


I am Henrik Halen from Electronic Art’s SEED R&D group. Today I will be presenting 
with Kyle Hayward from Frostbite.

This presentation and much of the technology behind it, has been put together by 
myself, Kyle Hayward from Electronic Art’s Frostbite, Andreas Brinck and Xhiangshun 
Bei from EA’Ripple Effect studios in Los Angeles. 



“Global Illumination based on Surfels (GIBS) is a solution for calculating indirect 
diffuse illumination in real-time. The solution combines hardware ray tracing with a 
discretization of scene geometry, to cache and amortize lighting calculations across 
time and space. It requires no pre-computation, no special meshes, and no special 
UV sets. GIBS supports high fidelity lighting while accommodating content of arbitrary 
scale.“





The basic GIBS algorithm was implemented in 2018, as part of EA SEED’s PICA 
PICA ray tracing showcase. It was developed for that demo primarily by Tomasz 
Stachowiak. 



Since then the algorithm has been significantly extended and optimized to handle any 
geometry, including skinned characters and large environments, while improving 
convergence times and quality.



The algorithm is part of the suite of tools available to developers and teams 
throughout EA as part of the Frostbite engine.



While hardware accelerated ray tracing is widely available on consoles and PC 
graphics hardware, shooting rays is still one of the most costly operations for that 
hardware. Recent work has shown that diffuse global illumination is solvable in real-
time using high-end hardware at a significant performance penalty. 

By minimizing where and when rays are sent, we hope to make real-time global 
illumination possible for mainstream hardware and titles.



Today we will talk about how we discretize the scene into surfels.
We will describe our non-linear acceleration structure that makes this possible.
We describe how we integrate irradiance, how we mitigate artifacts, sample scenes 
with many lights, and handle transparency. 
Finally we will look at performance numbers.
Before we begin, we should mention that this technique is still very much in 
development, and as such we expect to see significant improvements as 
development continues. 



So let’s get into the algorithm. In GIBS, surfels discretize the scene on the fly, as 
geometry that needs indirect lighting comes into view. Once surfelized, the scene 
efficiently accumulates and caches irradiance. We believe this is a good fit for global 
illumination. In contrast to probe grid solutions, we perform and cache ray tracing 
operations exactly where they are needed. In contrast to screen space filtering 
techniques, the surfel cache is persistent as surfels go in and out of view, saving us 
from doing the work again, Surfels are resolution independent, allowing for a scalable 
solution in terms of performance and quality. It is also fully dynamic, allowing complex 
lighting interaction in scenes where everything can change.



GIBS accelerates production by removing the need for time consuming bakes, and 
the setup of traditional lighting techniques, such as the creation of special meshes or 
UV set.
We support environments of arbitrary scale, and fully dynamic geometry and worlds.





In the same way an image can be discretized by dividing it into pixels, we can also 

discretize a geometric surface.

One way of doing this is by using surfels; shorthand for surface elements. A surfel is 

defined by a position, a radius, and a normal, and approximates a small 

neighborhood of a surface near the given position.



So how do we discretize the scene with surfels? We spawn them from the GBuffer as 
geometry comes into view. 
After that, surfels are persistent, which allows us to efficiently accumulate radiance 
over time, and to cache those costly operations without throwing the work away.



Here we have slowed down this surfelization from the gbuffer so you can see it 
happen in real time. As geometry comes into view the spawning algorithm fills any 
gaps in coverage that appears. 



Normally this is fast enough to appear immediate to the user, you never really see 
any gaps in coverage.



The actual spawning algorithm works by filling gaps as they are seen in screen 
space. The screen is split into 16x16 texel tiles, each tile finds the texel which has the 
least coverage currently. If this coverage passes a randomized threshold we spawn a 
new surfel using the geometric information from the GBuffer. Once a certain amount 
of coverage is achieved, no more surfels are spawned for that tile. For more details 
on spawning itself, I recommend Thomasz talk.



While surfels are persistent once they spawn, they do update their positions every 
frame in order to follow the surface they spawned on.
To accomplish this, surfels track a unique transform identifier of whatever geometry 
they are attached to.



This identifier is written to the gbuffer and picked up by the surfels during spawn. This 
image is a visualization of these IDs. In Frostbite, a global transform buffer is 
maintained, for surfels and other purposes, that contains the transforms of any 
geometry in the scene, including skinned bones.
The surfels store their local position in the transform we’ve identified for them.
Each frame we use the surfel’s relative position together with the transform ID and 
global transform buffer to compute a new world space position.



