
A Position Based Material Point Method
Chris Lewin
clewin@ea.com

SEED - Electronic Arts (EA)
UK

ABSTRACT
The explicit Material Point Method (MPM) is an easily implemented
scheme for the simulation of a wide variety of different physical ma-
terials. However, explicit integration has well known stability issues.
We have implemented a novel semi-implicit compliant constraint
formulation of MPM that is stable at any time-step while remaining
as easy to implement as an explicit integrator. We call this method
Position Based MPM (PB-MPM). This work significantly improves
the utility of MPM for real-time applications.

ACM Reference Format:
Chris Lewin. 2024. A Position Based Material Point Method. In Special
Interest Group on Computer Graphics and Interactive Techniques Conference
Talks (SIGGRAPH Talks ’24), July 27–August 01, 2024, Denver, CO, USA. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3641233.3664323

1 INTRODUCTION
MPM is a versatile simulation approach [Jiang et al. 2016] in which
particles equipped with a deformation tensor interact through a
background grid. In computer graphics, it is usual to use it in com-
bination with APIC [Jiang et al. 2015] deformation tracking and
integrate the system with explicit or implicit integration. Explicit
integration is easily implemented but suffers from severe stability
problems that demand small time steps. Implicit integration via
Newton’s method can allow for large time steps, but is much more
complex to implement and has other stability pitfalls such as the
need to ensure positive-definiteness of the resulting stiffness matrix
[Smith et al. 2019].

In real-time simulations for games, the primary concern is that
the system should remain stable under any user input. This means
that it should not act in an alarming way, or crash the executing
device, despite potentially unsolvable situations like an incompress-
ible fluid being crushed to zero volume between kinematically-
controlled barriers. Additionally, it must be highly efficient: useful
simulations should be able to run at twenty or more times real time
rates.

In order to achieve this high standard, both rigid- and soft-body
simulations in games are often carried out using constraint-based
methods such as Position-Based Dynamics [Macklin et al. 2016;
Müller et al. 2007]. In this approach, soft forces are viewed as the
relaxation of a rigid constraint and are solved with a series of local
iterations rather than a single global linearization. This gives a very
high degree of stability at the cost of apparent stiffness becoming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH Talks ’24, July 27–August 01, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0515-1/24/07
https://doi.org/10.1145/3641233.3664323

Algorithm 1 Position Based MPM. Only lines in red are substan-
tially different to explicit MPM.

1: function UpdatePBMPM(𝑃 ) ⊲ 𝑃 is an array of particles 𝑝𝑖
2: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛← 1 to 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡 do
3: 𝑃 ← 𝑆𝑜𝑙𝑣𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (𝑃)
4: 𝐺 ← 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑇𝑜𝐺𝑟𝑖𝑑 (𝑃)
5: 𝐺 ← 𝐺𝑟𝑖𝑑𝑈𝑝𝑑𝑎𝑡𝑒 (𝐺)
6: 𝑃 ← 𝐺𝑟𝑖𝑑𝑇𝑜𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 (𝑃,𝐺)
7: end for
8: 𝑃 ← 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 (𝑃)
9: end function

strongly coupled to how well the solver can converge. For real-time
work, this is often a good trade-off.

In this work, we construct a novel iterative compliant-constraint
formulation of MPM that combines the advantages of PBD with
MPM. Specifically, it is unconditionally stable at any time step
and can achieve similar results to explicit integration at much less
computational cost. As with other MPM simulations, it trivially
handles self-collision and one can implement a wide variety of
material behaviours.

2 DETAILS
Our algorithm is very similar to explicit MPM and can be imple-
mented with only a small number of changes. See [Jiang et al. 2016]
for an excellent guide to standard MPM techniques. Algorithm 1
shows the high-level structure of our method. As with Lagrangian
PBD, the main idea of the method is to iteratively improve a candi-
date displacement state by solving local constraints and combin-
ing the results. These constraints can be analogous to continuum-
mechanical forces like co-rotational strain, or can express concepts
like fluid incompressiblity that do not have an exact equivalent in
force-based methods. In the accompanying videos we show two
types of materials: incompressible liquids and co-rotational elastics.

