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Figure 1: We present the skull carving algorithm for skull stabilization in facial animation. Above a split-view of reference
neutral and four expressions with combined action units (AU), with the stable hull in blue on the left side of each render.

ABSTRACT
Accurate stabilization of facial motion is essential for applications in
photoreal avatar construction for 3D games, virtual reality, movies
and training data collection. For the last case, stabilization needs
to work automatically for the general population with people of
varying morphology. Distinguishing rigid skull motion from facial
expressions is critical since misalignment between skull motion
and facial expressions can lead to an animation model that is hard
to control and can not fit natural motion. Existing methods struggle
to work with sparse sets of very different expressions, such as when
combining multiple units from Facial Action Coding System (FACS).
Others are not robust enough, some depend on motion data to find
stable points and other make one-for-all invalid physiological as-
sumptions. In this paper, we leverage recent advances in neural
signed distance fields and differentiable isosurface meshing to com-
pute skull stabilization rigid transforms directly on unstructured
triangle meshes or point clouds, significantly enhancing accuracy
and robustness. We introduce the concept of a stable hull as the
surface of the boolean intersection of stabilized scans, analogous
to the visual hull in shape-from-silhouette and the photo hull from
space carving. This hull resembles a skull overlaid with minimal
soft tissue thickness, upper teeth are automatically included. Our
skull carving algorithm simultaneously optimizes the stable hull
shape and rigid transforms to get accurate stabilization of complex
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expressions for large diverse set of people, outperforming existing
methods.
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1 INTRODUCTION
High resolution photorealistic avatar likeness capture for hero char-
acters in 3D games or virtual reality face-to-face conversation or
digital double for movies is a mature but complex process that
still requires signification manual effort. On the other hand, major
progress in the field of generative AI promise to make avatar cre-
ation as simple as generating images from text. However, there is
still a some way to go before generated photoreal 3D facial anima-
tions become convincing enough for use the previously mentioned
applications. See [Zollhöfer et al. 2018] for a review of the field,
[Saito et al. 2024] for a recent example of a machine learned photo-
real animated avatar and [Wu et al. 2024] for an example of text
to avatar generation. In any case, one of the best way to improve
both photoreal 3D avatar likeness capture and generative AI train-
ing data is to automate as many steps as possible in the creation
pipeline while maintaining or improving the quality of the final
result, especially for animations.

Current avatar animation models whether they are based on
blendshapes or linear blend skinning or more advanced machine
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Figure 2: Even with a headrest, the whole head moves when
performing expressions (left). Stabilization is the process of
estimating the rigid transform to remove the skull motion
from non-rigid expression deformation (right).

learning methods first need the captured data to be normalized.
The goal of likeness capture is to obtain a controllable model that
is independent of the capturing modalities, for example, the head
position and angle with respect to the rest of the body. A small but
crucial step is to estimate the position and orientation of the skull.
The skull must stay fixed when other control variables change, for
example, opening the lips should not cause the upper teeth and
eyes to move. Strong facial expressions are often correlated with
some head motion. Removing as much correlation between control
variables from the training data is desirable for next generation
neural network based facial animation models.

If the goal of likeness capture is creating a database of head
representative of the general population and resources are limited,
using static expressions with combined FACS units for a larger
group of people instead of using 4D data from a smaller group
is a good compromise. This leads to the challenge of estimating
the skull pose of various complex expressions from static captures.
Existing methods require either 4D temporal data to find stable
features or make simplifying assumptions about the skull shape
and skin thickness, hence they are not appropriate for stabilizing
an expression database including a variety of ethnicity and age,
with large difference in morphology and skin thickness.

2 RELATEDWORK
[Bouaziz et al. 2013b] uses Iterated Closest Point (ICP) with a cus-
tom template that focus on the face’s most rigid parts, like the
forehead and the nose. This method works relatively well for all
expressions that do not involve eyebrows motion. However, it is
not very accurate because it relies on a single fixed template and
the rest positions of points on the surface of the face have some
variance.