The obvious use case for this is for rigid geometry, but it also works for skinned 
meshes.
When skinned geometry writes their transform IDs to the GBuffer, they write the ID of 
the bone with the highest skinning weight. 
This allows for essentially one bone skinning of surfels to geometry skinned with any 
number of weights. Because we only use one bone there are situations where the 
surfels don’t follow exactly, but the surfel lighting algorithm is fairly forgiving in those 
circumstances.





Since everything is assumed to be dynamic with GIBS, skinned and moving geometry 
both interact with the rest of the solution just like static geometry does.



The surfelization of the scene works at any distance. Surfels are scaled so that their 
projection in screen space is roughly constant. This is true both when they spawn as 
well as when we move through the environment. 



In this view, as we approach the top of the hill, you can see that the surfels shrink, 
and as they do we spawn more surfels to maintain the same ratio of surfels per 
screen space area. The reverse is true when we back away, surfels grow, and we can 
remove surfels where coverage is too high. The obvious impact of this is a constant 
level of quality at all distances, but the implication is the same for performance as 
well.



Since we are dynamically spawning surfels as we move through the level, the 
question may be asked how we keep memory, and to some degree performance, 
consistent. The surfel algorithm allocates all the resources required for surfel 
management up front. This means that there are limits to the number of surfels that 
are available.



To effectively make use of the available resources, we employ a surfel recycling 
algorithm that removes surfels that are deemed to no longer be relevant. The way this 
works is that a stack of available surfels is maintained at all points. The stack is 
initialized to contain indirections to the entire surfel space.



When a surfels spawn, the stack is decremented, on the GPU, by an atomic operation 
on the stack counter, and the ID of that surfel is retrieved from the stack. 



When a surfel is recycled, the stack counter is incremented, and the surfel writes its 
ID to the pre-allocated stack buffer. As with everything else in this algorithm, this is all 
done on the GPU, in this case with atomics and indirections



While the recycling algorithm keeps the number of live surfels in check, we don’t want 
to recycle surfels unnecessarily. That would throw away the all the hard work done to 
calculate lighting for that surfel. For this reason, we employ a recycling heuristic 
based on some factors. These factors include: 1. How many surfels are currently live. 
2. When the surfel last contributed to the lighting of the scene. 3. How far away the 
surfel is. These factors are combined and compared to a random number pulled from 
the uniform distribution, giving surfels that are less relevant a higher probability to be 
recycled.



Many parts of the algorithm require quickly finding which surfels are in the vicinity of a 
given position.

In the original Pica Pica version, a uniform grid was used to accelerate these queries.



Here is a visualization of of that. We have a view frustum in yellow, and some 
geometry in the scene with surfels attached to it.



We insert all surfels into this structure every frame. First a surfel finds its position in 
the grid, which is a simple operation, and inserts itself there.



But surfels have a radius, so we check to see if the surfel overlaps any of the 
neighboring cells as well, and insert it there as well.
We guarantee that the radius of a surfel is never larger than the side of a grid cell.



But we also insert it into its immediate neighbors, if the surfel covers those at all. This 
to allow ease of access later on, and to avoid discontinuities in the lighting. 



The uniform grid worked well for the small level of Pica Pica, but presented a problem 
when we tried to move to levels of a size used in modern games.

As we mentioned earlier, the radius of surfels are adjusted to be roughly constant in 
screen space, which means distant surfels will have a large radius.

To avoid the aforementioned discontinuities we would have had to use a large cell 
size as well, which would have negated a lot of the benefit of using a grid.



We wanted an acceleration structure with properties similar to a projection transform, 
where we had more resolution close to the camera.

We also wanted something reasonably simple to make sure lookups remained fast.

After some experimentation, we settled on a structure where we keep a uniform grid 
for a small area close to the camera, combined with a trapezoidal grid along each 
principal axis.

The thicknesses of the slices of the trapezoidal grids increase with distance from the 
center of the structure.



Here is an image of what the structure looks like in 3D. This gives us an acceleration 
structure that perfectly fits the way surfels grow with distance. And since the 
trapezoids are essentially regular grids, just with a non-linear transformation, lookups 
and insertions are still very fast.



This is a debug view from showing the cells of the uniform center grid in grey, as well 
as the surrounding non uniform grids in other colors.

As you can see the trapezoidal grids maintain a constant grid cell size regardless of 
distance.



This view shows a heat map of the number of surfels in each cell.

For areas with comparable geometric complexity, the number of surfels in each cell 
stays constant in screen space.

Cells that contain a lot of geometric complexity naturally contain more surfels, in order 
to approximate the underlying geometry. You can see this on the character at the 
center of the screen, as well as the structures underneath the cheese tanks.



