10, 13, 23, 49] are
model-free and they directly regress 3D face voxels or meshes. Jack-
son et al. [23] proposed a method to directly regress the volumetric
representation of the 3D facial geometry from a single image. Feng
et al. [13] designed a 2D representation, named UV position map.
Their method first transfers a 3D face model to a 2D UV map space,
and then, a CNN is used to repress it from a single 2D image. Wei
et al. [49] proposed a graph convolution network (GCN) to directly
regress 3D face model coordinates. Although the above model-free
methods can capture more details and variations than model-based
methods, they often require an explicit 3D supervision.

Faces in in-the-wild (unconstrained) images show a high vari-
ability of poses, expressions, and illuminations. Researchers have
dealt with unconstrained face images for many years, and have pro-
duced some exciting results, such as face recognition [3, 19, 35, 48],
face alignment [51, 52, 54], and face segmentation [33, 53]. These
methods encode rich information in a low-dimensional space to

make face reconstruction from an unconstrained image possible,
with the aid of deep learning algorithms.

3 PRELIMINARIES
Morphable 3D Face Models. The Basel face model [18] is one
of widely-used 3DMM face models. Specifically, given the shape
coefficients c𝑖 ∈ R199, the expression coefficients c𝑒 ∈ R100, and the
albedo coefficients c𝑡 ∈ R199 with standard Normal distributions,
the shape and texture of a 3D face model are represented as follows:

S(c𝑖 , c𝑒 ) = S +M𝑖c𝑖 +M𝑒c𝑒 ,

T(c𝑡 ) = T +M𝑡 c𝑡 ,
(1)

where S ∈ R3𝑛 and T ∈ R3𝑛 are the mean face shape and the
texture, respectively; 𝑛 is the number of vertices; M𝑖 ∈ R3𝑛×199,
M𝑡 ∈ R3𝑛×199 and M𝑒 ∈ R3𝑛×100 are the matrices calculated by
multiplying linear PCA bases and the diagonal matrices containing
the square roots of the corresponding PCA eigen-values.

However, the texture model used by current 3DMMs is tangled
with illumination, which introduces many external interference
factors, such as baking in shading, shadowing, specularities, and
light source colors. Thus, current model-based methods consider
neither specular albedo nor lighting during the face reconstruction
process. Hence, applications of these methods are limited because of
incomplete texture. Smith et al. [45] proposed a pipeline to acquire
truly intrinsic diffuse and specular albedo, which fully factors out
the effects of camera, illumination, and other interference factors.
Substituting this new albedo model to the original Basel albedo
model, new face albedo colors are then represented as:

T(c𝑡 ) = [(T𝑑 +M𝑑c𝑡 ) + (T𝑠 +M𝑠c𝑡 )]
1
2.2 , (2)

where T𝑑 ∈ R3𝑛 and T𝑠 ∈ R3𝑛 are the average diffuse albedo
and the average specular albedo, respectively;M𝑑 ∈ R3𝑛×145 and
M𝑠 ∈ R3𝑛×145 are basis matrices for the diffuse and the specular
albedo, respectively. A non-linear gamma transformation is used
to fit the camera’s colour space for the camera model that does not
work in sRGB. In Figure 1, we show the Basel Face Model that is
used in this work.

Figure 1: (a) shows the original Basel face model with the
ears and the neck. We crop the frontal face area (without the
ears and the neck) and the resulting face model (b) used in
our work. The red area in (c) is a pre-defined mesh which
wraps around the inner mouth area. (d) shows 68 pre-defined
facial landmarks (red dots) on the cropped Basel face model.
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Camera Model. We employ a weak-perspective camera model
for the projection of 3D faces to 2D images. The position and direc-
tion of the camera are fixed, and its field of view (FOV) is empirically
selected. The projection of each vertex v is represented by the fol-
lowing perspective transformation:

Projection(v) = 𝑓 × R × T × v , (3)

where 𝑓 is the scaling factor, R and T(𝑡𝑥 , 𝑡𝑦, 𝑡𝑧) are the 3D face
rotation matrix and translation matrix, respectively. Because the
rotationmatrixR can be simply parameterized as three Euler Angles
(𝛼 , 𝛽 , 𝛾 ), the pose of the 3D face can be regressed as 7 parameters:
𝛼 , 𝛽 , 𝛾 , 𝑡𝑥 , 𝑡𝑦 , 𝑡𝑧 , and 𝑓 .

