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Figure 1: System overview. During training, two cVAEs are used to encode and generate facial and tongue mesh animations conditioned on

speech. During inference, fixed latent vectors are used by the decoders to generate mesh animation sequences, that are then transformed into

rig space via models approximating the inverse rig function.

Abstract

We present Voice2Face: a Deep Learning model that generates face and tongue animations directly from recorded speech. Our

approach consists of two steps: a conditional Variational Autoencoder generates mesh animations from speech, while a separate

module maps the animations to rig controller space. Our contributions include an automated method for speech style control, a

method to train a model with data from multiple quality levels, and a method for animating the tongue. Unlike previous works,

our model generates animations without speaker-dependent characteristics while allowing speech style control.

We demonstrate through a user study that Voice2Face significantly outperforms a comparative state-of-the-art model in terms

of perceived animation quality, and our quantitative evaluation suggests that Voice2Face yields more accurate lip closure in

speech with bilabials through our speech style optimization. Both evaluations also show that our data quality conditioning

scheme outperforms both an unconditioned model and a model trained with a smaller high-quality dataset. Finally, the user

study shows a preference for animations including tongue. Results from our model can be seen in the accompanying video

(coming soon).

CCS Concepts

• Computing methodologies → Animation; Neural networks; Latent variable models; Learning latent representations;

Additional Key Words and Phrases: Deep Learning, Facial animation, Tongue animation, Lip synchronization, Rig animation

1. Introduction

Vision-based performance capture techniques are a crucial part of

the facial animation pipeline for modern video games and movies
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[KAL*17; ZXL*18]. While visually impressive, a downside of

such techniques is that they require significant resources in terms of

setting, equipment and labor. At the same time, games in particular

may now include hundreds of thousands of lines of recorded speech

[New12], increasing the need to generate quality speech animations

at scale.

Automated approaches may, in such cases, be a viable comple-

ment to performance captures. While performance captures could

be used for scenes of higher importance, bulk animations could be

generated by less resource intensive options. Such techniques are

often based on recorded speech [JAL21] or speech and script [FFX;

SG21]. A common approach for such tools is to generate sparse

key-framed animations, which lend themselves well for editing by

artists but lack the dynamics of performance capture-based anima-

tions, as interpolation between poses ignores the face’s natural dy-

namics [Bra99].

Recently, a number of methods have been proposed using

Deep Learning (DL) to train speech-driven models directly on

performance capture-based data [KAL*17; CBL*19; RZW*21;

CWWZ22], generating animations with the qualities attributed to

performance captures but requiring only recorded speech as input.

While these works excel at e.g. imitating individual speech styles,

allowing editability, or generating full face animations, we pro-

pose a method that produces generic animations (without speaker-

specific characteristics) while providing control over a character’s

speech style. We argue that these are relevant properties for a bulk

animation system: a generic look to make animations applicable

to multiple characters, and speech style control to be able to ad-

just minute details. In this paper we present Voice2Face (V2F), a

DL-based method specialized for this task.

While speech-driven facial animation is an important research

problem, it also poses several challenges. In the output space, face

poses from speech are inherently multi-modal. For a given speaker,

any phoneme can be uttered with multiple expressions while dif-

ferent speakers have different speech styles. Similarly, the speech

signal also carries both inter and intra personal variations. Any

given speaker can repeat a phrase with a wide range of variabil-

ity stemming from changes such as emotion, spoken volume, and

speed, whereas physiological differences yield e.g., timbre differ-

ences [BDD*07].

V2F is designed to handle both of these challenges. To decouple

the speech-driven and speech-agnostic components of a face pose,

we adopt a probabilistic model where the distribution of plausible

face poses given a speech window is modeled by a latent vector.

Our latent optimization scheme makes it possible to emulate differ-

ent speech styles in the generated animations. To generalize well

to unseen voices, our model is trained on a dataset consisting of 19

speakers in total. We make no language-specific transformations of

the speech signal, allowing our model to be used on languages other

than those in the training set.

Furthermore, our model can be conditioned on training data

quality, allowing the use of lower quality animations in addition

to a smaller dataset of high quality. The low quality dataset may be

used for improved generalization, since our conditioning allows the

model to maintain a high quality.

Our contributions can be summarized as follows:

• We propose using a conditional Variational Autoencoder (cVAE)

[KW14; Doe16] to deal with the many-to-many mapping be-

tween speech and face poses, encouraging the latent space to

decouple the parts of the animations driven by speech and intra-

or interpersonal variations.

• Our architecture allows training a model using animations from

different quality levels to accommodate time or budget limita-

tions.

• We introduce a method to optimize the latent variable of our

model, controlling the overall facial expression of our anima-

tions, to a desired style.

• We propose a method to generate tongue animations, and show

that animating tongue significantly improves perceived anima-

tion quality through a user study.