In the final pass of our surfel frame, we reconstruct the world space position of each 
pixel, find which cell the position is inside, and then fetch the first N surfels in the cell. 

We loop over these surfels and accumulate their irradiance, weighted by their 
orientation and distance to the source pixel’s position and orientation. 

Once we’ve looped over the surfels, if we find that the contribution of the surfels is 
less than one, we then add in the weighted average irradiance of the grid cell.



As we started to use surfels on game content, we noticed some some issues. 

Even though surfels in a way represents the geometry in the scene, they do not 
inherently know what’s in their neighborhood. This in combination with the sometimes 
large size of surfels relative to the underlying scene can cause some unfortunate 
artifacts. One such artifact is bleeding of light through geometry. Here are a couple of 
examples of that. 



Even though surfels in a way represents the geometry in the scene, they do not 
inherently know what’s in their neighborhood. This in combination with the sometimes 
large size of surfels relative to the underlying scene can cause some unfortunate 
artifacts. One such artifact is bleeding of light through geometry. Here are a couple of 
examples of that. 







What’s happening here is that surfels outside of the wall, in a much brighter area, 
apply lighting through the geometry. The surfels simply don’t know that the wall is 
there.





To solve this problem we use a radial depth function. We initialize this to the diameter 
of a surfel.





As we trace rays for accumulating irradiance, and we hit geometry within the surfel 
diameter, we update the depth function.







As we send more rays the depth function estimate gets better.



But we don’t just store depth. We store a moving average of depth and depth square. 



This allows us to re-create not just an estimate of the mean, but an estimate of the 
variance as well.



We can use the mean and variance to use Chebychev’s inequality to do depth 
testing. This provides a smooth depth test, and works great for re-creating slopes in 
depth space.



This technique is inspired by Variance Shadow Maps and DDGI. In contrast to the 
DDGI implementation, we only care about depth within the surfel diameter, and 
what’s in the hemisphere. 



This works amazingly well, with very low resolution depth functions. The size is 
configurable, but our default is just 4x4 texels per surfel hemisphere. 



And this is enough for the vast majority of cases. Here is the same scene with the 
radial gaussian depth function enabled on the right. As you can see, all of those 
artifacts on the wall and in the ceiling are gone.



And the same is true for this scene as well.



So how do we actually calculate lighting for surfels? We shoot rays into the scene, but 
we also employ a number of techniques to make sure we use the limited ray budget 
we have in the best way possible. 



Since everything is dynamic within GIBS, we can support emissive surfaces and 
materials, as well as destructible and dynamic environments. We need to be able to 
effectively integrate irradiance in these situations and react to changes in the scene.



This is where ray tracing comes in. Surfels shoot rays into the scene. These rays hit 
geometry, any geometry that is in the ray tracing acceleration structure, including 
dynamic and skinned geometry. On a hit point, we evaluate direct diffuse lighting and 
shadowing by tracing the light sources in the scene. We will talk about how we do that 
efficiently a bit later. Additionally at the hit locations we also evaluate the existing 
surfel lighting at those locations. This gives us effectively infinite bounce over time, as 
long as there is surfel coverage in that area.

























Since we want to support dynamic environments and reduce the cost of ray tracing, 
we accumulate lighting over many frames.



To do this, we use a modified version of a moving average estimator.
With a regular moving average estimator you have to choose a blend factor for each 
sample. This means you have the choice of either something that’s reactive to 
changes in the scene, or something that converges well over time.
What we really want is the best of both worlds, and we want it to be automatic. 
So in addition to accumulating a longer term moving average, we also track a shorter 
term mean and a short term variance estimator.
These short-term estimators are used to adjust the blend factor for the long term 
average.
This allows us to quickly react to changes in the scene, while also converging to a 
noise free result.
I will again recommend you check out Thomasz’s presentation for slightly more 
details there.



Since we are tracking variance per surfel, we can make good use of this for other 
purposes as well.
The number of rays sent from each surfel every frame depends on a few different 
factors, one of which is the variance the surfel sees.
If a surfel is seeing high variance, it requests more rays in order to converge faster.
In contrast, if a surfel sees low variance, it can send much fewer rays. 
We use this to quickly react to changes in the scene, while reducing the overall ray 
count when things converge. In fact, surfels can go into an almost dormant state, just 
sending enough rays to detect that there is a change.



As a visualization of this working, in this video we visualize the variance. Blue is very 
low variance and red is high variance. As the scene starts, variance is low, and 
consequently surfels send very few rays. As the sun moves, surfels start seeing more 
variance because the current mean is different from the previous mean. So the surfels 
quickly up the amount of rays sent and again converge to a stable low variance state. 
This is also true if we exit this area and spawn completely new surfels. When surfels 
first spawn variance is high because it takes some time to converge, but as we do 
converge variance drops and surfels can go down to their sort of dormant low ray 
counts. For this reason we allow more rays for newly spawned surfels.