Illumination Model. We use the Blinn-Phong reflection model
for shading. To restore realistic face albedos and lighting, our illu-
mination model includes two parts to render face albedo colors. We
assume the diffuse albedo is Lambertian and use Spherical Harmon-
ics (SH) [36, 37] to approximate the scene of diffuse illumination.
The per-vertex shaded diffuse albedo color 𝑐𝑑 is then computed as:

𝑐𝑑 = 𝑡𝑑 ·
𝐵2∑︁
𝑏=1

_𝑏 · Π𝑏 ( ®n) , (4)

where 𝑡𝑑 is the vertex diffuse albedo, ®n is the normalized vertex
normal, Π : R3 → R are SH basis functions, and _ denotes the
corresponding SH coefficients.

To compute the specular albedo colors, a differentiable Blinn-
Phong bidirectional reflectance distribution function (BRDF) is em-
ployed. To simplify the process, we only model a single light source
and compute the specular albedo color 𝑐𝑠 as follows:

𝑐𝑠 = 𝑡𝑠 · [Nor(®v𝑜𝑢𝑡 − ®v𝑖𝑛) · ®n]𝜑 , (5)

where Nor(·) represents the normalization process, 𝑡𝑠 is the
vertex specular albedo, ®v𝑖𝑛 is the normalized incoming light vector
calculated by the predicted light source position p𝑙 , ®v𝑜𝑢𝑡 is the
normalized outgoing light vector calculated by the pre-defined
camera position, ®n is the normalized vertex normal, and 𝜑 is the
shininess coefficient. For each vertex, the final rendered color 𝑐 is
then defined as: 𝑐 = 𝑐𝑑 + 𝑐𝑠 .

Figure 2: Schematic view of our method. We use the ResNet-
50 (DCNNs) [22] as the backbone of our network.

4 OUR METHOD
In this section we describe our deep learning based model with
hybrid loss functions to regress the face 3DMM parameters and
simulate realistic lighting conditions from an in-the-wild image.
The schematic view of our deep network is illustrated in Figure 2.
As shown in this figure, we choose the ResNet-50 (DCNNs) [22]
as the CNN backbone to regress the shape and albedo coordinates
of the face morphable model, and infer the face pose and lighting
condition. The face morphable model represents a wide range of
faces in a low-dimensional space, and it is particularly suitable for
CNN-based methods. To form a self-surpervised training process, a
differentiable renderer is introduced into our model to measure the
discrepancy between the input and the learned result. Meanwhile,
a face recognition network [42] is used in our model to generate
face identity features during the training. For each input image, we
pre-label its face segmentations, skin weights, and 2D landmarks. In
particular, in this work we propose hybrid loss functions (described
below) to train our model to reconstruct a realistic face from a
single in-the-wild image.

4.1 Hybrid Loss Functions
The hybrid training loss functions in our method are defined as
follows:

𝐿 = 𝜔𝑖𝑑𝐿𝑖𝑑 + 𝜔𝑝ℎ𝑜𝑡𝑜𝐿𝑝ℎ𝑜𝑡𝑜 + 𝜔𝑙𝑚𝑘𝐿𝑙𝑚𝑘 + 𝜔𝑚𝑜𝑢𝑡ℎ𝐿𝑚𝑜𝑢𝑡ℎ

+ 𝜔𝑟𝑒𝑔𝐿𝑟𝑒𝑔 + 𝜔𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 ,
(6)

where 𝐿𝑖𝑑 denotes the identity loss, 𝐿𝑝ℎ𝑜𝑡𝑜 denotes the photo-
metric loss, 𝐿𝑙𝑚𝑘 denotes the landmark re-projection loss, 𝐿𝑚𝑜𝑢𝑡ℎ

denotes the inner mouth loss, 𝐿𝑟𝑒𝑔 denotes the regularization loss,
and 𝐿𝑠𝑚𝑜𝑜𝑡ℎ denotes the uniform loss. The details of these losses
are described below.

