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Improving Conditional Level Generation using
Automated Validation in Match-3 Games
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Abstract—Generative models for level generation have shown
great potential in game production. However, they often provide
limited control over the generation, and the validity of the
generated levels is unreliable. Despite this fact, only a few
approaches that learn from existing data provide the users with
ways of controlling the generation, simultaneously addressing
the generation of unsolvable levels. This paper proposes Avalon,
a novel method to improve models that learn from existing
level designs using difficulty statistics extracted from gameplay.
In particular, we use a conditional variational autoencoder to
generate layouts for match-3 levels, conditioning the model on
pre-collected statistics such as game mechanics like difficulty and
relevant visual features like size and symmetry. Our method is
general enough that multiple approaches could potentially be
used to generate these statistics. We quantitatively evaluate our
approach by comparing it to an ablated model without difficulty
conditioning. Additionally, we analyze both quantitatively and
qualitatively whether the style of the dataset is preserved in the
generated levels. Our approach generates more valid levels than
the same method without difficulty conditioning.

Index Terms—Content creation, Evaluation, Game design,
Machine learning, Neural Networks, Procedural content

I. INTRODUCTION

PROCEDURAL Content Generation (PCG) has been
widely used in video game development to increase

replayability, present the player with personalized content,
or ease the burden of intensive live service content creation,
such as in mobile games. In the past, PCG strategies mainly
included rule-based generation or planning. The introduction
of Procedural Content Generation through Machine Learning
(PCGML) [1] has the potential to revolutionize the field by
reducing the need for hand-crafted elements, using techniques
that take advantage of existing content or learn through inter-
action with the environment.

Most works that learn from existing data, including human-
generated data, use generative models. However, these models
are not infallible and do not always yield the desired results.
For example, they tend to commit mistakes that are evident
to humans. In the context of level creation, mistakes can
mean that the level is unplayable or unsolvable, e.g. important
elements like keys or doors are inaccessible or missing. Studies
focusing exclusively on the generation and disregarding the
validation of level playability, such as the work done by
Giacomello et al. [2] and Sarkar and Cooper [3], have limited
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practical applications in game production. A common vali-
dation approach is to perform post-generation testing, where
various methods such as game-specific playability checks or
heuristic game-playing agents can be used [4, 5]. However, this
approach does not improve the generation process but rather
confirms whether the generated levels are valid.

Other previous works have tried to solve the problem of
playability by creating levels with a generator that learns from
scratch as a Reinforcement Learning (RL) task [6, 7] or guided
by an RL validator in an adversarial fashion [8, 9]. These
approaches generate playable levels but do not allow learning
from examples and thus, fail to capture the style of human
designers.

Even in the same genre, different games can have very
different level design styles. However, level style is often
fairly uniform over a particular game to maintain unified
guidelines for all designers and preserve a cohesive gameplay
experience. Similar to art style, it is used to give more nuance
to a game and differentiate it from other games in the same
genre. For an automated solution to be useful in a production
environment, it is essential to pick up the small but noticeable
differences to adhere to the game’s uniform look and feel
throughout the progression of levels. Examples of fine-grained
design styles can include local and global patterns, artistic
choice or intended gameplay. In some cases, the length of the
experience can be limited as part of the design style to ensure
consistency. The work by Di Liello et al. [10] is the closest
to ours, where logical constraints are embedded into a GAN,
improving the generation of valid levels while learning from
examples. However, this approach requires prior knowledge
and the constraints must be mathematically formalized.

We propose Auto-Validated Level Generation (Avalon), a
framework that can enhance generative models using difficulty
validation information during training to improve level valid-
ity. We name this approach auto-validation to emphasize that
by guiding the generator to produce valid levels during train-
ing, the need for post-generation validation is reduced. Our
method learns from examples to capture the style of designers,
like patterns in existing levels, while guiding the generation
by leveraging bot playthroughs that validate if the level can
be completed and how. The validity of a level correlates
with its difficulty, where the difficulty of an unplayable level
tends towards infinite. We apply this framework to generating
layouts for a simplified match-3 game, using the number of
moves as a proxy for difficulty.