[Beeler and Bradley 2014] propose a non-linear optimization
method that requires customizing a template skull model on each
person by making several assumptions, for instance that the skin
thickness at five specific points on the face is constant between
individuals. This assumption doesn’t hold at all. For example, for
the nose radix point between the eyes, Rhinoplasty literature [Dey
et al. 2021] shows that the standard deviation of the skin thickness
at this point is 1.7 mm for a 6.7 mm average and that this value is
correlated with the body mass index. Other assumptions include
a fixed single one-for-all texture mask that describe how the skin
thickness varies on the face and a very simplified physic model for
how the nose should bend.

The FLAME parametric facial animation model [Li et al. 2017] is
trained on thousands of low resolution laser scans and thousands
of frames of 4D data. It includes a linear blend skinning model with
a bone for the skull that may be used for stabilization. However,
the model is trained on raw scan data and the minimized energy
function has no skull specific term, so the fitting error is distributed
randomly between shape, expression and pose parameters and the
skull pose will carry some inaccuracy.

[Lamarre et al. 2018] observe that in the skull coordinate frame,
the zero distance-to-neutral mode of the head mesh vertex his-
togram is maximized. Their mode pursuit method searches for the
skull pose trajectory that minimizes a custom loss function that
gradually approximates the ℓ0 norm of vertex positions and ve-
locities. This is equivalent to maximizing the zero mode of the
distance-to-neutral and velocity histograms. Since mode-pursuit is
carried on both positions and velocities of the head mesh vertices,
without temporal data, on static expressions, this method lacks
motion information to find stable regions. It reduces to an approxi-
mate ℓ0 norm ICP, similar to [Bouaziz et al. 2013a] but with a better
behaved penalty function for gradient descent. Mode pursuit fails
if the zero maximum mode hypothesis fails, which occurs when
all points on the upper portion of the head move at the same time
which occur when many FACS action units are combined.

3 METHOD
Our skull carving method works on a set of 3D facial static expres-
sions scans. It doesn’t depend on a specific capture method and
only requires a 3D point cloud or unstructured triangle mesh per
expression and a template mesh aligned to the neutral to be used
as the reference coordinate frame; see [Zollhöfer et al. 2018] for a
survey of methods to create 3D facial scans.

To explain our algorithm we first need to explain the stable
hull concept, which is analogous to two well known ideas in com-
puter vision : the visual and photo hulls. The visual hull introduced
by [Laurentini 1994] is the intersection of the binary silhouettes
perspective cones of a set of cameras. [Kutulakos and Seitz 2000]
invented the photo hull concept, which is the remaining isosurface
after carving voxels with a photo-consistency criterion. Their al-
gorithm is named space carving, by analogy we named ours skull
carving.

Given that each expression scan is converted to a signed distance
field (SDF), with a defined interior (negative) and exterior (positive),
When each SDF is rigidly transformed to the stabilized skull coordi-
nate frame, the surface of the intersection of their interior volume
is the stable hull. The optimal stable hull of a sufficiently large
set of expressions should be the skull layered with the minimum
observable soft tissue thickness of the person. If an expression show
visible upper teeth, the stable hull will wrap them accurately.

Our main hypothesis is that for each expression, there is always a
large enough region of the stable hull that is close enough to the scan
surface to maximize the zero distance mode in the skull coordinate
frame.

It is true for all expressions where upper teeth are sufficiently
visible on the scan surface since they are part of stable hull and
also on the scan surface. For the other expressions, we assume
that muscle and skin moves around the face and can never totally
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cover the stable hull. We validated that this hypothesis empirically
produces production quality results on a group of 32 persons. This
hypothesis is enough to build an energy function that can be mini-
mized to solve simultaneously for the skull poses and stable hull
using gradient descent. Using the mode as the main loss function
makes the method robust, support regions may be sparse and small.