In our experiments, the weights for the above losses are empir-
ically determined as follows: 𝜔𝑖𝑑 = 0.2, 𝜔𝑝ℎ𝑜𝑡𝑜 = 1.92, 𝜔𝑙𝑚𝑘 =

1.8𝑒−3, 𝜔𝑚𝑜𝑢𝑡ℎ = 1.3𝑒−3, 𝜔𝑟𝑒𝑔 = 5.0𝑒−4, and 𝜔𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 = 5.0.

4.1.1 Identity Loss. Several recent 3D face reconstruction meth-
ods [16, 17] utilized features extracted from face recognition net-
works to formulate a loss and effectively generate realistic faces.
Our method takes advantage of the state-of-art face recognition
network [42], F , to extract the features of both input images and
the reconstructed images. Then, we compute the cosine similarity
between the two paired features as the identity loss, 𝐿𝑖𝑑 , as follows:

𝐿𝑖𝑑 = 1 − F (I𝑖𝑛)F (I𝑟 )
∥F (I𝑖𝑛)∥2 · ∥F (I𝑟 )∥2

, (7)

where ∥ · ∥2 denotes the 𝑙2-norm, and I𝑖𝑛 and I𝑟 denote the
input images and the reconstructed (rendered) images, respectively.
This loss encourages the reconstruction image to be close to the
input image in the low-dimensional embedding space, so that the
reconstructed face can capture more fundamental and detailed
identity information of the input face.

4.1.2 Photometric Loss. The above identity loss only works at
the perceptual level and the used face recognition network [42] is
trained to be robust with albedo colors and illuminations. Therefore,
the identity loss ignores pixel level details. To enable our model to
recover faithful face albedo colors, we need to introduce additional
information into our networks. The challenge is that we cannot
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simply subtract the rendered image from the input image due to
two main reasons: i) Faces in in-the-wild images often have occlu-
sions. A face can be occluded by hair, beard, or other objects such
as a hat or a pair of glasses. These occlusions could lead to errors in
local albedo. ii) Lighting conditions can also have significant influ-
ence on face albedo colors. Our model aims to recover diffuse and
specular albedos, and corresponding lighting conditions. Because
in the rendering pipeline, the diffuse and specular albedo colors
are calculated in a totally different way, direct subtraction cannot
disengage them in our model.

To reduce the interference caused by occlusions, we apply a face
segmentation network to put the focus of our model on face skin
regions, I𝑓 𝑎𝑐𝑒 , obtained through a skin detector (described below).
In these skin regions, we need to further separate the diffuse albedo
and the specular albedo. Inspired by the work of [7] and based on
a key observation that the diffuse albedo is often smoother, more
uniform, and contains much more colour information than the
specular albedo, we construct a weighted mask (refer to Eq. 9) based
on I𝑓 𝑎𝑐𝑒 , which is able to drive out the specular albedo interference
and maximally capture the original diffuse albedo colors.

We let the diffuse and the specular albedos go through indepen-
dent rendering processes to generate two face images I𝑟_𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒
and I𝑟_𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 . Meanwhile, a projected face region I𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 is ob-
tained. Our photometric loss 𝐼𝑝ℎ𝑜𝑡𝑜 only focuses on the intersection
of I𝑓 𝑎𝑐𝑒 and I𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 , denoted as M. Formally, 𝐿𝑝ℎ𝑜𝑡𝑜 is defined as
follows:

𝐿𝑝ℎ𝑜𝑡𝑜 =

∑
𝑖∈M 𝐶𝑠𝑘𝑖𝑛,𝑖 · ∥I𝑖𝑛,𝑖 − I𝑟_𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒,𝑖 ∥2∑

𝑖∈M 𝐶𝑠𝑘𝑖𝑛,𝑖

+ [
∑
𝑖∈M ∥I𝑖𝑛,𝑖 − (I𝑟_𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒,𝑖 + I𝑟_𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟,𝑖 )∥2

|M| , (8)

where: 𝐶𝑠𝑘𝑖𝑛,𝑖 =
{ 1, if 𝑝𝑖 > 0.5,
𝑝𝑖 , otherwise, (9)

𝑝𝑖 is the probability of the pixel 𝑖 is skin,
|M| denotes the size ofM .