2. Related work

Speech-driven lip sync has a long history in academia and several

approaches have been proposed for the task. Early attempts fre-

quently used Hidden Markov Models (HMMs) to resolve the many-

to-many relation between speech and face poses [BCS97; Bra99;

VRS03]. In recent years, DL-based models have replaced HMMs

as the de-facto standard approach, regardless of output space (2D,

3D or neural rendering). In the following paragraphs, we briefly

cover related approaches, focusing on 3D lip sync generation.

Taylor et al. [TKY*17] uses phonemes as an intermediate

speech signal to drive coefficients of an Active Appearance Model

[CET01], representing the lower face and jaw of a head model.

Their phoneme representation yields impressive generalization, but

relies on a pretrained module to map speech to a phonetic tran-

script. A downside of such an approach is that the phoneme repre-

sentation introduces a certain extent of language dependency. Mod-

els that solely take phoneme sequences as inputs will also struggle

with gesture magnitudes and lip articulation due to loss of vocal en-

ergy and phrasing information [Bra99]. In addition, phoneme rep-

resentations do not generalize to non-verbal vocalizations.

Cudeiro et al. [CBL*19] uses unnormalized log probabilities of

characters from DeepSpeech [HCC*14] as input features in a sys-

tem that animates 3D mesh vertices given a speaker identity. By

conditioning the animations on speaker, their approach is able to

separate inter-speaker animation styles and will therefore also gen-

erate personalized animations.

With a focus on animator-centric outputs, Visemenet [ZXL*18]

predicts sparsely activated viseme- and co-articulation parameters

for a FACS-rig from speech, using both phonemes and raw speech

features. While providing editor-friendly animations, Visemenet re-

quires pretraining phoneme group and facial landmark prediction

components.

Closer to our approach, a number of works produce 3D anima-

tions directly from speech [KAL*17; PWP18; TPL*20; RZW*21;

CWWZ22]. Using formants as sound representation, Karras et al.

[KAL*17] achieves impressive results from less than 4 minutes of

training data. Two Convolutional Neural Network (CNN) stacks re-

duce a sound window’s formant and time dimensions respectively,
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before two fully-connected (FC) layers upscale the signal to mesh

vertices. By conditioning the latter convolutional stack on a learnt

latent vector per frame of training data, [KAL*17] is able to handle

output multimodality. This model is trained individually for each

speaker, therefore maintaining personalized speech characteristics.

Pham et al. [PWP18] uses raw spectrogram speech representa-

tions from 20 speakers to train a model to predict blendshape and

rotation parameters. Their model structure is similar to [KAL*17],

but instead of an explicit emotion parameter, they use the hidden

state of a Recurrent Neural Network (RNN) layer to capture contex-

tual information implicitly (leading to different facial expressions).

A similar approach is taken by Tzirakis et. al. [TPL*20], which uses

a Long Short-Term Memory (LSTM) layer to model long term dy-

namics on a model trained on blendshapes animations temporally

aligned to fit speech recordings from the in-the-wild dataset Lip

Reading Words [CZ16].

More recently, Chai et al. [CWWZ22] gather information along

the frequency dimension of a speech window with a stack of con-

volutions, but use self-attention layers to collect information along

the time dimension. Similar to Cudeiro et al. [CBL*19], their model

takes speaker identity as auxiliary input and is thus able to explic-

itly model different speaking styles.

Richard et al. [RZW*21] trains two separate encoders to learn

lip sync from audio and facial expressions respectively, fusing the

results in a categorical latent vector that then animates a template

mesh. While the fidelity of the generated animations is impressive,

they train a separate model to generate audio-conditioned categor-

ical latent vectors since an expression sequence is not available at

inference time, thereby foregoing explicit control of speech style.

Our approach is designed to produce lip sync suitable for bulk

animations for a wide range of characters, as a lighter weight option

to performance captures. Unlike [CBL*19; KAL*17; CWWZ22],

we aim to produce generic animations, without speaker-dependent

characteristics. In contrast to e.g. [PWP18; TPL*20; RZW*21;

CWWZ22], we maintain control of the generated animations by

explicitly modeling speech style as a latent variable, optimized to

yield a desired look before inference. In addition, by mapping face

poses in mesh space directly to speech features from the sound sig-

nal, we avoid any information loss associated with discretizing to

phonemic or visemic representations [Bra99].

Our method also produces tongue animation, an important fac-

tor for perceived realism, as some phonemes are not distinguish-

able with just the lip shape [PvOS94]. While tongue animation is

a smaller research area than lip sync, several methods have previ-

ously been proposed. In terms of speech-driven animations, Luo et

al. [LYLZ17] control the deformation of the tongue using HMMs.

Other methods [FHG*17; EB03] propose to model tongue move-

ment by using ultrasound data or 3D face landmarks.