Surfels use a number of pieces of information to determine how many rays they would 
like to send each frame. These factors include how many frames have gone by since 
a surfel actually contributed to the lighting the camera sees. Surfels that are actively 
contributing lighting to what the camera sees get more rays. We allow surfels that just 
spawn to have a higher budget, so that we can quickly reduce variance. We also use 
variance to bias the ray counts.

To keep performance consistent across many areas we allow content creators to set 
a total ray budget for their game. The ray budget is enforced by a two step process. 
First a ray count pass is run, where each surfel increments a global ray counter 
according to the local surfel ray request as we just described. Second, as rays are 
allocated in the binning pass, which we will describe later, each surfel gets a ray 
count proportional to its requested part of the total budget. This allows us to balance 
performance with unpredictable lighting scenarios, and allows content creators to 
influence that balance.



Here you can see an example of this in action. On the the right is a visualization of 
variance, blue indicates low variance, and red indicates high variance. As surfels 
detect a change in the scene, they ramp up their ray counts in order to converge to 
the new solution. When variance drops they go back to a lower almost dormant state, 
where they send just enough rays to detect a change. 

The same is true in this scene. When the light changes, variance goes up, surfels 
increase their ray counts and converge to the new solution, and then go back to their 
almost dormant state.

This is true when we spawn new surfels as well, like here. The new surfels see a lot 
of variance because they have not converged yet, but quickly do so and reduce their 
ray counts.



But we can do more in terms of where we are sending the rays as well. Since we are 
dealing with diffuse indirect lighting, the BRDF we are dealing with is essentially the 
cosine lobe. The most obvious thing to do is to importance sample that lobe, which 
we do individually for each surfel. But there are situations where the cosine lobe is not 
the most efficient direction to send your rays. 







While importance sampling the cosine lobe works well in many scenes, this is not 
always the case. Here we have two surfels side-by-side in a room where most of the 
light comes from the wall on the right, which is hit directly by the sunlight. These 
surfels send the same number of rays in the same directions, but the one of the right 
ends up hitting this bright area twice as often as the one on the left. So both of these 
surfels have a bad estimate of what the irradiance is. 



What this looks like in practice, as you can see on the left, is noice, or variance across 
surfels.



What’s really important in this particular scene is to get a good estimate of exactly 
how much light is coming from the wall on the left. The rest of the room is very dark 
and does not really matter. 



One way to get a better estimate is to send more rays. But that’s expensive, so we 
don’t want to do that.



But what if we could use the same number of rays, and just send more of them in 
directions that are important. That is what ray guiding does.



We were inspired by <references>. Muller creates a quad tree of the sphere, where 
each leaf node is of equal radiance. This is then importance sampled by employing 
the technique of McCool, and generates rays in direction proportional to the radiance.



But we don’t want to construct a quad tree every frame, for every surfel. We map the 
hemisphere to a quad where we track radiance.



The size of the map is configurable, but for most applications we use 6x6 texels, with 
8 bits per component, plus a single 16 bit scaling value. We normalize the entire 
function after each iteration, so we essentially track relative radiance, and maximize 
precision. As surfels integrate radiance we populate the guiding function. Once the 
function is somewhat populated we start using that to guide our rays.



Inverse of the Cumulative Distribution Function (CDF) can be used to generate 
samples according to the PDF.



I will illustrate how we importance sample this, by first showing how this is done for a 
1D discrete function.





First we generate a random number from the uniform distribution, and multiply that by 
the sum of the discrete function.



Then we start walking the function, and it doesn’t really matter which order you walk 
in, as long as you are consistent. 



As we walk the function we sum the discrete parts.





When the sum reaches the random uniform variable, we stop.



We now have our importance sampled variable. Each discrete part of the function will 
be picked proportionally to its value. And we also have it’s Probability Density 
function, which is the value of the function at that position.



While our hemispherical radiance map is two dimensional, we can do the same thing 
there.



We multiply the random distribution with the sum of radiance.



Then we walk the function and accumulate. 



In practice we don’t use a quad tree, we use a fixed 6x6 texel function. We find higher 
resolutions give better results, but we want to keep memory in check, and not make 
sampling the function too expensive. We currently just walk the entire function when 
we select ray directions, but a 6x6 function does allow for a hierarchical traversal 
similar to the octree case, where we can use a linear sampler and effectively walk a 
higher 3x3 mip level through the first iteration.