Casual mobile gaming is a favorable environment for level
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generation due to the demand for continued content creation as
a live service and the opportunity to offer personalized content
to maintain player engagement. In particular, the match-3
genre, a type of tile-matching games, represents 21% of the
U.S. iPhone game market’s revenue as of 2020 [11] which
makes it a suitable use case for our proposed method.

Our main contribution consists of a model with the follow-
ing features:

• Novel conditioning mechanism utilizing difficulty: By
conditioning on the difficulty it is possible to improve the
validity of the generated levels as shown in our ablation.

• Valid and stylized generation: Our generator allows de-
signers to use existing levels to generate new ones with
similar patterns while creating more valid levels.

• Flexible validation approach: Leveraging statistics related
to gameplay reduces the need for domain knowledge of
the game. Different sources of validation can potentially
be used, e.g. heuristics, RL, human testers.

II. BACKGROUND AND RELATED WORK

Procedural Content Generation for Games, PCG-G or PCG for
short, is an area of research that studies the use of algorithms
for creating game content, including textures, levels, behaviors,
and more. Application of PCG can be achieved using a
large variety of methods, such as generative grammars, spatial
algorithms, or artificial intelligence [12]. One of the most
recent approaches to PCG is to use Machine Learning (ML)
models as generators. This branch of PCG is called PCGML,
and this paper draws inspiration from several studies in this
domain. A benefit of PCGML is that it enables generating data
by sampling directly from a model that has been trained on
existing game assets. Great sources of taxonomies and state-
of-the-art compilations can be found in Summerville et al. [1]
for PCGML in general and in Liu et al. [13] specifically for
Deep Learning oriented PCG approaches.

A. Automated Gameplay Validation

In our approach, the ability to perform automated gameplay
validation is crucial. Using automated validation for gameplay
and testing is an approach that has attracted attention for
its scalability and efficiency in producing high volumes of
quantitative results. Recently, the approach has also been
used as a way of moving validation and testing “upstream”,
i.e., performing them in the design phase, allowing for more
rapid iteration times without waiting for human feedback.
Our approach is agnostic to the type of automated validation
system, and the only requirement is that the behavior of the
gameplay validator is similar enough to that of real players.
We draw inspiration from previous work in this area. For
example, Sestini et al. [14] use RL agents infused both with
curiosity and expert data that validates gameplay by exploring
the proximity of user-recorded trajectories. Player modeling
techniques such as Deep Player Behaviour Modeling (DPBM)
can also be used, similar to Pfau et al. [15].

There are several approaches that use PCGML to generate
levels automatically validated. For example, Gisslén et al. [8]
use a dual-agent system where a Generator agent creates levels

for a Solver agent to play in; both trained in alternation in
an adversarial fashion, resulting in levels that are ultimately
playability validated. Similar to the proposed method of this
study, an auxiliary input is used to enable control over the
generated game parameters, like the level of difficulty. How-
ever, this approach does not allow the use of previous levels
as training data to learn patterns. In Bontrager and Togelius
[9], an RL agent and a generator are used in an end-to-end
differentiable solution which, by design, does not need human-
crafted examples. The approach allows for self-supervised
learning, but as stated by the authors, all the generated levels
are too easy to solve for a human. Similarly, Zakaria et al. [7]
propose an approach that does not rely on training data but
avoids the problem of reward shaping by using recurrent auto-
regressive generative flow networks as a control mechanism.

The lack of training data could be advantageous in some
circumstances but it is opposed in nature to the goal of our
use case, where the style of level designers is important.