Algorithm 2 shows the details of how we solve constraints for
each of these materials. In each case we make changes to the de-
formation displacement D𝑖 that are then reconciled through the
MPM grid in the standard manner. Once iteration has finished,
we integrate the particle’s position and deformation gradient for-
ward using the candidate D𝑖 we have refined through the iterative
process.

2.1 Liquids
To make liquids incompressible, we add hydrostatic impulses to
D𝑖 to drive a tracked liquid density 𝐿𝑖 towards 1. Our method
works quite well for liquid simulation because it is able to express
incompressibility directly rather than through an equation of state.
However, using MPM deformation tracking to compute the liquid

https://doi.org/10.1145/3641233.3664323
https://doi.org/10.1145/3641233.3664323
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641233.3664323&domain=pdf&date_stamp=2024-07-18


SIGGRAPH Talks ’24, July 27–August 01, 2024, Denver, CO, USA Chris Lewin

Algorithm 2 Constraint Solve

1: function SolveConstraints(𝑃 )
2: for 𝑝𝑖 in 𝑃 do
3: if 𝑝𝑖 .isLiquid then
4: 𝑐 ← tr(D𝑖 )
5: Dℎ𝑦𝑑𝑟𝑜 = I(𝐿𝑖 − 1 − 𝑐)
6: D𝑣𝑖𝑠𝑐 = − (D𝑖 − tr(D𝑖 )I)
7: D𝑖 ← D𝑖 + 𝛼ℎ𝑦𝑑𝑟𝑜Dℎ𝑦𝑑𝑟𝑜 + 𝛼𝑣𝑖𝑠𝑐D𝑣𝑖𝑠𝑐

8: else if 𝑝𝑖 .isElastic then
9: F∗ ← F𝑖 (I + D𝑖 )
10: A𝑠ℎ𝑎𝑝𝑒 ← PolarDecomposition(F∗)
11: A𝑣𝑜𝑙 ← F∗/det(F∗)
12: D𝑖 ← F−1

𝑖
(𝛽A𝑣𝑜𝑙 + (1 − 𝛽)A𝑠ℎ𝑎𝑝𝑒 ) − I

13: end if
14: end for
15: end function

volume results in rapid volume loss if our solver does not fully
converge. To combat this, we track an objective measure of how
densely the liquid particles are packed using MPM grid transfers
instead. The combination of our constraint solver and an objective
volume measure allows the liquid to recover from total volume loss.

We can easily include viscosity in our model by additionally
driving the off-diagonal elements of D𝑖 towards zero. To control
how much volume preservation and viscosity the fluid exhibits we
can use relaxation factors 𝛼ℎ𝑦𝑑𝑟𝑜 and 𝛼𝑣𝑖𝑠𝑐 respectively. Relaxation
factors are a fairly crude way to control behaviour of a PBD system
because their effect changes with the time step and iteration count
used, but in this case it is not onerous to tune them to get the
required look. For more refined control over material properties, an
XPBD [Macklin et al. 2016] variant of MPM is very likely possible.

2.2 Elastics
We can achieve elastic behaviour by solving a co-rotational elasticity
constraint for each particle. First we note that given a candidate ve-
locity, we expect a candidate deformation gradient F∗ = (F𝑖 (I +D𝑖 )
to be generated when the particle is integrated at the end of the
frame. Thus, we can drive the deformation gradient towards any
matrix A by rearranging: D𝑖 = F−1

𝑖
A − I. For shape preservation,

we can set A𝑠ℎ𝑎𝑝𝑒 = R = PolarDecomposition(F∗), where PolarDe-
composition refers to the Polar SVD commonly used in elasticity
simulation[McAdams et al. 2011].