When the sum reaches the random variable, we stop.



And we have our importance sampled variable, in UV-space.



We map this UV variable back to the hemisphere, and we now have an importance 
sampled ray direction, and its PDF.



In practice we don’t use a quad tree, we use a fixed 6x6 texel function. We find higher 
resolutions give better results, but we want to keep memory in check, and not make 
sampling the function too expensive. We currently just walk the entire function when 
we select ray directions, but a 6x6 function does allow for a hierarchical traversal 
similar to the octree case, where we can use a linear sampler and effectively walk a 
higher 3x3 mip level through the first iteration.





To verify that this works, where it works well and where it doesn’t, we created a test 
bed where we can integrate across irradiance probes using the different sampling 
techniques.

I will now show some examples. In this graph we have the number of rays on the 
horizontal axis and the relative error on the vertical axis.

The blue curve shows the error when using cosine lobe importance sampling and the 
yellow one shows the error when also using our ray guiding texture.

The ray guiding works best when the guiding texture is a reasonable approximation of 
the incoming irradiance, and much of it is coming from a direction which would have 
been sampled rarely by the cosine lobe.

An example of a scenario like this is shown in the current graph. We have light 
coming in through big windows covering the entire horizon.













In addition to the ray tracing optimizations we have just described, we also reduce the 
perceived noise by sharing irradiance between surfels. Since surfels are independent, 
it’s less straightforward to do this than say, with a regular grid, or a voxelized 
discretization. Luckily our acceleration structure contains all the surfels in the same 
region. This allows us to share some information between neighboring surfels. We 
utilize this to share irradiance when variance is high, which significantly reduces the 
perceived noise.



Here are some examples of irradiance sharing in action.



Here we have a scene after 64 samples, with no irradiance sharing. As can be seen, 
the results are pretty blotchy.



And this is the result with irradiance sharing after the same 64 samples, which looks 
much better!



Here is another scene.



Again this is after 64 samples, and without irradiance sharing. This again looks pretty 
noisy. 



And with irradiance sharing the results are not perfect, but pretty good after just 64 
samples. We should mention that ray guiding is being used in these examples as 
well.



I’ll now go over our many-light sampling research, transparency support, and some 
performance numbers. But first, let’s quickly cover how we sort our rays.

Shooting rays with little spatial coherence causes poor performance on most 
platforms. 

Executing threads tend to go down very different parts of the acceleration structure. 
Which results in poor cache utilization.

So to alleviate this, we’ve opted to use a sorting strategy similarly to Battlefield 5, 
known as ray binning. 

We bin rays based on their position and orientation.



We simply use the surfel’s cell coordinate converted to 1D, for the spatial hash. This 
is the dominant value when calculating the bin index.



And then we use the ray shot from the surfel, as the other part of the bin index.



Then we run 2 passes that generate the re-ordering information we need to sort the 
rays.

Followed by a final pass that re-orders the rays based on the previously calculated 
bin counts and offsets.

You can see the Battlefield 5 presentation for more information.



So far we’ve discussed how we integrate lighting. But how do we light the ray 
intersections? Let’s talk about our research into many-light, sampling techniques.

Many-light sampling is an ongoing area of research within offline and online computer 
graphics. But, there have been recent advancements in the last 2 years that have 
been promising. And we’ll discuss our application of those techniques.

This scene is part of our stress test and contains 1400 lights inside the camera 
frustum. 



And here’s the indirect diffuse for this scene.

So, what are our options when it comes to sampling hundreds or thousands of lights?



Once you move beyond a few lights, it is no longer feasible to sample all the lights in 
the scene. 



A first step solution is to stochastically sample N lights. This might work well when 
there are 10s of lights in an area, and is also dirt cheap performance wise if N is 
small. However, once you move to hundreds or thousands of lights, this approach 
starts taking too long to converge.



So, we need some sort of importance sampling to combat the convergence problem.



We’ve investigated a few solutions and will present the two most promising avenues: 
stochastic light-cus, and reservoir sampling.



The first solution I’ll discuss is stochastic lightcuts. This solution is based on the work 
of Cem Yuksel from HPG 2019. Stochastic-light cuts builds upon lightcuts by 
minimizing biased sampling of the light tree and improving sampling efficiency.

This research is attractive, because it does not need a large amount of samples to 
converge, and requires no spatial or temporary storage beyond the light data 
structure; unlike resampled reservoir sampling which we’ll cover in a few slides.



So, how do we build our light tree?