3.1 Raw 3D Scan to SDF
To convert raw 3D scans to SDF, we first compute the bounding
cube of all scans and create voxel grids for each scan with the same
world coordinate extent. Next we determine if each voxel is inside
or outside the scan mesh using the Fast Winding Number method
of [Barill et al. 2018]. In practice, we only tested with unstructured
trianglemesh input, but this algorithm alsoworks on 3D point cloud.
SDF are then computed with the Eikonal equation solver of [Vicini
et al. 2022] which only works on cubic voxel grids. To implement
an efficient stabilization process scan SDF must be compact and fast
to evaluate on the graphical processing unit (GPU). The expression
sets being stabilized may have between 10 and 100 scans. Voxel
grid evaluation are very fast but even at low bit depth they require
too much memory to stabilize 100 expressions. We propose to use
a very simple tri-plane based neural SDF model similar to [Wang
et al. 2023] but even simpler. For our purpose, feeding the output of
the 128x128x3 tri-plane features to a single multi-layer perceptron
(MLP) with 2 hidden layers of 196 neurons each is enough to get sub-
millimeter accuracy close to the scan surface. We train the distinct
parameters 𝜃𝑖 of this model to approximate each expression 𝑆𝐷𝐹𝑖
over the whole voxel domain Ω.

𝜙𝜃𝑖 (𝑥) ≈ 𝑆𝐷𝐹𝑖 (𝑥),∀𝑥 ∈ Ω (1)

This model evaluates fast and takes 7 MB of GPU memory per scan.

3.2 Skull Carving Optimization
Skull carving is a non-linear optimization problem solved with
gradient descent. To model rigid transformations, we use unit dual
quaternion which are well suited for numerical optimization. Carv-
ing is implemented by taking the maximum distance over all stabi-
lized expressions. If for a point in stabilized space, the maximum
distance to any expression is positive, this point is considered out-
side the stable volume. Let 𝛾 be the differentiable isosurface ex-
traction function of Flexicube [Shen et al. 2023]. The function 𝛾

takes a scalar field as input and outputs the vertex positions of the
stable hull triangle mesh. In practice, Flexicube also outputs the
triangle vertex indices which are useful for visualization but are
not used during optimization. Let 𝑄 = {𝑞1 = 𝐼 , 𝑞𝑖 | 𝑖 ∈ [2..𝑁 ]} be
the set of stabilization dual quaternions and 𝑋𝑟 be an array of voxel
grid points in the neutral reference frame. The first transform is
identity and is matched with the neutral reference SDF. The stable
hull function S is

S(𝑄) = 𝛾

(
max
𝑖∈[𝑁 ]

𝜙𝜃𝑖 (q𝑖𝑋𝑟q𝑖 )
)

(2)

With𝜓 as the ℓ0 norm approximating penalty function of [Lamarre
et al. 2018], the optimization process is

argmin
𝑄

1
𝑁

𝑁∑︁
𝑖=1

𝜓

(
𝜙𝜃𝑖

(
q𝑖S(𝑄)q𝑖

))
(3)

These equations are implemented in Pytorch and optimized us-
ing the Adam optimizer. We implement a two-step mode pursuit
schedule, first optimizing with a histogram bin size of 2 mm and
then 1 mm. The voxel grid point set 𝑋𝑟 size is 603 but we use a
mask to ignore voxels very far from inside or outside all surface at
the initialization stage (+/- 4 mm) to accelerate computations. The
masked voxel have fixed signed distance and do not influence the
stable hull mesh. Each step run for 2000 iterations with learning
rates 1𝑒 − 3. For 25 expressions, the process takes 5 minutes on a
GeForce GTX 3090 and requires 15 GB of GPU memory.

3.3 Initialization
Initialization is important has we found the energy function to be
non-convex. If the head can move a lot in space, a coarse head
alignment method using face feature Mediapipe [Lugaresi et al.
2019] should be used before computing the voxel array bounding
cube to use the volumetric resolution wisely. Afterwards, we use the
mode pursuit method of [Lamarre et al. 2018] using vertex distance
from SDF instead of vertex-vertex match.

4 RESULTS
To evaluate the skull carving algorithm on a significant sample
of the population, we build a database of 32 persons. We picked
randomly from our larger internal head capture database to get an
equal partition of male-female, asian-black-latino-white phenotype
and young-old. The sample contains people of different BMI.