Finally, our facial and tongue animations are translated from

mesh space to rig space. A rig representation is preferable for real-

time animation due to its editability, compression and transferabil-

ity to other rigged heads. A rig function [LA10] maps an artist-

crafted set of controllers (rig information/parameters) to mesh ver-

tex positions. Our objective is to estimate the inverse of the rig func-

tion, for mapping mesh to rig parameters. Traditional approaches

can produce this inverse mapping, i.e. least squares optimization,

in a highly inefficient way by calling the rig function repeatedly

[HMT*12; HTC*13]. In our case, a data-driven approach is desired

instead as it is independent from the implementation of the rig func-

tion and can be retrained for different functions. Several methods

have been proposed e.g. using Neural Networks (NN) or Gaussian

Processes [HSK16]. In addition, Bailey et al. [BODO20] proposes

an inverse kinematics method to drive rig parameters using land-

marks by predicting deformation maps in the UV space. Several

NNs are used to estimate multi-resolution deformations for differ-

ent vertex subsets. Our approach uses a feed forward NN similar to

Holden et al. [HSK16].

Quantitative evaluation of speech-driven facial animations is an

open problem in the literature. Some works [KAL*17; CBL*19]

omit quantitative evaluations due to the many-to-many mapping

between speech utterances and visemes, relying only on percep-

tual evaluations via user studies. Other works [RZW*21; ZXL*18;

RLM*21] design custom quantitative metrics that are tailored to

their use cases. An example is the maximal ℓ2 error of all lip ver-

tices averaged over all frames in the test set to measure lip syn-

chronization [RZW*21]. We argue that the test set ground truth is

just one realization of the multiple plausible face poses associated

with a given speech signal, making this metric inadequate to cap-

ture the variability of speech styles and idiosyncrasies. Zhou et al.

[ZXL*18] propose two approaches. The motion curve differences,

defined as the absolute difference of the rig parameter values com-

pared with the ground truth, is similar to the maximal ℓ2 error, thus

suffering from the same problem. On the other hand, computing

precision and recall on the rig parameter binary activations only in-

forms about the correctness of activating the parameter, but not the

accuracy of the parameter value. Richards et al. [RLM*21] report

F1-scores based on achieved lip closure for corresponding sections

from test data. We use the same metric, but only measure achieved

lip closure for annotated occurrences of the bilabial consonants (/p

b m/) as they correspond to face poses requiring closed lips regard-

less of the overall expression.

3. Method

The goal of this work is to present a method that models a speaker-

independent, multi-modal distribution of face poses given a speech

signal over time. We propose a two-step procedure: two cVAEs first

generate speech-conditioned face and tongue mesh poses respec-

tively, and two smaller Mesh2Rig (M2R) modules then convert the

mesh poses to rig parameters. An overview of the system is shown

in Fig. 1. In this section, we will introduce both steps sequentially.

To train the cVAEs, we assume that we are given a mesh ani-

mation dataset A = a1:T of total length T animation frames, with

corresponding speech S = S1:T . Here, at ∈ R
3V are mesh vertex

coordinates where V is the number of vertices, and St ∈ R
F×B is a

speech window with B bins of F speech features centered at frame

t. Additionally, a categorical indicator qt of animation quality may

be used to condition mesh pose generation on quality. For M2R

training, we assume a dataset of mesh animations A, with corre-

sponding rig animations R = r1:T , where rt ∈ R
P with P rig pa-

rameter attributes. Since we treat face and tongue independently,
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mesh and rig data correspond to either face or tongue poses, but we

omit such notation for readability.

3.1. Conditional Variational Autoencoders

Intuitively, the first step of our two-step procedure consists of a

mapping f from some contextual speech S̃t to the mesh pose at at

time t, i.e. ât = f (S̃t). In our work, S̃t = St−k:t is a sequence of

k+1 speech windows ending with St .

Simply regressing the pose on the speech signal however would

fail to capture the multi-modal nature of face and tongue poses as-

sociated with speech and default to the average position [KAL*17].

We therefore propose a probabilistic approach using conditional

Variational Autoencoders (cVAEs) [SLY15]. cVAEs assume that

there exists a latent variable zt ∼ N (0, I) that encodes speech-

agnostic variations in facial poses, such as individual speech styles.

Thus, we model f as a probability distribution pθ, that infers the

facial pose at time t as follows

ât ∼ pθ(zt , S̃t ,qt) (1)

We assume pθ to be independent and identically distributed (iid)

Gaussian variables with a fixed variance scalar.

In order to infer the posterior distribution over latent variables

given a specific observation, cVAEs make use of variational infer-

ence. To this end, cVAEs assume an approximate posterior distri-

bution qφ(zt |at , S̃t). The parameters of the approximate posterior

qφ and the likelihood pθ are modelled by deterministic NNs, de-

noted as the encoder E and the decoder D respectively. Assuming

iid Gaussian latent variables, the latent code at time t during train-

ing is thus sampled as:

µat |S̃t
, σat |S̃t

= E(at , S̃t) (2)

zt ∼N (µat |S̃t
,σat |S̃t

I) (3)

In summary, by conditioning E and D on contextual speech in-

formation S̃t associated with each at during training, the latent dis-

tribution learns to represent the space of plausible face poses given

speech. A one-hot-encoded variable qt is used to disentangle an-

imation quality when training on datasets that contain animations

with varying quality, improving generalization without degrading

the quality of the generated animations.