[ is a user-specified weight.

We adopt a naive Bayes classifier with Gaussian Mixture Models
(GMMs) to compute 𝑝𝑖 for each pixel 𝑖 in I𝑓 𝑎𝑐𝑒 . To this end, a skin
pixel has a higher weight than beard, hair, and specular highlight
pixels when we calculate the first term in Equation (8).

4.1.3 Landmark Re-projection Loss. Both the above identity loss
and the photometric loss are sensitive to the misalignment between
input and rendered images. Thus, we introduce a landmark loss
in our network to improve the convergence and the effectiveness
of other losses. Basically, the landmark loss 𝐿𝑙𝑚𝑘 measures the
Euclidean distance between the labeled 2D landmarks k𝑖 on input
images and the projections of corresponding landmarks on 3D
morphable face model k𝑝

𝑖
as follows:

𝐿𝑙𝑚𝑘 =
1
|K |

∑︁
𝑖∈K

`𝑖 ∥k𝑖 − k𝑝
𝑖
∥2 , (10)

whereK is the set of landmarks, and `𝑖 is the importance weight
of the i-th landmark. We assign large weights (e.g., 20) to the land-
marks on both the outer mouth and the eyebrows, while assign
small weights (e.g., 1) to the remaining ones.

4.1.4 Inner Mouth Loss. The shape of the mouth generally plays
an important role for facial expressions. The accurate estimation
of the inner mouth landmarks is challenging, especially for closed
or slightly open mouths, because of the overlapping of the upper
and the lower lip contours. In addition, the landmark loss only
has limited influence on back-propagation and parameters update.
Instead of only using sparse landmarks, we utilize the dense inner
mouth area to formulate a loss to constrain the mouth expression.
We utilize several geometry faces to enclosure the inner mouth area
of the 3D morphable face model (refer to Figure 1(c)). The dense
inner mouth loss 𝐿𝑚𝑜𝑢𝑡ℎ is computed as the difference between the
projected inner mouth area 𝐴𝑝 and the labeled inner mouth area 𝐴
as follows:

𝐿𝑚𝑜𝑢𝑡ℎ = ∥𝐴 −𝐴𝑝 ∥, (11)

where ∥ · ∥ denotes the absolute value of 𝑙1-norm. To ensure
a stable training process, this loss will only be included after 50k
iterations.

4.1.5 Regularization Loss. Biases could be introduced if only the
above losses are used to train our model. Such biases are often
considered as the domain gap between real face images and the 3D
morphable face model. Hence, a regularization loss is necessary to
enforce the distribution of the reconstructed faces to be close to the
zero-mean standard normal distribution assumption and to prevent
model degeneration. The regularization loss 𝐿𝑟𝑒𝑔 is formulated as
follows:

𝐿𝑟𝑒𝑔 =
∑︁

∥c𝑖 ∥2 + ∥c𝑡 ∥2 + ∥c𝑒 ∥2 (12)

where c𝑖 represents shape coefficients, c𝑡 represents albedo co-
efficients, and c𝑒 represents expression coefficients in the 3D mor-
phable face model.

4.1.6 Uniform Loss. To reward the amount of information picked
up by the specular albedo, we apply a uniform loss on the 3D face
diffuse albedo and Spherical Harmonics (SH) lighting parameters.
The loss is designed to penalize diffuse albedo color variance, which
makes the diffuse albedo colors to be smooth and uniform. the
uniform loss 𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 is defined as follows:

𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 =
1
|T |

∑︁
𝑖∈T

(𝑡𝑖 − 𝑡𝑚𝑒𝑎𝑛) +
𝐵2∑︁
𝑏=1

3∑︁
𝑖=1

_𝑏,𝑖 − _𝑏 ; (13)

where T denotes the lit diffuse albedo colors, _ denotes SH
coefficients, and 𝐵 denotes the number of SH bands.