For volume preservation, we can use A𝑣𝑜𝑙 = F∗/det(F∗). Unlike
the liquid case, these two constraints are not orthogonal. We can
reconcile this by introducing an interpolating factor 𝛽 so that A =

𝛽A𝑠ℎ𝑎𝑝𝑒 + (1 − 𝛽)A𝑣𝑜𝑙 .
For elastic particles we track F𝑖 in the usual manner for MPM

deformation gradients, which means its values can be essentially
arbitrary. This means it can become very badly conditioned or even
singular. This happens fairly commonly in our simulations because
we use large time steps. To combat this, we delete elastic particles
with a high condition number

(
cond(F𝑖 ) > 106

)
. We do not need

to do this to liquid particles because they use an objective volume
measure.

For more specific details of our method, please see the open-
source code that will accompany our talk. All simulations discussed
here and in our accompanying videos were done in real-time using
an AMD Ryzen Threadripper 32-core CPU, using AVX2 SIMD in-
structions and parallelism. For grid transfers we used MLS-MPM
with quadratic B-spline weighting.

3 DISCUSSION
The main drawback of Position Based Dynamics is that behaviour
depends strongly on how well the solver converges, and that con-
vergence is dependent on the problem structure. In PBD terms, our
method amounts to a Jacobi-style solver because all the constraints
are updated in parallel without any information propagating be-
tween them during the constraint solve step. This leads to rather
slow convergence, which manifests as artificial softness.

One iteration of our method corresponds roughly to one time
step of explicit MPM in terms of computational effort. However,
we are able to take much smaller time steps when using PB-MPM.
For instance, in a dam break simulation of liquid our simulator was
stable when running at only 30Hz with a single iteration, whereas
an explicit implementation with stiffness set to maintain the same
volume in the steady state required 240Hz to retain stability through
the splash phase. It is possible to make explicit integration more
stable by limiting the forces it can produce, but this also causes
artificial softness and may be too harsh an intervention in some
situations. On the other hand, PBDwill be as stiff as possible without
threatening the stability of the simulation.

4 CONCLUSION
We have presented a simple modification of MPM that allows for
stable simulation with large time steps. This significantly improves
the usefulness of MPM in games, where PBD style solvers are
common. This could allow the integrated simulation of new physical
material types in games, as well as allowing for much higher fidelity
simulation of object destruction.

REFERENCES
Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.

2015. The affine particle-in-cell method. ACM Trans. Graph. 34, 4, Article 51 (jul
2015), 10 pages. https://doi.org/10.1145/2766996

Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle.
2016. The material point method for simulating continuum materials. In ACM
SIGGRAPH 2016 Courses (Anaheim, California) (SIGGRAPH ’16). Association for
Computing Machinery, New York, NY, USA, Article 24, 52 pages. https://doi.org/
10.1145/2897826.2927348

Miles Macklin, Matthias Muller, and Nuttapong Chentanez. 2016. XPBD: Position-
Based Simulation of Compliant Constrained Dynamics. Proceedings of Motion in
Games 2016. https://matthias-research.github.io/pages/publications/XPBD.pdf

Aleka McAdams, Andrew Selle, Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis.
2011. Computing the Singular Value Decomposition of 3x3 matrices with minimal
branching and elementary floating point operations. technical report. University of
Wisconsin - Madison. http://graphics.cs.wisc.edu/Papers/2011/MSTTS11

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
based dynamics. Journal of Visual Communication and Image Representation 18, 2
(2007), 109–118. https://doi.org/10.1016/j.jvcir.2007.01.005

Breannan Smith, Fernando De Goes, and Theodore Kim. 2019. Analytic Eigensystems
for Isotropic Distortion Energies. ACM Trans. Graph. 38, 1, Article 3 (feb 2019),
15 pages. https://doi.org/10.1145/3241041

https://doi.org/10.1145/2766996
https://doi.org/10.1145/2897826.2927348
https://doi.org/10.1145/2897826.2927348
https://matthias-research.github.io/pages/publications/XPBD.pdf
http://graphics.cs.wisc.edu/Papers/2011/MSTTS11
https://doi.org/10.1016/j.jvcir.2007.01.005
https://doi.org/10.1145/3241041

	Abstract
	1 Introduction
	2 Details
	2.1 Liquids
	2.2 Elastics

	3 Discussion
	4 Conclusion
	References