Architecturally, the cVAEs we train to generate face and tongue

animations respectively are identical. An overview of the cVAE

structure is shown in Fig. 2. A more detailed description of all the

layers and parameters in the architecture can be found in the sup-

plementary material.

3.1.1. cVAE training

We train our cVAE models to minimize the standard VAE objective

function [KW14]. The first loss term corresponds to the log likeli-

hood (LL) of the ground truth mesh coordinates given the estimated

likelihood distribution, while the second term represents the loss of

the latent distribution using the Kullback–Leibler (KL) divergence,

Figure 2: Schematic of the cVAE used to generate mesh frames

for face and tongue. We show an example of reconstructing the

face mesh frame a2 during training. Three speech windows are

processed over frequency and time before being aggregated by a

Long short-term memory (LSTM) layer. The encoder conditions the

ground truth mesh with speech to generate latent distribution statis-

tics, which are used for sampling by the decoder to reconstruct the

mesh.

as follows:

LLL = Eqφ(zt |at ,S̃t )
[log pθ(at |zt , S̃t ,qt)] (4)

LKL =−KL(qθ(zt |at , S̃t)||N (0, I)). (5)

We also include the vertex normal cosine distance as an addi-

tional reconstruction loss term to exploit 3D neighboring informa-

tion, similar to [VAPE20; BODO20].

LN = 1−
∑

V
v=0 cos(nv, n̂v)

V
(6)

where nv is the normalized sum of all normal vectors of faces that

share vertex v, and n̂v is the corresponding prediction. The intuition

behind this loss is that it can help with rotations, e.g., for lip roll.

The final objective of the mesh generation cVAE models is con-

structed as the sum of the terms above.

L= LLL +LKL +LN (7)

During training, we enforce a temporal latent stability strategy

to encourage the model to produce smooth transitions between

frames. We encourage E to produce codes that are valid for more

than one frame. Specifically, a single latent vector zt sampled from

the distribution of the encoded frame at is used to reconstruct three

consecutive decoded frames: ât:t+2 (Fig. 3). We adopt this training

scheme since we use a single latent optimized to yield a neutral fa-

cial expression during inference. However, it also prevents the net-

work from learning sparse, short-term variations like eye blinking,
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since they cannot be captured in the latent and are not correlated

with speech.

3.1.2. cVAE inference

After training, we use the decoder D to generate animations for new

speech. We left pad the speech signal with enough silence to make

â0 coincide with the start of the speech recording (i.e. S̃0 = S−k:0).

If the cVAE was trained with datasets of varying quality, qt is set

to represent the highest quality level used during training.

In order to guarantee a desired facial expression, the latent vec-

tor zt is maintained constant throughout inference (i.e zt = z), and

set to represent a desired speech style through our latent optimiza-

tion scheme. For the cVAE corresponding to tongue poses, we set

z equal to the zero vector as we don’t see a significant reason to

fine-tune tongue poses.

For the cVAE corresponding to facial poses, we optimize z to

force the output animation to resemble the average speech style of

a collection of short validation clips. This approach is inspired by

the gradient-based reconstruction [LT17] which has become popu-

lar in association with powerful pretrained networks such as Style-

GAN [KLA19; KLA*20; KAL*21], enabling editing applications

[AQW20; LZG*21].

The optimization works as follows. First, short validation clips

(ca. 20 frames) of a desired speech style are selected, chosen in

particular to include bilabial sounds and silences. Samples with

speech from different speakers helps with generalization. Freezing

the weights in D, we update z by gradient descent, minimizing the

mean-squared error (MSE) between the ground truth animation at

and the output of the model ât .

This latent optimization is only performed once, with the result-

ing z being saved for use in future inference.

Unless specifically mentioned, throughout this work we optimize

the latent vector on a collection of validation clips with neutral fa-

cial expressions.

3.1.3. cVAE architecture

We follow the sound processing described by Karras et. al.

[KAL*17], reducing the frequency and time dimensions of the

speech feature windows in S̃t respectively through two stacks of

2D convolutions. The first stack compresses the windows in the

frequency domain to detect features that correlate with face poses,

such as phonemes. Weights in this stack are shared between E

and D. The second stack compresses the windows in the time do-

main, distilling temporal information to recognize co-articulation

patterns. This implementation differs in E and D due to the role of

zt and qt . In D, zt and qt are concatenated, replicated along the time

dimension, and appended to the channels of the previous layer’s

output, equivalently to [KAL*17]. This allows conditioning infor-

mation to influence multiple levels of detail in the animation. In E,

no conditioning is used to encourage the network to find a generic

representation that learns an expressive latent space.

Temporal information from the sequence of processed speech

is aggregated by a single Long short-term memory (LSTM) layer.

The purpose of this sequential aggregation is to produce temporally

Figure 3: Overview of data matching during the encoding and de-

coding phases. A context of three speech representation windows

St−2,St−1,St is used encode frame at. The same sampled latent zt

is used to decode the frames ât, ât+1, ât+2.

stable animations. During development, we noticed a trade-off be-

tween short sequences leading to responsive but jittery results, and

long sequences resulting in temporally stable but slow animations.