4.2 Implementation Details
Here we describe the details of setup and training of our model. We
used the face recognition network (FaceNet) proposed by Schroff
et al. [42] and trained it with the triplet loss on the Microsoft Celeb
(Ms-Celeb-1M) dataset [21], which contains about 10 millions face
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images of 86 thousands identities. We employed a weighted U-
Net [53] combined with a pixel-level cross entropy loss to train our
face segmentation network on the CelebAMask-HQ dataset [26],
which contains about 30 thousands images and 19 classes labels. To
detect and align all face images, we adopted the method proposed
by Zhang et al. [52] with the image size of 224 × 224. To detect 68
IBUG facial landmarks [40], we employed the method in [4] and
trained it on the 300W-LP dataset [54]. ResNet [22] is a powerful
network structure to do image recognition related tasks, thus we
chose it to form the main body of our network. We trained our face
reconstruction network on the CelebA dataset [30], which contains
about 200 thousand images of 10 thousand identities. We randomly
picked 2000 images from the CelebA dataset as a test set (called
the CelebA test set in this paper). Our model training used the
Adam optimizer with batch size of 32, learning rate of 5𝑒−5, and
200 thousand iterations.

5 RESULTS AND EVALUATIONS

Full Model w/o Luniform

             (a)                        (b)                        (c)                         (d)                        (e)                          (f )                        (g)

    input images              di�use albedo     specular albedo     full albedo      di�use albedo       specular albedo       full albedo 

Figure 3: Example comparisons between our full model (b-d)
and the model without 𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 (e-g). (a): input face images
(with different face poses and expressions) selected from the
CelebA test set. (b): the lit diffuse albedo colors produced by
our full model. (c): the lit specular albedo colors produced by
our full model. (d): the reconstructed faces produced by our
full model. (e): the lit diffuse albedo colors produced by our
model without 𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 . (f): the lit specular albedo colors pro-
duced by our model without 𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 . (g): the reconstructed
faces produced by our model without 𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 .

5.1 Ablation Study
We conducted multiple ablation experiments on the CelebA test
set to validate the effectiveness of each loss function (except 𝐿𝑙𝑚𝑘 )
in our model (refer to Section 4.1). Note that we did not conduct
an ablation experiment to take out the landmark re-projection loss
𝐿𝑙𝑚𝑘 , since our model cannot converge properly without 𝐿𝑙𝑚𝑘 .

The Uniform Loss. In Figure 3, we show several comparison re-
sults between our full model and our model minus the uniform loss
function 𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 . As shown in this figure, our full model (with the
introduced 𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚) can better recover the diffuse/specular albedo,
compared to the one without the uniform loss function. Specifically,
comparing (b) and (e), we can see that 𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 helps our model
to restore a uniform lit diffuse albedo. Without 𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 , the spec-
ular parts in a face mainly blend into the diffuse albedo colours
(red dotted box in Figure 3). As such, the remaining information
is insufficient for our model to correctly learn the specular albedo

and its corresponding lighting. A more accurate specular albedo
can be learned with 𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 (c) than the case without 𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚
(f). Finally, the reconstructed faces by our full model with 𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚
(d) have more realistic albedos than the case without 𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 (g),
using the input ground-truth images (a) as the reference.

Identity/Photometric/Regularization loss. In Figure 4, we
show three examples to validate the effectiveness of the identity
loss 𝐿𝑖𝑑 , the photometric loss 𝐿𝑝ℎ𝑜𝑡𝑜 , and the regularization loss
𝐿𝑟𝑒𝑔 . As shown in this figure, the results by our full model (b) have
sharper texture and more realistic appearance than those by our
model without 𝐿𝑖𝑑 (c). This can be obviously observed around the
eyes (within red dotted boxes). Comparing (b) and (d), we can see
that our model without 𝐿𝑝ℎ𝑜𝑡𝑜 cannot correctly produce the correct
face albedos and corresponding lighting conditions. In addition,
comparing (b) and (e), we can see that our model without 𝐿𝑟𝑒𝑔
cannot produce accurate face shapes, since the regularization loss
𝐿𝑟𝑒𝑔 can help to prevent the degeneration of the reconstructed faces
and make the reconstructed faces fall into the distribution of the
trained morphable face model.