B. Controllable PCGML for Level Generation

Another important aspect of our approach is the ability to
let the users control the generation. This can be done in
several ways. Doran and Parberry [16] propose using genetic
algorithms to create intelligent agents that generate terrains
with user-defined constraints. These controllable constraints
stem from a system of limited, designer-assignable tokens
consumed by the agents each time they perform generation
actions. Further, Guzdial et al. [17] present a method that uses
design patterns to control the output of the generating model.
However, as in the previous section, these approaches do not
learn from previous data. Methods that allow controllability
while learning from existing levels include methods like
path of destruction, generative adversarial networks (GANs),
conditional variational autoencoders (cVAEs), among others.

Path of destruction is a data augmentation method that has
been used to train iterative generators. In Siper et al. [18],
the method is extended to allow designer control for features
like the number of enemies using conditional inputs. However,
the random destruction actions that are at the core of the
data augmentation makes it difficult to achieve certain feature
combinations. The iterative nature of the generation, where
the condition inputs are {−1, 0,+1} might be cumbersome to
game designers.

GANs and VAEs have been used in PCGML in similar
ways. One of the applications is to generate levels using
controllable mechanisms, such as evolutionary search of the
latent space [19, 20, 21] or using a conditional input [2, 3, 4].
Conditional networks avoid running evolutionary search at
inference time and moves the controllability to the training
stage. One benefit of this approach is faster inference when
the fitness function is computationally expensive.

Giacomello et al. [2] compare two GANs, conditioned and
unconditioned, trained on existing levels. They can generate
levels similar to human-designed ones, with the conditioned
network achieving better results. However, the results of both
this work and its continuation [20] are evaluated as images and
never validated in the game. The drawback with generative
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models is that without additional information, the level alone
might not be sufficient for capturing the structural or style-
related constraints of the designer. One similar approach to
ours adds a control mechanism to GANs where constraints are
embedded into the model during training in a novel architec-
ture named Constrained Adversarial Networks [10]. However,
it requires prior knowledge to define these constraints, and
mathematical knowledge to formalize them, which is often
difficult. Often, game designers do not possess this knowledge,
rendering the approach practically infeasible in certain use
cases. As mentioned by the authors, their method complements
other approaches when there is no prior knowledge about
invalid structures, or the constraints are hard to formalize.

Thakkar et al. [21] compare vanilla autoencoders against
VAEs and find that the variational version produces more de-
tails. Sarkar and Cooper [3] show that conditional variational
autoencoders can be used to generate complete dungeon
and platformer levels producing fitting patterns. Additionally,
they demonstrate that blending between styles and genres is
possible. However, as mentioned in their future work section,
playability evaluations are not performed.

C. Match-3 Level Generation

In this paper, we target match-3 games with the well-
established mechanics of Bejeweled [22] and Candy Crush
Saga [23]. In these games, colored tiles can be swapped hor-
izontally or vertically to make them disappear when matched
with adjacent tiles of the same color. In match-3 games, the
matching criteria is to align three or more of such tiles. New
tiles are randomly added to the board as others disappear
until the player achieves a goal or runs out of moves. In a
typical match-3 game, the number of levels can reach over
ten thousand, and hundreds must be added weekly to keep the
players engaged. This leads to a high output, which can lead
to repetitive and predictable levels. Unfortunately, the number
of PCG works tackling match-3 games is lower than for other
game types.

An example of previous work in match-3 level generation
is Hald et al. [24] which uses two condition vectors to control
a GAN that generates levels with adjustable map-shapes and
piece distributions for the game Lily’s Garden [25]. Even
though multiple quantitative metrics validate that the network
follows the conditioners, the validity of the levels is only tested
for whether they are unstartable or their layouts are corrupt
with level elements located outside the map area.

Volz et al. [26] present a taxonomy of patterns in training
examples for PCGML and models that capture them. In partic-
ular, they compare the use of symmetric neighbors in Markov
Random Fields (MRF) and training GANs using purely sym-
metric Candy Crush Saga levels to improve the generation
of globally symmetric levels. The evaluation consists of a
symmetry score comparison and a user study. Unfortunately,
this evaluation does not address how well the model learns
the training data but rather if it can create symmetric levels.
Moreover, the validity of the generated levels is not measured.