We found that k = 2 at 30 frames per second gave satisfactory re-

sults, and theorize that three speech windows allow enough context

for our model to handle long term co-articulation, e.g. determining

if a silence is long enough to close the mouth in a resting pose.

In the encoder, the low-dimensional representation of a face pose

decoupled from speech is achieved by passing at through a FC

layer, concatenating the LSTM’s output, and processing through

subsequent FC layers. These layers act as a bottleneck that reduces

the dimensionality according to the desired size of the latent vari-

able zt . The output of the last layer represents the statistics of the

multivariate isotropic Gaussian distribution that models the latent

space following Equation 3.

In the decoder, we map the LSTM’s output to the generated ani-

mation frame ât using an FC layer stack, following Equation 1.

3.2. Mesh2Rig

The second step of our procedure consists of mapping the mesh

animations to a rig parameter space. Formally, M2R can be de-

scribed as a function g approximating the inverse rig function,

i.e. rt = g(at). To this aim, we train two separate M2R modules
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to perform the conversion for face and tongue respectively. As a

post-processing step, resulting rig animations from both models are

joined together.

The face M2R is similar to the NN solution in [HSK16], and con-

sists of a multilayer perceptron (MLP) with two hidden layers. The

model is trained to minimize the MSE loss between predicted and

ground truth rig parameter attributes, taking mesh pose as input.

We found that applying Additive Gaussian Noise (AGN) [Bis95]

to the input layer during training resulted in improved performance

when the M2R model is used on inputs which are not perfectly rep-

resentable by the rig, such as the outputs from the cVAE. Details of

the architecture can be found in the supplementary material.

The model yields the best results when trained on data from

speech animations, so that only the subset of poses resembling

speech are learned by the model. In case of a lack of native speech

animations, it is still possible to train a M2R model by generat-

ing data sampled randomly from the rig. We found however that

adding such randomly sampled data to our existing dataset did not

yield superior results.

For the tongue M2R, we used a least square solver of the tongue

vertices as a 3rd degree polynomial. We found this solution to be

sufficient for the tongue, and speculate that this is due to tongue

dynamics being simpler as they have fewer degrees of freedom and

sparse rig activations. We found a need to clip the rig values to

prevent them from reaching extreme poses. The tongue M2R model

is trained on the same speech animation frames as the face M2R

model.

3.3. Implementation details

Both animations and speech need to be in a suitable format before

being processed by the system. The mesh vertex coordinates at cor-

respond to the offset of the current animation frame to the head’s

neutral pose. Each speech window St is composed of 64 bins B of

13 MFCCs and 26 SSCs for a total of 39 normalized speech fea-

tures F . We take 8 ms steps between bins and use a sliding window

of length 25 ms for each bin.

The NNs are implemented in PyTorch [PGM*19] and are trained

with Adam [KB15] as our optimization strategy. Training the fa-

cial mesh generation network takes 44 hours, while facial M2R

requires 50 minutes. Producing rig animations from pre-recorded

speech takes 1.68 ms per frame. All measurements are performed

on a single GeForce GTX 1080 Ti.

4. Results

In this section we describe the evaluation methodology adopted to

assess the proposed system. In order to validate our contributions

we compare our proposed model (Ours) with ablated versions, and

VOCA [CBL*19], a comparative state-of-the-art model for facial

lip sync:

• Non-Generative Model (NGM): This model is trained without

generative properties, i.e. the decoder does not take the latent

vector as input and is trained without the KL divergence loss

(equation 5).

Table 1: Overview of the datasets used for training, validation and

testing. The number of participants and minutes of data is split be-

tween males and females. Note that the test set is larger than the

training set since it contains only audio, thus easier to source.

Dataset
Subjects
(M / F)

Minutes
(M / F)

Rig Mesh Tongue Audio

Train - gold 7 / 5 26.4 / 18.8 ✓ ✓ ✓ ✓

Train - silver 2 / 5 12.1 / 71.1 ✗ ✓ ✗ ✓

Val - gold 1 / 1 0.1 / 0.1 ✓ ✓ ✓ ✓

Val - audio-only 10 / 7 64.1 / 56.2 ✗ ✗ ✗ ✓

Total Train 9 / 10 38.6 / 89.9 N/A N/A N/A N/A
Total Val 11 / 8 64.2 / 56.4 N/A N/A N/A N/A
Test 13 / 10 117.9 / 83.3 ✗ ✗ ✗ ✓

• No Normal Loss (NNL): This model is trained using only the

core cVAE framework without the normal loss (equation 6).

• No Quality Conditioning (NQC): This model does not make use

of the data quality conditioning described in Sec. 3, treating all

data equally.

• No Silver Data (NSD): This model is trained exclusively with

the gold dataset, the smaller subset of high quality data in Sec.

4.1.

• No Latent Optimization (NLO): This ablation does not change

the training procedure but the inference. Instead of performing

latent optimization as described in Sec. 3.1.2, the latent em-

ployed for inference is the zero vector.

• VOCA: We use the official codebase, and train the model using

our training data.