We store light positions in view space for precision, and sort the lights based on a 
morton encoding of their position. This sorting helps group lights spatially, so that the 
tree has implicit spatial correlation. And we don’t need to do multiple sorts during 
construction as with BVH 

We then build the tree bottom up, where each internal node represents the combined 
bounds, and intensities, of the children below it.



Now that we know how we build the tree, let’s walk through the process of sampling 
from the tree.



To sample the tree we first choose a cut through the tree, based on a user defined 
node limit. This is typically 2-8 nodes, depending on quality level and platform. This 
count corresponds to the number of lights that we will eventually shoot rays towards 
to compute visibility. 

We compute the cut through the tree by choosing nodes that minimize the lighting 
error based on the sampling position compared to the nodes in the tree.



Once we’ve computed the cut, we traverse, stochastically, down the tree from each 
root node in the cut.



For each internal node, we assign probabilities based on importance weights to its 
children, and then randomly select the left or right child based on their probability.



For each internal node, we assign probabilities based on importance weights to its 
children, and then randomly select the left or right child based on its probability.



Another light sampling solution we’ve investigated is reservoir sampling, based on the 
ReStir research by Nvidia. Unlike lightcuts, reservoir sampling requires no 
precomputed data structure for the lights. Also, another benefit, is that it only requires 
one ray per chosen sample, which makes it’s cheaper on consoles compared to our 
implementation of stochastic lightcuts.



The essential idea behind reservoir sampling is that you stochastically evaluate N 
lights, but only choose M winners to shoot rays against. 



In our case, we randomly sample four to eight lights, and choose one winner.



The winner is chosen by calculating the weight of the light, based on its distance and 
intensity. We then generate a random number, and if that number is less than the 
weight of the light divided by the total weight, we select that light.



And finally, we normalize the resulting pdf by the total weight of all sampled lights.



The downside here is that in-order to get the most out of reservoir sampling, you 
really want to compare spatial and temporal samples to your currently-chosen 
reservoir sample. 

This is called reservoir resampling. This is a bit complicated to do for indirect lighting, 
because it requires extra storage to save your chosen sample, to then later compare 
against other temporal and spatial samples. And this is an area we’re currently 
working on supporting.



Now I’ll show some examples of each technique. In this shot we have around 700 
lights in view, with another 700 outside the frustum.



And here’s the Indirect diffuse, after it has converged to acceptable quality in about 
five seconds. In the following slides I’ll show each technique after solving for only 15 
frames.



The 1st example here is 2 sample brute-force random sampling, which means we will 
shoot 2 shadow rays.

We can see this is very noisy. And we’re missing a ton of light contribution. We’re 
getting a lot of emissve contribution from the theater sign, but hardly any contribution 
from lights.



Now we have 8 sample reservoir sampling. It’s getting much closer to our converged 
example, far outpacing random sampling. But it’s still quite noisy.



And finally, we have 4 sample light-cut sampling after 15 frames. This is much closer 
to our converged example, but also much more costly on console.



And again here is the converged indirect diffuse. And I’ll cycle between lightcuts after 
solving for only 15 frames and the converged example. We can see that it gets very 
close to the converged result after only 15 frames.



So far we’ve describe our solution for opaque surfaces. Now, let’s talk about how we 
support transparency.



And again here is the converged indirect diffuse. And I’ll cycle between lightcuts after 
solving for only 15 frames and the converged example. We can see that it gets very 
close to the converged result even after only 15 frames.



But first, a gratuitous lighting shot showing off lighting for transparents… :-)



While the Surfels are perfectly fit for caching irradiance for opaque 
surfaces, it’s hard to port the same method to transparents 
because we rely on spawning surfels from the gbuffer.

To address this issue, we apply the surfel algorithm for light probes. 
The ray traced probes will persist in a probe volume and gather 
radiance similarly to surfels. Because we are gathering the diffuse 
radiance, it gives us the opportunity to project probes to SH space. 

In addition, we use the same adaptive integrator that we have 
discussed earlier with surfel integration, to accumulate probe 
samples across frames.



As we can see it’s hard to compute the integral for the SH 
coefficients in a single frame at real-time, which needs a large 
amount of samples to converge. 

We amortize the calculation across frames: the irradiance SH 
coefficients on every frame, are calculated by sampling incident 
radiance with a couple of rays and projecting to SH space.



Then we use the same adaptive MSME integrator, as Surfels to 
accumulate the projected radiance across frames. 

The integrator will also calculate the number of rays to shoot in the 
next frame, depending on variance.

We also employ Sloan’s de-ringing windowing function to avoid the 
unwanted dark and bright banding that occurs when there is high 
variance in lighting values.

And finally, we store the filtered results into a probe volume, from 
which we can sample and do irradiance reconstruction for shading.