Our work differs from the mentioned studies as it aims at
generating levels that follow the style of the training set while

Fig. 1. Avalon approach. Before training, – gray dotted lines in the figure
– the dataset is constructed with levels created by level designers. Offline,
we extract a set of features for each level: the median number of moves
required to solve it, as well as the board size, type of symmetry. For each level,
we use these features as conditioners for the model during training. These
features can be extracted using scripted bots or other methods (eg. RL agents
or game testers). For our experiments, we use the former approach and train a
conditional variational autoencoder. During inference, – red continuous lines
in the figure – the designer controls the generation through the conditional
features, and can manually edit the output level or generate a new one.

improving the playability of the generated levels. Additionally,
we provide the user with low-level controllability in the
generation in terms of the desired difficulty of the level.

III. METHOD

The previous section shows that most works focus on two
main approaches. The first one is using a validator to guide
the generation process without prior information or domain
knowledge. The second one is using generative models and a
dataset of preexisting levels, potentially validating the genera-
tion as a post-generation step. However, the first approach can
converge in levels that are too easy to solve or are not in line
with the intent and style of level designers, while the second
can commit mistakes that render the level unplayable.

We propose a hybrid method called Avalon, that uses
generative models to learn existing patterns and enhances
them through statistics obtained from validating the training
examples using game-playing agents. We apply this framework
to a simplified match-3 game to generate layouts for a fixed
objective, considering valid levels those that can be solved
in the maximum number of moves determined by designers.
In particular, we use a conditional variational autoencoder
(cVAE) [27, 28] and enhance it with conditioning information
based on the number of moves necessary to solve the level.
The approach is illustrated in Figure 1. Information about the
game, level representation, and the dataset can be found in
Section IV-B.

A. Condition Design

The Avalon generator is based on a simple cVAE architecture.
For the match-3 level generation implementation, we condition
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Fig. 2. Example application of a vertical symmetry mask. The mask is first
extracted from a level in the dataset, and then it is applied to the same level
following L ◦M sym. The masked level is part of the training dataset.

the network on the median number of moves needed to solve
the level as a proxy for difficulty and validity. This design
decision allows flexibility at inference time when validating
if the generated level can be solved in a number of moves
different than originally defined by the designers. In our
implementation, we use a scripted bot to play the game offline
and compute and save the number of moves in the dataset.
In addition, we also decided to use conditioners to control
features that were deemed essential, such as symmetry, as in
Volz et al. [26] and size, similar to Hald et al. [24].

To avoid the symmetry and global pattern generation prob-
lem discussed in Volz et al. [26], we developed a novel partial
generation cVAE based on masking. Empirical experimenta-
tion indicates that this approach works much better than the
traditional generation, where the symmetry accuracy peaked
around 15%.

To adapt the cVAE framework to partial generation, we
preprocess the input data according to the type of symmetry
present in the sample using masks. The types of symmetry
we consider in this work are: vertical, horizontal, quadrant
(vertical and horizontal) and unknown. During the creation of
the dataset, a level sample L is analyzed and, according to the
type of symmetry observed, a mask M sym ∈ {0, 1}W×H is
created and coupled to it. W and H correspond to the width
and height of the level.

Before encoding, a training level L is masked using its
symmetry mask M sym following L ◦M sym, the element-wise
product. This masking ensures there is consistency over levels
with the same symmetry in the latent space. The symme-
try masks declare which layout cells should be used when
training, represented by 1, and which cells should be ignored,
represented by 0. For vertical and horizontal symmetries, the
non-zero elements of the mask are designed to cover the avail-
able play area up until and including its center point width-
and height-wise respectively. For quadrant symmetry, both of
these conditions apply. An example of the mask application
for vertical symmetry is illustrated in Figure 2. As we will see
in Section III-C, when computing the reconstruction loss, this
mask is used to ignore the redundant part of the level.