4.1. Dataset

The training dataset is composed of pairs of animation and syn-

chronized audio. Animations are extracted at 30 frames per second

and animate a target head with 7071 vertices and 78 rig parameter

controller attributes. All speech is recorded in English with a wide

variety of accents.

Our training set contains 128 minutes of animation from 19 par-

ticipants solved on the same target head. Participants were recorded

reading phonetic pangram scripts, which cover all phonetic sounds

in English. All participants were instructed to maintain a neutral

expression while reading the scripts. The animations were obtained

from two quality sources. The gold dataset consists of high qual-

ity performance captures, while the silver dataset is recorded with

a wide variety of devices and solved to mesh animation via an in-

house video-based solution, resulting in lower quality animations.

The test set is larger than the training set since it contains a large

compendium of voices without ground truth animation. It consists

of 23 subjects, amounting to 201 min. This data consists of non-

pangram scripts and includes non-verbal sounds and a wider emo-

tional range. All of our quantitative experiments are performed on

the test set.

Finally, the validation set includes a small subset of hold-out data

from the gold training set and the audio-only set. It contains 19

subjects and 120 minutes. For a more comprehensive description

of the contents of each subset of data, see Table 1.
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Table 2: Quantitative metrics for the ablated models and VOCA.

We report mean and standard deviation over 5 runs, aggregating

also over 12 gold IDs for VOCA.

Model Precision % Recall % F1 %

NGM 72.61 ± 4.70 24.39 ± 6.00 36.25 ± 7.00

NNL 65.93 ± 5.52 55.17 ± 7.10 59.59 ± 2.61

NQC 79.30 ± 19.62 12.69 ± 14.21 18.76 ± 19.66

NSD 56.33 ± 6.71 42.07 ± 12.12 47.65 ± 9.67

NLO 77.96 ± 6.74 25.24 ± 3.36 37.94 ± 3.51

Ours 62.01 ± 4.54 55.86 ± 14.43 57.55 ± 7.13

VOCA 86.87 ± 6.93 30.06 ± 13.46 42.79 ± 16.14

4.2. Quantitative evaluation

In this section we quantitatively evaluate the lip sync performance

of the facial mesh generation network, and the ability to translate

from mesh to rig space by the facial Mesh2Rig module.

4.2.1. Facial mesh generator

Bilabial (/p b m/) lip closure is one of the most important features

that correlate with perceptual quality [RLM*21]. We compute lip

closure by measuring the distance in mesh space between the upper

and lower lip in the center of the mouth for all sound frames, classi-

fying the observations as either open or closed. These instances are

compared to annotated test speech recordings to compute precision,

recall and F1-score. For these measurements, we define closed lips

as a positive instance.

Each model was trained 5 times for 200 epochs, with checkpoints

taken every 10 epochs. For each training run, the best epoch was se-

lected by visual inspection of animations generated from a 1.5 min

validation clip. For the VOCA models’ epoch selection, a consis-

tent speaker ID sampled from gold data was used for all inferences

due to VOCA’s speech style dependence on speaker. The metrics

were calculated for the selected checkpoints and aggregated per

model, as well as ID for VOCA, to report mean and standard devi-

ation in Table 2.

It is important to note that these metrics only measure bilabial lip

closure and do not correlate exactly with human perception, which

can attend to other aspects of the animation such as jitter or the

expression during silent sections.

4.2.2. Facial Mesh2Rig

We evaluated the effect of applying AGN to the inputs during M2R

training. The evaluated models differed in the standard deviation of

the noise added, σ ∈ [0,0.1,0.2,0.3,0.4,0.5]. We trained and eval-

uated models following a 10-fold cross-validation scheme with the

gold dataset in Table 1. To more closely simulate the intended use

case of M2R, we also evaluated the same models on a 2.5 min val-

idation animation, generated by a trained cVAE. In both cases, we

evaluated MSE in the mesh space, meaning that the rig animations

predicted by the M2R were converted back to a mesh represen-

tation using the rig function, and compared to the mesh used as

inputs. Resulting MSE mean and standard deviation are shown in

Table 3.

When evaluated on held-out animations from our gold dataset,

the lowest MSE is observed with σ = 0. In contrast, evaluating the

same models on cVAE generations yields the lowest errors for σ =
0.3.

Table 3: MSE for mesh to rig models, varying AGN σ applied to

the inputs during training. Metrics are gathered from 10 models

per σ trained for 100 epochs. Hold-out speech shows errors from

10-fold cross-validation. cVAE generations shows errors from the

same models tested on an animation sequence generated by the

cVAE. The reported errors are in mesh space. Numbers are ex-

pressed in micrometre (µm) for improved readability.

Test data type

A. Hold-out speech B. cVAE generations

Model σ Mean SD Mean SD

0.0 1.12 0.02 7.41 0.52

0.1 1.24 0.02 4.62 0.34

0.2 1.43 0.02 3.89 0.35

0.3 1.64 0.03 3.60 0.17

0.4 1.94 0.09 3.84 0.17

0.5 2.14 0.03 3.93 0.12

4.3. Qualitative evaluation

Quantitative facial animation evaluation remains an unsolved prob-

lem. Therefore, we complement our metrics with qualitative user

studies.