The issue of scale is a problem for light probes, just as it is for 
surfels. We investigated a few different schemes, but settled on 
volume clipmaps.

These are a set of nested volumes, where each level represents 
larger and larger area but less detail.

This structure enables relatively high detail close to the camera, 
while still covering a large amount of area, for a low memory cost.

We can also update the structure out of sync, and use lower detail 
levels to prime higher detail levels.

Now, let’s take a closer look at how we update the clipmap when 
camera moves.



First, we check the world space position of the camera every frame. 
If the camera moves outside of the center grid of any levels, we 
shift the probes of these levels towards the camera to keep it in the 
level’s center. The distance of shifting depends on how many grid 
cells the camera has moved away from the center. 

After the shifting, there will be new probes which are spawned in 
the updated clipmap, and they will be initialized with higher level 
probes using interpolation.

Because the hierarchical grid covers a large area in worldspace, 
most probes will still be valid after updating, which means they only 
need to be copied to their new coordinate in probe volume space,
instead of wasteful discarding. This is the key to keep the stored 
irradiance valid for as long as possible and improve performance.



Here’s a demonstration of the probe volume updating its coordinates as it follows the 
camera



Now I’ll show how the clipmaps are set up spatially. Here we have 
all 4 levels.



And now just the first level



The second level



The third



And, the fourth



Here’s towncenter again, from PvZ. Where we’ll show the debug 
view, showing which pixels are sampling which level.



We’ve frozen the clip-map camera and we can see the clip-map hierarchy expanding 
outward from the bottom-center of the screen.



Sampling the clipmap is straightforward: find the highest detailed 

level that contains the shaded pixel, then sample the SH 

coefficients from the 3D clipmap texture and reconstruct irradiance.

However, this naive sampling strategy will cause visible 

discontinuities on borders. As we can see here with the statue.



This is perhaps even more of a problem for animated scenes. You 

can see the statue pop to the lower detail level



A simple solution is to blend samples from the 2 closest levels.

We create a transition border for each level. Pixels lying in this border will 

sample from the current level and the next lower or higher detailed level. We 

calculate the blend weight based on the normalized distance to the border.



A simple solution is to blend samples from the 2 closest levels.

We create a transition border for each level. Pixels lying in this border will 

sample from the current level and the next lower or higher detailed level. We 

calculate the blend weight based on the normalized distance to the border.



Now with blending enabled, as we back the camera out we have a smooth 

transition.



But, blending has the extra cost of sampling 2 volumes per a shaded sample.

Our goal is to sample only one volume while maintaining a similar quality to 

blending. Introducing, blue noise dithered sampling.

Blue noise is a great, low-discrepancy distribution, which is easily filterable and 

works well with our TAA.

The blue noise dithering is similar to the blending solution, we sample from the 

current level or the next level based on the screen space sampled blue-noise 

value. Resulting in a quality similar to blending.



So as we move the camera we can see a smooth transition, albeit with not 

quite as high quality as with blending.



Here’s an example to show how our solution for transparent objects 
works well under a fully dynamic world. No pre-computations are 
needed, and the probes will automatically update when the scene 
geometry or lighting changes. But at the same time, we quickly 
converge to the new environment.





Let’s talk about where we’re at with performance of GIBS today. I’ll go over our 
general frame structure, and then give some performance examples of our worst case 
scenarios, followed by scenarios that are more representative of game content.



Here’s a general overview of our frame that we’ve detailed until now. There are 4 
general sections, persistent surfel work, spawned surfel work, filtering surfels, and 
then finally applying the surfels to the screen.



Generally the raytracing work dominates the persistent work.



For spawned surfels, depending on how many are spawning in a frame, the 
raytracing or the geometric normal reconstruction can dominate. Or, depending on 
resolution, the gap fill can dominate.

Filtering is generally very fast, averaging around .2ms



And finally, for surfel application. The Lighting apply pass dominates this group.



All the numbers and timings that follow have the following settings. We’re testing on a 
PS5 with 4k resolution. Which means our screen-space passes run at 1080p.

We’re not limiting how far the surfels are spawned or cutting off rays at a certain 
distance.

And, we’re using 8 sample reservoir sampling, unless otherwise noted.

Lastly, we’re testing the worst case for our solution: starting from an empty surfel 
scene, and then to converged to acceptable quality. Once we’ve converged, the costs 
trail off, so we’ll focus on the expensive part in the next few performance examples.



Here’s example scene 1, using Plants vs Zombies towncenter map. With sunlight 
only.



And here’s the indirect diffuse after we’ve converged to acceptable quality.