Inner Mouth Loss. In Figure 5 we show two examples to val-
idate the effectiveness of the inner mouth loss 𝐿𝑚𝑜𝑢𝑡ℎ . With the
introduction of 𝐿𝑚𝑜𝑢𝑡ℎ that can help to preserve the inner mouth
shape in the reconstructed faces, especially for closed or slightly
open mouth cases, our full model can reconstruct more accurate
mouth shapes and thus more accurate facial expressions than our
model without 𝐿𝑚𝑜𝑢𝑡ℎ .

Table 1: The mean errors and standard deviations of pixel
colors on the CelebA test set

𝐿𝑖𝑑 𝐿𝑝ℎ𝑜𝑡𝑜 𝐿𝑙𝑚𝑘 𝐿𝑚𝑜𝑢𝑡ℎ 𝐿𝑟𝑒𝑔 𝐿𝑢𝑛𝑖 𝑀𝑒𝑎𝑛 ± 𝑆𝑡𝑑√ √ √ √ √ √
0.115 ± 0.169

× √ √ √ √ √
0.118 ± 0.172√ × √ √ √ √
0.228 ± 0.247√ √ × √ √ √

𝑁𝑎𝑁√ √ √ × √ √
0.117 ± 0.170√ √ √ √ × √
0.148 ± 0.192√ √ √ √ √ × 0.123 ± 0.179

Table 1 shows the albedo color accuracies on the CelebA test set
by different versions of our model. We calculated the mean errors
and standard deviations between the input face images and the
images rendered from the corresponding reconstructed faces by
different versions of our model. From this table, we can see that
our full model achieves the smallest error, compared to other ver-
sions with one loss function removed. Specifically, the photometric
loss 𝐿𝑝ℎ𝑜𝑡𝑜 makes the largest contribution to the reconstruction
accuracy of albedo colors, followed by the regularization loss 𝐿𝑟𝑒𝑔 .
Other loss terms also help to improve the accuracy.

We further evaluated the reconstructed shape accuracy of dif-
ferent versions of our model on the FaceScape Dataset [50]. In our
experiments, we randomly chose 10 males and 10 females from the
multi-view data, and calculated the point-to-plane distance using
the Iterative Closest Point (ICP) algorithm with an isotropic scale to
find the best alignment. The errors are presented in Table 2. From
this table, we can see that the regularization loss 𝐿𝑟𝑒𝑔 makes the
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Figure 4: Example comparisons to show the effectiveness of the identity loss 𝐿𝑖𝑑 , the photometric loss 𝐿𝑝ℎ𝑜𝑡𝑜 , and the regular-
ization loss 𝐿𝑟𝑒𝑔.

             (a)Input                    (b) w/o Lmouth              (c)Full Model

Figure 5: Example comparisons to show the effectiveness of
the inner mouth loss 𝐿𝑚𝑜𝑢𝑡ℎ . (a): input face images selected
from the CelebA test set. (b): the reconstructed face shapes by
our model without 𝐿𝑚𝑜𝑢𝑡ℎ . (c): the reconstructed face shapes
by our full model.

largest contribution to the shape accuracy, followed by the identity
loss 𝐿𝑖𝑑 . Other loss terms also make contributions to the accuracy
of the reconstructed face shapes.

5.2 Quantitative Evaluations
We also performed quantitative evaluations by comparing our
method with some state of the art face reconstruction methods,
including 3DDFA_V2 [20], MGCNet [44], the weakly-supervised
learning (WSL) based method [7], PRNet [13], and RingNet [41].

Quantitative shape accuracy on the MICC dataset. We first
quantitatively compared the reconstructed shape accuracy among
our method the above state of the art methods on the MICC Flo-
rence 3D Faces Dataset [1]. The MICC dataset contains 53 identities,
where the data of each identity contain a high quality neutral face

Table 2: The means and standard deviations of the recon-
struction errors (in mm) on 400 face meshes in the FaceScape
dataset [50]