During inference, the output is postprocessed according to
the symmetry input, duplicating the relevant part of the level
if necessary, ensuring that the symmetry requirement is met.
Similar to the symmetry mask, a size mask M size is also
created for each level in the dataset. To allow for any input
level shape, a fixed board width and height are set based on
the largest playable area defined by level design. For smaller

levels, the playable area is placed at the center and the size
mask M size is used to exclude cells beyond the playable area
up until the maximum width and height, encoded with 0.

B. Architecture

The encoder is a Neural Network (NN) with three convo-
lutional layers of 16, 32 and 64 filters and 3 × 3 kernels
followed by ReLU activations. The distribution statistics are
the output of two independent fully connected (FC) layers
that downsample the output from the convolutions into a 5-
dimensional space.

The decoder receives ẑ, a latent vector z concatenated with
the condition information. The decoder NN is composed of an
FC layer that upsamples this input to 64 dimensions, followed
by three layers of transposed convolutions of 32, 16 and K
filters, where K is the number of categorical values, and 3×3
kernels mirroring the encoder. Each layer is followed by a
ReLU activation except for the last one.

The conditional information is used in the encoder and
decoder in different formats. For the encoder, the size condi-
tioner is a mask M size that defines the play area. The difficulty
conditioner d is the number of moves normalized to the [0, 1]
range according to the values observed in the training set.
By repeating this value in a 2D map D ∈ RW×H , it can
be concatenated with the size mask M size and the symme-
try masked level to produce the final input to the encoder
Ŷn = [Ln ◦ M sym

n ,M size
n , Dn] for a given level Ln in the

dataset, where M sym
n and M size

n are its respective symmetry and
size masks. Since the input data is preprocessed and symmetry
is enforced as a postprocessing step, using symmetry as part
of the conditioning information is unnecessary. In the decoder,
the size conditioner is in the form of two one-hot vectors,
hW for the width and hH for the height. These conditioners
are concatenated to the sampled latent vector to create the
input to the decoder ẑ = [z,hW ,hH , d], with d being the
aforementioned normalized number of moves.

Experiments with different types of network architectures
and conditionings were performed, and the best experimental
results according to the inference metrics are reported here. For
transparency, some of the architectural experiments performed
included changing the number of layers and the kernel size,
using a hierarchical approach, and using different activation
functions (eg. ReLu, leaky ReLu). On the conditional side, the
experiments tested the use of absolute and normalized values
for the difficulty. Another experiment studied the encoding
of the size in a similar way to the difficulty, that is, as a
categorical or one-hot encoding repeated over a 2D map.
Additionally, we tested encoding the size information both as
separate W and H and as a holistic measurement.

C. Training

Except for the modifications needed for the partial generation
approach, the network follows the standard VAE loss in Equa-
tion 3. We define our data as a categorical distribution, thus
using cross-entropy loss (Equation 1) as the reconstruction
loss.
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(a) (b)

(c) (d)

(e) (f)
Fig. 3. Image representation of the levels. The black pixels represent GAP cells, the red pixels depict BLOCK cells and the dark red pixels correspond to
PLAYFIELD cells. (a) Training examples from the main dataset (b) Training examples from the stylized dataset (c) Inference examples from the Vanilla
generator. (d) Inference examples from the VanillaStylized generator. (e) Inference examples from the Avalon generator. (f) Inference examples from the
AvalonStylized generator. The text in subplots (c) through (f) indicates the conditioners used: for sublopts (c) and (d), the text indicates the size (e.g. 5x6)
and the symmetry (e.g. Vertical) used as input to Vanilla and VanillaStylized, while subplots (e) and (f) include also the number of moves (e.g. 20) used as
input to Avalon and AvalonStylized.