(note some of the albedo colors used for GI are not 100% true to the albedo textures)



In this scene, due to the large draw distance, we average roughly 7ms total.



Here’s scene two. This is the same view we showed earlier when discussing our 
many-light solution. 

This is our stress test scene with 1400 lights in view. It converges in…. About never.



So we can see that there is a bit of a tax when it comes to sampling local lights 
compared to the daytime example. But, it takes ages to converge. 



So what does it take to converge? Here’s the same scene, now with a 1 million ray 
budget



And still quite noisy after ten seconds, but it’s getting there.



So we spike quite high in the beginning, but level off quite fast. Though we’re still 
pushing 11 milliseconds once we’ve started to converge. And this is one of the 
situations we want to accel at, so we still have some work to do!



Here’s scene three. This is the same scene 1400 light scene, but now a different 
view.





As you can see it’s quite a bit cheaper with our more constrained view. And it also 
converged much faster.



But what if we want faster convergence? Here we do the same test but with 4 sample 
lightcuts.





So, pretty costly to gain the advantage in convergence time. Converging fast in 
scenes with many-lights is still actively under development, but I think we have a 
promising start here. 

And as you can on the right of the graph, both persistent and spawn are trending 
downwards now that variance is stabilizing. 



And finally our last scene from an internal demo. This level has 140 lights.



Convergence time is pretty fast here with a constrained view.



And performance is even better than the street view from PvZ.



Now I’ll show a couple of examples of roaming around scene one from PvZ. 
Something more representative of real-world performance, as surfels will constantly 
spawn and need solving while moving through the level.

Here we have the same settings as previously, and we can see performance is better 
than in the stress test.



And here we have relatively the same path as the previous slide, but now we’re using 
an output resolution of 1800p with checkerboard rendering enabled.

This test is more representative of the settings we expect games to use. We can see 
we’re quite a bit faster here. We still have work to do, but it shows we’re in the 
ballpark in performance.



And finally, here’s an example of the cost to solve our clip-map probes. This follows 
the same route in the previous free roam tests. We have a 3 level clip-map and the 
cost is very reasonable. We cycle which clip-map we solve every few frames. The 
third clipmap is the cheapest as most rays are misses, as can be seen in the graph.

The sampling cost for probes in a full res pass at 900p, is roughly .2ms



So that about sums up where our GIBS technology is at today. Here are some details 
on where we’re headed:

Currently we don’t support procedural geometry explicitly. Procedural geometry 
works, but will continuously spawn and recycle surfels.

We also have certain situations where high-detail geometry can over-spawn surfels. 
One of our options is to combine with screen space global illumination to minimize 
surfel spawning in areas where SSGI solves well.

Combining with SSGI will also help limit how many surfels we need to solve, and it 
will also help limit how far out we cull surfels and raytracing.

We are investigating sharing guiding information across surfels in order to get a better 
picture for where to send rays

And we are investigating using ReStir-like approaches to augment the guiding



● We still end up selecting too many dead branches or lights. If we can store 
visibility of lights in our cell or voxel data structures, then we can vastly limit 
the lights we need to consider per ray-hit

● We bin and sort our rays, so it may be advantageous to share lights between 
these rays. For example, for reservoir sampling, we could do our spatial 
sample in this fashion.

● For temporal reservoir sampling, we are investigating storing reservoirs in the 
cell structure or on each surfel

● Our light-cut traversal is not well optimized yet, and could make use of the 
platform specific intrinsics

● And finally, we need to move our light-sampling out or our raytracing pass and 
schedule secondary shadow rays to a later pass.



Our probe clipmap solution is still early days and we are looking to add ray-guiding 
and specular support in the future. And improve performance by integrating and 
sharing rays with surfel ray dispatch.



To wrap things up, we have seen that the opportunistic surfelization of the scene 
provides an efficient mechanism to cache information on surfaces of opaque 
geometry. 
The caching mechanism is persistent, dynamic and decoupled from the output 
resolution.
We use surfels to cache irradiance on a wide range of geometry and scenes,
And provide a fallback solution for geometry that does not fit the requirements.



We would like to thank the Frostbite Ray Tracing and RenderCore teams, for bringing 
Ray tracing support to the engine.
We thank Jon Greenberg for his contributions and research on many light sampling.
Joe Warren, Johan Sichtling and Christo Vuchetich for providing high quality content 
for this presentation.
Jim Royal for proofreading and ensuring the presentation meets our quality 
standards.
And last but not least, Tomasz Stachowiak for the original implementation of surfel GI 
back in 2018.



Thank you for attending our talk, I hope you enjoyed the presentation.