The blind user studies were carried out internally in the form

of A/B comparisons, allowing ties, with videos rendered from rig

animations. Participants were presented with a series of videos in

which two side-by-side heads animated the same speech, each side

generated by the proposed model or the ablations. The question

asked in all experiments was: Which one of the videos looks more

natural to you? The participants, with different levels of experi-

ence with facial animation, were provided with instructions and a

tutorial showing three examples of videos they could encounter: a

standard comparison and two types of attention checks. These at-

tention checks showed either the same animation in both heads or

one of the animations out of sync with the sound. Participants who

failed any attention check were filtered out as unreliable.

To create the animations, we sampled two audio files per speaker,

ensuring no overlap with lines used for validation. The length of the

files ranged between 4-6 seconds, with at least 50% of non-silent

frames. The models used for the user study were selected by visual

comparison of animations generated from a 1.5 min validation clip

among the best checkpoints per model. The lines shown to the par-

ticipants and the ordering of the animations in the video were ran-

domized. For the VOCA comparisons, so were the IDs selected for

inference (sampling from the gold dataset). We allowed the users to

play the videos as many times as necessary and at different speeds

to permit a more detailed comparison.

We divided the evaluations into two user studies. The first one

was designed to compare the ablation models, validate our con-

tributions through human preference, and correlate the results to
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our quantitative metrics. For this study, we gathered 860 valid re-

sponses from 43 participants (16 animators, 27 non-animators). In

the second study, we evaluated whether the inclusion of tongue ani-

mation increases the overall perceptual quality of the animation and

compared our model to VOCA [CBL*19], trained on our dataset.

For this survey, we received 230 and 460 valid responses respec-

tively from 46 participants (16 animators, 30 non-animators). In

Fig. 4, we report the analysis of the user studies using a binomial

sign test excluding ties following [JKHB20]. In addition, Fig. 5,

shows the results of the ablation in terms of aggregated preference

percentage.

5. Discussion

The purpose of the ablation study was to validate the contributions

to our face generator and select the best model to compare against

VOCA. The results show that using the quality encoding is the fea-

ture that improves the quality the most, with a statistically signifi-

cant preference for those models over NQC (p < 0.001). The anal-

ysis also suggests that using a larger amount of data, conditioned on

the quality is perceptually better than using a smaller subset of high

quality data (NSD), and statistically preferred if the latent is opti-

mized (Ours and NNL). These two models yield very similar visual

results, which translates to votes being almost uniformly distributed

between the three options. Our motivation to include the vertex nor-

mal as part of the loss function was improve lip rolls for sounds

such as /f v/. The sparsity and sample dependence of these sounds

in the study, together with the difficulty to recognize these differ-

ences, can account for indicative but not significant preference for

our proposed approach.

Comparing the results of the quantitative metrics (Table 2) with

the preference of the participants in the perceptual study (Fig. 4-

5), we can observe partial correspondence. The highest F1 scores

belong to the NNL and our proposed model with overlapping statis-

tics, which are also the models with the largest user preference

shares on aggregate. This is also the case for recall, which may

suggest that a model’s ability not to miss lip closure during bil-

abial speech is important for perceived animation quality. While not

evaluated qualitatively, we observe that NGM’s low recall suggests

mouth closure issues for bilabials, likely caused by the multimodal

output space. Recall, F1 and user preferences are also consistent

with NSD outperforming NQC.

We also note, however, that NLO, which ranks low in our quan-

titative evaluation, performs better than expected according to par-

ticipants, almost as high as NNL and Ours. One explanation could

be that the animation can give the illusion of lip closure when play-

ing in real time, if lips are almost closing during bilabials. This idea

is reinforced by the fact that only 12 participants (27.9%) used the

slow motion functionality during the study. Another explanation

is simply that our metrics are not able to capture the full picture

of perceptual quality, and we cannot expect full correspondence in

every instance.

As the winner of the ablation comparison, our proposed model

is used in the second survey. This study was designed to assess two

important contributions: the perceptual importance of our tongue

animations and a comparison with VOCA, a state of the art method

for audio-driven animations.

When comparing against VOCA, our proposed model is pre-

ferred with statistical significance (p < 0.05). Interestingly, anima-

tors have a stronger preference for our model than non-animators

(p = 0.002), with 58% voting for Ours, 36% for VOCA and 6%

showing no preference.

Similar to [RZW*21], we also identify in our experiments that

the quality of VOCA is dependent on the identity used for infer-

ence. Analyzing the results by ID, we find that our approach is

preferred for 10 out of the 12 high quality identities.

The comparison between animations with and without tongue

shows a high percentage of ties. According to the feedback re-

ceived, this is both caused by a lack of preference or the inability

to see the movement due to the nature of the sentence. After re-

moving the ties, there is a statistically significant preference for the

animations that include tongue (p < 0.001), which suggests that

using the tongue animation does not damage the overall quality of

the animation.