For comparison with our skull carving algorithm, we test five
stabilization methods: (FLAME, ℓ2-LBFGS-ICP, ℓ1-LBFGS-ICP, GM-
LBFGS-ICP, mode pursuit). For FLAME we use the official Chumpy
based fitting software [Li et al. 2017]. We use the pose of the 2nd
bone in the skinning hierarchy. We got the best result by first fitting
the FLAME model on the neutral scan with expression parameter
estimation disabled, and then fitting all expressions with the shape
parameters estimation disabled and expression parameter enabled.
Since we have neural SDFs available for which the gradient of
the distance is available, we can use a gradient descent version
of ICP which was shown in Levenberg-Marquardt ICP (LM-ICP)
[Fitzgibbon 2003] to be more flexible and robust than the standard
implementation. LM is not available in Pytorch but L-BFGS with
strong Wolfe line search is, so we implemented L-BFGS ICP with
three different loss functions: ℓ2, ℓ1 and Geman-McClure robust
function as in [Li et al. 2017]. ICP and mode-pursuit use the mask
illustrated Fig.3, which is also used as the basis to compute the
skull carving bounding box. As an ablation study, we also test a
version of skull carving where Flexicube gradients and grid defor-
mation offsets are disabled. In this case, Flexicube becomes a fixed
isosurface extraction function.

The quantitative evaluation process is manual and performed
on expression with visible upper teeth. There is a total of 227 such
expression scans, between 4 and 10 per person with an average of
7. The expression list varies slightly between captures, but even
for the same action unit combo the visibility of the upper teeth
may vary because of morphology. The results are compiled in Table
1. Skull carving is superior to all other methods. All ICP methods
have similar results. Robust estimators do not work on this dataset
because it is mostly composed of combined action units that deform
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Figure 3: ICP and mode-pursuit use the mask region in blue.
Skull carving is computed in the mask region rotated 3D
bounding box with some extra room in vertical axis to cover
the upper teeth.

all the upper part of the face, which mean the outlier percentage
is too high for these estimators to work. Mode-pursuit often fails
badly for the same reason. FLAME results are generally consistent
but with a relatively high error for this task. It seems to indicate
that training a similar model with a specific algorithm for the skull
pose estimation could be beneficial. The bad result of skull carving
without surface extraction gradients show that they are required to
make the method optimize all expressions in a set globally. When
the gradient are disabled, skull carving will converge to a local
minima that focus on an expression subset which depends on the
initialization and the shape of the initial stable hull.

Method Max Upper Teeth Alignment Error
<= 1 mm <= 2 mm <= 3 mm > 3 mm

(%) (%) (%) (%)
ℓ2-ICP 3 22 88 12
ℓ1-ICP 3 28 63 37
GM-ICP 6 25 56 44
FLAME 9 50 94 6

Mode pursuit 13 38 53 47
Skull Carving 78 97 97 3

NG1Skull Carving 13 31 63 38
Table 1: In a 3D DCC software, for each of the 32 persons
of the database, for the set of expression with visible up-
per teeth, we align an upper teeth template manually on
the stabilized expressions scans and estimate the worst case
translation error in the set and classify each person in the
four error brackets.

5 DISCUSSION AND CONCLUSION
Our experiment show that differentiable isosurface extraction is a
necessary component of the skull carving stabilization algorithm.
We observed that the (3) does not converge from a coarse initialisa-
tion. It seems the stable hull must have already well defined 3D fea-
tures like teeth stub and fairly complete nose arch for convergence.
1No gradient

We suspect we could add some domain specific regularization on
the stable hull shape, for example a distance to a learned subspace,
or a statistical anthropometric distance, to improve convergence.
Skull carving is not adapted to stabilize 4D data since even on a
high-end 48GB GPU, it can process only about 100 frames at a time.
More research is needed to use the stable hull concept on large
number of sequential scans.

In this paper, we introduced a new solution to the facial anima-
tion skull stabilization problem on a sparse set of combined FACS
unit expressions. This problem is more challenging than stabiliza-
tion on 4D capture since there is no motion information available.
While there is room for improvement, the skull carving algorithm
is more accurate than existing methods on our diverse database
and we believe it should generalize well because it makes no mor-
phological assumption.
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