𝐿𝑖𝑑 𝐿𝑝ℎ𝑜𝑡𝑜 𝐿𝑙𝑚𝑘 𝐿𝑚𝑜𝑢𝑡ℎ 𝐿𝑟𝑒𝑔 𝐿𝑢𝑛𝑖 𝑀𝑒𝑎𝑛 ± 𝑆𝑡𝑑√ √ √ √ √ √
2.05 ± 0.79

× √ √ √ √ √
2.39 ± 1.13√ × √ √ √ √
2.27 ± 1.09√ √ √ × √ √
2.15 ± 0.87√ √ √ √ × √
9.89 ± 5.81√ √ √ √ √ × 2.16 ± 0.77

scan and three video clips in different environments (cooperative,
indoor, and outdoor). The dataset only provides a single neutral
face scan for each identity; however, the PRNet method [13] is
based on position maps and it cannot remove expressions from
input images. To make a fair comparison, we manually selected 10
to 20 frames from each video clip so that the neutral expression
and various face poses can be covered. In the RingNet method [41],
we defined a front face mesh covering similar area with the other
methods. In this comparison, we average the resulting meshes from
all the frames in each video clip and then compare the averaged
mesh with the ground truth mesh/scan. Specifically, we run the ICP
algorithm with an isotropic scale to find the optimal alignment and
then compute the point-to-plane distances between the two meshes
as the shape accuracy errors. The obtained statistical results in this
quantitative comparison are presented in Table 3. As shown in this
table, our method achieves the smallest average errors among all
the methods for all the three video clips (corresponding to three dif-
ferent environments). Example comparison results are also shown
in Figure 6. From this figure, we can see that the face shapes pro-
duced by our method are clearly closer to the ground-truth face
than other methods.

Quantitative shape accuracy on the FaceScape dataset. We
also quantitatively compared the shape accuracy among ourmethod
and the above state of the art methods on the FaceScape Dataset
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   MICC Frames                         Ours            3DDFA_V2[17]      MGCNet[40]      WSL-based[6]         PRNet[10]       RingNet[37]

Figure 6: Example comparisons among our method and the
selected state of the art methods on the MICC Dataset. The
example frames (from top to bottom) are taken from coop-
erative, indoor, and outdoor video clips, respectively. Each
face shape is the averaged face mesh for the corresponding
video clip.

Table 3: The average values and standard deviations of the
point-to-plane distances (in mm) between the results and the
ground truths on the MICC Dataset

Methods Cooperative Indoor Outdoor
Ours 1.60 ± 0.55 1.63 ± 0.52 1.68 ± 0.65

3DDFA_V2 [20] 1.66 ± 0.56 1.67 ± 0.52 1.71 ± 0.66
MGCNet [44] 1.78 ± 0.55 1.78 ± 0.54 1.81 ± 0.59
WSL-based [7] 1.68 ± 0.52 1.67 ± 0.54 1.73 ± 0.62
PRNet [13] 2.01 ± 0.65 2.00 ± 0.58 2.13 ± 0.66
RingNet [41] 1.72 ± 0.58 1.73 ± 0.60 1.75 ± 0.59

[50]. The FaceScape Dataset provides high quality expression face
scans with corresponding multi-view images in an controlled envi-
ronment for each identity. We randomly selected 50 males and 50
females from the multi view data with three expressions: neutral,
mouth stretch, and grin. For each expression, we use the first 40
views to produce 40 meshes, and average these meshes to generate
the final result for evaluation. We also run the ICP with an isotropic
scale to find the optimal alignment and further compute the point-
to-plane distances.We report the obtained statistical results in Table
4. As shown in this table, our method achieves the smallest average
distances for all the three expression cases among all the methods
in this comparison. Example comparisons are shown in Figure 8.
From this figure we can see that our method produces most faithful
reconstruction results among all the methods in this comparison.
in particular, for the neutral expression (the top row in Figure 8),
all the other methods suffer from the ambiguity issue of the inner
mouth landmarks, which leads to less accurate neutral expressions.

