
Swish: Neural Network Cloth Simulation on Madden NFL 21
Chris Lewin
chlewin@ea.com

Electronic Arts / SEED
UK

James Power
jpower@ea.com

Electronic Arts / Tiburon
USA

James Cobb
jcobb@ea.com

Electronic Arts / Tiburon
USA

Figure 1: Player jerseys in Madden NFL 21 simulated using our system.

ABSTRACT
This work presents Swish, a real-time machine-learning based cloth
simulation technique for games. Swish was used to generate re-
alistic cloth deformation and wrinkles for NFL player jerseys in
Madden NFL 21. To our knowledge, this is the first neural cloth
simulation featured in a shipped game. This technique allows accu-
rate high-resolution simulation for tight clothing, which is a case
where traditional real-time cloth simulations often achieve poor
results. We represent cloth detail using both mesh deformations
and a database of normal maps, and train a simple neural network
to predict cloth shape from the pose of a character’s skeleton. We
share implementation and performance details that will be useful
to other practitioners seeking to introduce machine learning into
their real-time character pipelines.
ACM Reference Format:
Chris Lewin, James Power, and James Cobb. 2021. Swish: Neural Network
Cloth Simulation on Madden NFL 21. In Siggraph ’21 Talks, Aug 01–05, Los
Angeles, CA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
1122445.1122456

1 INTRODUCTION
The clothing worn by characters in modern video-games is of-
ten simulated using techniques such as Position-Based Dynamics
[Müller et al. 2007]. These techniques broadly work well for cloth-
ing that is loosely fitting and relatively low in resolution. However,
real clothing exhibits high frequency folds and wrinkles that cannot
be simulated with a low-resolution representation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Siggraph ’21 Talks, Aug 01–05, 2021, Los Angeles, CA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

Recently, advances in machine learning have stimulated interest
in learning-based cloth solutions. Although promising results have
been achieved using convolutional and graph neural networks,
subspace methods offer the greatest potential efficiency gains over
standard full-space simulations. Subspace methods marry well with
tight clothing, which is naturally more heavily constrained closely
to the body.

2 IMPLEMENTATION
Swish is a quasi-static pose-based deformer system for tight cloth-
ing. We follow [Holden et al. 2019] in using a PCA-based represen-
tation of cloth shape, but we do not seek to represent dynamics;
instead we train a stateless pose-to-cloth-shape regressor. We learn
a single model per combination of cloth and underlying body, with
no attempt to parameterize body shape. To represent high reso-
lution detail, we build a database of normal maps which can be
heavily compressed and then indexed into efficiently at run time.

2.1 Shape and Pose Representation.
A typical practice in real-time rendering is to use mesh geome-
try that is as simple as possible, and to suggest the appearance of
high frequency details using normal maps. We adopt this practice
by breaking high-resolution source simulations into paired defor-
mations of a low-resolution in-game mesh, and a tangent-space
normal map texture. Swish mesh deformations are represented as
vertex-based perturbations of a skinned mesh, in the style of [Kry
et al. 2002]: we transform cloth meshes to a pre-skinning space and
then use PCA to decompose different deformation samples into a
number of basis vectors, and a series of corresponding weights for
each frame.

We also apply PCA to our normal textures, but reconstructing
images from a PCA representation is both expensive and gives
muddy results. To avoid this, we use a nearest neighbour database
of textures as our rendered representation, with the texture’s PCA
projection used as the database key. This allows us to use a relatively

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Siggraph ’21 Talks, Aug 01–05, 2021, Los Angeles, CA Chris Lewin, James Power, and James Cobb

small number of PCA dimensions while not compromising on the
quality of our normal maps at all.

Stacking the PCA weights for the mesh shape together with the
PCA weights for the normal maps gives the total shape vector Λ
that we wish to infer each frame from the character’s pose Θ. This
is the concatenation of the 6D rotation representations [Zhou et al.
2020] of the relevant joints J𝑖 . This set of skeleton joints is selected
by the user, and in this work we uniformly use the character’s spine
joints only.

2.2 Training Process
To generate training data pairs (Θ,Λ) for our simulation, we must
first generate samplesΘ𝑖 that span the different poses the host char-
acter can enter during gameplay. To do this, we record animation
from all characters in the game for a short period of gameplay, gen-
erating several hundred thousand logically-unique pose samples.
We thin this dense cloud of samples out to a reduced set using a
greedy algorithm that simply rejects any samples that are too close
to one another, arriving at a list of poses that are guaranteed to be
separated by some tolerance. In our shipped models, pose data was
gathered from ten minutes of varied gameplay and was thinned
down to around 700 pose samples Θ𝑖 .