One aspect we noticed while evaluating our results is the amount

of variance in a model’s properties between training runs. This is

true for Ours and its variants, as well as VOCA. We observe sim-

ilar variances as those reported in Table 2 even when comparing

training runs on a common epoch. This variance is also observ-

able in the generated animations, which can vary significantly be-

tween two training runs differing only on the random seed. We are

transparent about this variance by reporting mean and std. dev. in

the quantitative metrics over 5 training runs, and choosing the best

variant out of the 5 runs for each model for the qualitative evalua-

tion. We would like to highlight this observation as we notice it is

not only linked to our model and, therefore, want to encourage the

community to take and report similar precautions.

5.1. Effect of different latent vectors

In this work, our main objective is to generate facial animations

with a generic, neutral delivery. Subjects captured with both qual-

ity methods were instructed to maintain a neutral facial expression

throughout their performances. In all evaluations, we optimized the

latent to yield a neutral facial expression (Sec. 3.1.2).

Naturally, some variance in the expressions adopted by the par-

ticipants can still be found in our training data. We found that we

are able to emulate different expressions by optimizing the latent

on selected subsets, as well as individual speaking styles if the op-

timization clips belong to a single speaker. The poses in Fig. 6 are

snapshots of animations generated from a single V2F model, taken

at the same point in time but differing in the latent vector used dur-

ing inference. More examples of speech generated from a single

V2F model where the latent vector is optimized to match different

speech styles are shown in our accompanying video.

5.2. Facial Mesh2Rig

Visual inspection on animation sequences generated from previ-

ously unseen speech confirmed that the model trained with σ = 0.3,

while worse at mapping mesh animations perfectly representable

by the rig, performs better at predicting rig parameters that match

the mesh poses generated from our cVAE. We believe that the noise
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Figure 4: Distribution of votes for all comparisons. The asterisks accompanying the name indicate different values of statistical significance

(* = p < 0.05; ** = p < 0.01, *** = p < 0.001).

Figure 5: Percentage of model preference after tie exclusion. All

ablation comparisons in Survey 1 are accounted for.

introduced during training helps the M2R model handle input mesh

vertices outside of the distribution of the rig representation, making

it more suitable for handling the frames generated by our cVAE.

6. Conclusions and future work

We have presented Voice2Face, a Deep Learning model that gen-

erates face and tongue animations directly from audio input. Our

approach seamlessly integrates multiple modules: a cVAE that gen-

erates mesh animation and a model that translates the mesh anima-

tions to rig controller space. We show that by using quality con-

ditioning, we can train on datasets with animations from multiple

quality levels without degrading animation performance. In addi-

Figure 6: By varying the latent variable used for inference we can

generate animations with different speech styles. These snapshots

come from the same point in time in animations inferred by a single

V2F model, using a different latent vector.

tion, we introduce a method to optimize the latent variable of our

model, controlling the overall speech style of our animations. We

also design a novel method to quantify lip sync quality by measur-

ing lip closure for bilabial sounds. We perform a user study where

we observe partial correspondence between perceived quality and

the quantitative metric, a significant perceived quality improvement

when including tongue animation and a significant preference over

a state of the art method, particularly among animators. Our ap-

proach demonstrates accurate lip sync while showing natural mo-

tions on the lip and jaw region. Unlike previous works, our model

generates identity independent animations while allowing speech

style control. We believe these properties make the model particu-

larly useful as a bulk animation tool for the entertainment industry

and, with improved performance, for cinematics.

Currently, the latent vector allows limited control of expressions

due to the reduced emotional range of the dataset. Emotional con-
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trol can enable artists to edit and manipulate the generated anima-

tions. However, animators would benefit from a semantic layer on

top of the latent.

Our evaluation results suggest that there is a partial correspon-

dence between our metrics and human perception, yet current met-

rics do not capture the full extent of animation quality. New metrics

should be considered in order to reduce the evaluation time of new

trained models and to establish a benchmark to compare facial an-

imation quality. Future work in this area may include designing

metrics that reflect other perceptual qualities like jittering or pose

during silences as well as the construction of a meta-metric that

correlates with human preference, similar to [LAK*16].

The results of the user study show that our method outperforms

state of the art animation quality. Furthermore, it proves the viabil-

ity of our tongue animation generation technique. We acknowledge,

however, that this is a first approach that requires further investiga-

tion. Our method could also benefit from including more features

that would increase the realism of the animation such as head and

saccadic eye movements or gaze behavioral patterns related to emo-

tions (e.g. gazing up when thinking).

The main focus of the proposed method is to produce off-line

bulk animations and not real-time applications. As such, optimiza-

tion was not among the objectives of this work. Apart from reduc-

ing computational costs, our model is subjected to an inherent la-

tency of 0.26 s since the last sound window in the input sequence

St−k:t is centered on the target animation frame. More research is

needed in the field to bypass this issue. Finally, the usability of our

method in a production pipeline is outside of the scope of this work

and something that will be explored in the future.
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