The accuracy of mouth expression landmarks. Finally, We
evaluated and compared the accuracy of mouth expression land-
marks among ourmethod and the chosen state of the art methods on
the AFLW-2000 Dataset [54]. In this dataset, there are 2000 images
covered by fitted 3D faces with labeled landmarks. We calculated
the average errors of the inner mouth landmarks, as shown in Table
5. From this table we can see that our method also outperforms all

Table 4: The average values and standard deviations of the
point-to-plane distances (in mm) between the results and the
ground truths on the FaceScape Dataset

Methods Neutral Mouth Stretch Grin
Ours 2.03 ± 0.66 2.14 ± 0.77 2.16 ± 0.75

3DDFA_V2 [20] 2.28 ± 0.70 2.25 ± 0.76 2.25 ± 0.73
MGCNet [44] 2.53 ± 0.75 2.56 ± 0.64 2.56 ± 0.69
WSL-based [7] 2.26 ± 0.66 2.26 ± 0.71 2.29 ± 0.70
PRNet [13] 2.81 ± 0.85 2.88 ± 0.89 2.87 ± 0.86
RingNet [41] 2.42 ± 0.67 2.38 ± 0.74 2.40 ± 0.75

other methods in terms of the average errors of the inner mouth
landmarks.

Table 5: The average values and standard deviations of the
inner mouth landmark errors (in mm) by our method and
selected state of the art methods

Ours 3DDFA_V2 MGCNet WSL-based PRNet
3.43 ± 0.36 3.55 ± 0.32 3.64 ± 0.38 3.58 ± 0.36 3.87 ± 0.45

5.3 Qualitative Evaluation
We also conducted qualitative evaluations to visually compare the
face reconstruction results between our method and the above
state of the art methods (i.e., 3DDFA_V2 [20], MGCNet[44], WSL-
based [7], PRNet [13], and RingNet[41]). There are several related
work [16, 24, 25] we cannot do comparison because those works
are claimed being commercialized and we cannot obtain enough
related results. Figure 7 shows comparisons between our method
and the above five state-of-the-art methods on 9 face images ran-
domly selected from the CelebA test set. Compared to the MGCNet
[44] and the WSL-based method [7], our method can better recon-
struct the expressiveness of the faces, especially in the areas of the
eyes and mouth. Compared to 3DDFA_V2 [20], PRNet [13], and
RingNet[41] (corresponding to the bottom three rows in Figure
7), our method can recover accurate albedo colors and lighting
conditions and more realistic face shapes. Figure 9 shows some
comparison results among our method, the MoFA method [48], and
the method in [17]. The input images and the results of both the
MoFA method [48] and Genova et al. [17] are directly obtained
from [17]. From this figure, we can clearly observe that our method
can reconstruct more accurate face shapes, expressions, and albedo
colors than both the MoFA method [48] and the method in [17].

6 DISCUSSION AND CONCLUSION
In this paper we propose an end-to-end deep learning based method
to reconstruct 3D face models from in-the-wild images. In particular,
our model successfully jointly recover both diffuse and specular
albedos from a single input face image. Our experiment results
show that our method can outperform the state-of-the-art face
reconstruction methods both quantitatively and qualitatively.

Our current method has several limitations. First, it cannot model
multiple light sources in an input image. Therefore, certain specular
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Input Image

Ours

MGCNet[40]

WSL-based[6]

3DDFA_V2[17]

PRNet[10]

RingNet[37]

Figure 7: Comparison results on 9 face images randomly selected from the CelebA test set among our method and five state of
the art face reconstruction methods.

FaceScape Images                 Ours              3DDFA_V2[17]        MGCNet[40]       WSL-based[6]         PRNet[10]       RingNet[37]

Figure 8: Face reconstruction comparison results among all
the methods on the FaceScape Dataset. The rows from top
to bottom correspond to different expressions (i.e., neutral,
mouth stretch, and grin). Each face result is the averaged
result from multiple views.

highlights may be missed from the reconstruction if there are more
than one light sources. Second, the limited spatial resolution of the
3DMM can lead to loss of details in the reconstruction. Because
the 3DMM captures neither normal maps nor displacement maps
of the skin, accurate skin reflectances cannot be rendered with

Input Images

Genova et al.[14]

MoFA[44]

Ours

Figure 9: Comparison examples among our method, MoFA
[48], and Genova et al. [17].

our model. Third, our current method only uses a single global
shininess parameter. Therefore, it cannot adapt to local properties
on different areas. One potential solution to this problem is to learn
per-vertex attributes with Graph Neutral Networks.
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