Cloth Simulation. For each pose sample, we need to generate a
corresponding cloth shape. To do this, we use a Marvelous Designer
simulation for each pose sample. To remove the dynamics from the
cloth simulation, we generate a slow (1 second) transition animation
where the character moves smoothly from a neutral A-pose to the
target pose Θ𝑖 . This pose is then associated with the cloth shape at
the final frame of the simulation. This method ensures that cloth
shape is explainable purely as a function of the target pose, and
that the deformation history is consistent between similar poses.

Postprocessing. Cloth simulation results in a high-resolution tri-
angle mesh that is not suitable for usage directly in a game. To
generate the low-resolution mesh deformations and normal maps
required by ourmethod, we use a postprocessing stack implemented
in Autodesk Maya. We generate low-resolution mesh deformations
by binding an artist-authored in-game mesh to follow correspond-
ing locations on the high-resolution cloth simulation mesh, and
then use Maya functionality to generate normal map textures that
represent the difference in detail between the two meshes. Trying
to represent the deformations of a high-resolution mesh with a
low-resolution proxy has obvious sampling frequency problems
that present as jagged triangle quality in the in-game mesh. To
tame this artifact we apply low-pass filtering using Laplacian mesh
smoothing.

Pose Based Regressor. Given corresponding pairs of (Θ,Λ), we
train a regressor Λ = 𝑅(Θ). We use a small Multi-Layer Perceptron
(MLP) to represent 𝑅. Specifically, in our final shipped version our
MLP used 5 hidden layers of 32 neurons, using SELU activations,
with an input size of 32 and an output size of between 20 and 30
depending on the individual cloth asset. This model could be trained
in 5 minutes, which was very small compared to the preprocessing
times of between 6 and 48 hours per model required to generate the
cloth simulation data. We found that shrinking the network below
this level of complexity rapidly degraded the quality of our results.

Normal Map Database. To maintain high quality in our shading
details, we use a nearest-neighbour database of normal maps. We

Table 1: Summary of processing time, per model instance,
on a console platform.

Stage Device Cost (`𝑠)
Neural Network Inference CPU 20

Mesh Deform GPU 115
Normal Maps GPU 5

use k-means to cluster the PCA codes corresponding to source
normal maps, and choose the PCA point closest to each cluster
center to become a data point in the database. The database key is
the PCA code, and for lookup we simply use a brute force search for
the nearest code. In our shipped version, we use databases of 128
textures. Each texture is 360x360 pixels. To compress this database,
we use Vector Quantization (VQ) applied to 4x4 blocks. With 16-
bit block indices, this leads to a texture memory cost of 3MB per
cloth asset, a saving of over 5x compared to using BC5 compression
alone.

We perform no blending at all between different samples in the
database; without additional measures this means that users can
see a pop when the neural network changes its choice of normal
map. To counteract this, we use a simple temporal filter that blends
the new selection into the last few frames’ normal maps. This
works well to smooth out transitions between frames as long as the
character animates rapidly enough.

2.3 Runtime
Each frame, the Swish simulation process for a cloth model is sim-
ple:

(1) Extract joint rotations for this frame to form Θ
(2) Run neural network inference Λ = 𝑅(Θ)
(3) Reconstruct cloth shape using PCA vectors andmeshweights
(4) Look up normal map in database using normal map weights
(5) Render character using mesh deformations and normal map

Relevant performance data for our system is listed in Table 1.

3 DISCUSSION
Overall, our method is several orders of magnitude cheaper than
the source simulations, and also cheaper than a standard real-time
cloth simulation. Our method does not handle dynamics, which is a
significant omission even in the case of relatively tight clothing. Our
main priority for future work is to support dynamic deformation,
as well as to generalise further to different body types, which will
allow us to avoid training multiple models that only differ in the
underlying character shape. Further reducing memory costs is also
a priority.

REFERENCES
Daniel Holden, Bang Chi Duong, Sayantan Datta, and Derek Nowrouzezahrai. 2019.

Subspace Neural Physics: Fast Data-Driven Interactive Simulation. In Proceedings of
the 18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(Los Angeles, California) (SCA ’19).

Paul G. Kry, Doug L. James, and Dinesh K. Pai. 2002. EigenSkin: Real Time Large
Deformation Character Skinning in Hardware. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (San Antonio, Texas)
(SCA ’02). Association for Computing Machinery, New York, NY, USA, 153–159.
https://doi.org/10.1145/545261.545286

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
Based Dynamics. J. Vis. Comun. Image Represent. 18, 2 (April 2007), 109–118.

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. 2020. On the Continuity
of Rotation Representations in Neural Networks. arXiv:1812.07035 [cs.LG]

https://doi.org/10.1145/545261.545286
https://arxiv.org/abs/1812.07035

	Abstract
	1 Introduction
	2 Implementation
	2.1 Shape and Pose Representation.
	2.2 Training Process
	2.3 Runtime

	3 Discussion
	References

