

SWISH: NEURAL NETWORK CLOTH SIMULATION ON MADDEN NFL 21

Chris Lewin, James Power, James Cobb

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

↔ INTRODUCTION

EA SEED Chris Lewin - Senior Physics Software Engineer

EA Tiburon James Cobb - Engine Lead James Power - Rendering Software Engineer

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

→ MOTIVATION

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

THE PREMIER **CONFERENCE** & **EXHIBITION** IN COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

3

THE PREMIER **CONFERENCE & EXHIBITION** IN COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

4

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

→ SUBSPACE NEURAL PHYSICS

- Learn physics behaviour with a neural network!
- Doesn't really work for production though

 Low resolution
- Difficult because it has to learn dynamic behaviour

6

→ STATELESS CLOTH DEFORMER

- Let's change the problem!
- Don't try to learn dynamics
- If cloth is tight enough, static behaviour is enough
- Try to learn a stateless pose based deformer
- Input: bone deformations
- Output: Cloth state
- Can simplify the problem further:
 - Only bottom half of jersey
 - Only look at the 4 spine joints
 - No bending forward/backward
- This makes iteration times feasible

→ STATELESS CLOTH DEFORMER

- Cloth sims are not static
 - Can't make them static just by changing sim settings
 - They have intrinsic history dependence
- Need to make sure deformation history is consistent between pose space samples
- Idea: simulate each pose separately!
- Record all poses the character can get into.
- For each pose, simulate a transition from the neutral to that pose.
- Take the final cloth shape and associate that uniquely with the character pose

→ CLOTH SHAPE

→ DIFFERENT ASSETS

→ MESH DEFORMATIONS

- Input: bone rotations
- Output: Cloth State
- Mesh Deformations: PCA

 - Neural Network outputs ~32 PCA weights
 GPU adds together weighted sum of 32 PCA shapes.

→ NORMAL MAPS

- Input: bone rotations
- Output: Cloth State
- Mesh Deformations: PCA

 - Neural Network outputs ~32 PCA weights
 GPU adds together weighted sum of 32 PCA shapes.
- Normal Maps: PCA

→ NORMAL MAPS

- Input: bone rotations
- Output: Cloth State
- Mesh Deformations: PCA
 - Neural Network outputs ~32 PCA weights
 - GPU adds together weighted sum of 32 PCA shapes.
- Normal Maps: PCA
- Normal Maps: Nearest Neighbor Classifier
 - Still have PCA weights...
 - \circ ... but use them to look up into database.
 - DB contains 128 selected *original* textures.
 - Static appearance is always lossless
 - Dynamic transitions may pop

→ FULL ALGORITHM

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

→ DRAMA FACTOR

- Lack of dynamics means it looks a little boring
- Add a factor that simply exaggerates the bone deviations from the neutral pose by a fixed amount
- This causes the cloth to develop more dramatic poses

- 128 normal maps... sounds heavy
- 5 assets → 80MB texture memory alone @ 360x352 (BC5)
 They all look the same though!

- 128 normal maps... sounds heavy
- 5 assets \rightarrow 80MB texture memory alone @ 360x352 (BC5)
- They all look the same though!
- Compress the whole set of normal maps using Vector Quantization (VQ)

- 128 normal maps... sounds heavy
- 5 assets → 80MB texture memory alone @ 360x352 (BC5)
- They all look the same though!
- Compress the whole set of normal maps using Vector Quantization (VQ)
- 80MB -> 15MB = ~5x memory saving

- 128 normal maps... sounds heavy
- 5 assets \rightarrow 80MB texture memory alone @ 360x352 (BC5)
- They all look the same though!
- Compress the whole set of normal maps using Vector Quantization (VQ)
- $80MB \rightarrow 15MB = \sim 5x$ memory saving
- With our assets, difference is undetectable in game

1000	1	
	200	

Compressed

Uncompressed

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

SIGGRAPH 2021

Ditt

RESULTS

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

⊖→ RESULTS

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

→ FEATURE COMPARISON

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

→ PERFORMANCE DATA

- Neural Network inference uses a custom C++ library
 - Not heavily optimized
- Most processing time associated with Swish is not neural network related
 - Frostbite MeshCompute overhead
 - Skinning and normal calculation in CS

Stage	Device	Per Player (µs)
Neural Network Inference	CPU	20 (thread time)
Mesh Deform Dispatch	CPU	451 (thread time)
Mesh Deform	GPU	
Unpack Normal Maps	GPU	5

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

→ PERFORMANCE DATA

- Neural Network inference uses a custom C++ library
 - Not heavily optimized
- Most processing time associated with Swish is not neural network related
 - Frostbite MeshCompute overhead
 - Skinning and normal calculation in CS

Stage	Device	Per Player (µs)
Neural Network Inference	CPU	20 (thread time)
Mesh Deform Dispatch	CPU	
Mesh Deform	GPU	
Unpack Normal Maps	GPU	

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

- With compression, texture DB is relatively small
- Per-instance normal maps are required for our temporal filter
 - Quantity is not optimized

Major Allocations	Single Alloc	Count	Total Alloc
Normal Map DB (Texture Array)	3M	5	15M
Normal Output (per instance)	375K	93	
Vertex Offsets	12K	90	1M
Total	~	~	

DISCUSSION

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

THE PREMIER CONFERENCE & EXHIBITION IN COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES 25

→ LEARNINGS

- Neural Networks can be efficient to 'game standards'
 - We significantly overshot our performance expectations
 - Lots of space to grow into
- Offline cloth sims are expensive in time and space
 - We had to decrease the complexity of our model due to very long data generation times (48 hrs -> 6 hrs per asset)
- Efficiently generating image data using a neural network is still difficult
 Ourrent method is extremely memory hungry relative to its limitations

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

↔ DYNAMICS

- Static-only is the main restriction of Swish
- Cloth can add much more to a character if it supports dynamics

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

→ THANK YOU!

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.