LCE(X̂, ẑ) = Eqϕ(z|X̂)[log pθ(X̂|ẑ)] (1)

LKL(z, Ŷ ) = −DKL(qθ(z|Ŷ )||N (0, I)) (2)
L = LCE + LKL (3)

where X̂ is the output logits of the decoder masked with
the symmetry mask, following X̂ = X ◦ M sym; Ŷ =
[L ◦ M sym,M size, D] is the encoder input defined as the
symmetry masking M sym applied to ground truth level L
concatenated to the conditioner as described in Section III-A;
ẑ = [z,hW ,hH , d] is the input to the decoder, defined as the
concatenation of the sampled latent vector with the condition-
ers as explained in Section III-B. The ground truth level is
represented as L ∈ {0, ..,K}W×H where K corresponds to
the number of categorical tile classes.

We train the network for 24000 epochs using batches of
100 samples and taking checkpoints every 500 epochs. The
optimizer used is Adam [29] with a learning rate of 10−5 for
Avalon and 5× 10−6 for Vanilla.

IV. EXPERIMENTS AND EVALUATION

This section introduces the match-3 formulation we use in
our work and the motivation for the datasets, models and
evaluation framework employed.

A. Baselines
Our method aims to generate levels that follow the style of the
dataset while reducing the computational cost of generating
invalid levels that need to be regenerated. In match-3, almost
any layout is solvable given enough moves. However, the
players are restricted to do so in a predefined number of moves,
which in our case is limited by the level designers’ guidelines
to 20 moves.

Thus, our evaluation focuses on three main areas: 1) Analyz-
ing the validity of the levels generated through our approach,
2) Validating whether the network we have defined can be
trained to accurately capture and generate levels in a style
consistent with that of the dataset, and 3) Assessing the
network’s accuracy in following the level designers’ input.

We compare the following approaches:
• Avalon: Our novel framework defined in Section III.
• Vanilla: An ablation to the Avalon approach. It uses

the same training setup and neural network architecture,
including the size and symmetry conditioners but without
difficulty condition. This is similar to other approaches
in the literature that do not condition the generator with
game statistics like difficulty.

• AvalonStylized: Follows the same approach as Avalon but
is trained using only a dataset of examples with a well-
defined pattern, used to evaluate 2).

• VanillaStylized: Ablation to the AvalonStylized approach.
As in Vanilla, it uses the same setup of AvalonStylized
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but without difficulty condition.

B. Data

In our simplified match-3 game, the level layout allows for
boards of sizes between 4×4 and 9×11 W×H . These layouts
are made up of three types of cells: PLAYFIELD cells define
locations in the grid where tiles can be placed, and the game
can be played; BLOCK cells define the size and shape of the
level to which tiles are constrained; and GAP cells resemble
BLOCK cells visually, but allow tiles to fall through. The
types of symmetry considered are vertical, horizontal, quadrant
(vertical and horizontal), and unknown. The game is simplified
and assumes the goal of the level is to match 60 red pieces in
a maximum of 20 moves, where the color pieces (red, green,
blue and orange) are spawned from certain spots by sampling
from a uniform distribution with replacement.

1) Level Representation: To be able to train the cVAE,
we convert the level representation into a fixed-sized matrix
W × H = 9 × 11, where the three types of cells are
represented with categorical values, such that a level is defined
as L ∈ {0, 1, 2}9×11. The size of the layout is defined as
the maximum number of consecutive PLAYFIELD cells in
all rows for the width and all columns for the height, with
the play area always located in the center (see Figure 3 for
reference). In the decoder, the condition information that forms
the input ẑ is represented by hW , a 6-dimensional one-hot
vector encoding the width values, ranging from [4, 9]; hH , a
8-dimensional one-hot for the height values, between [4, 11];
and a 1-dimensional float for d, the number of moves.

Tile-spawning spots are automatically created as a post-
processing step when converting the model’s output into the
level representation consumed by the game. Thus, the ML data
representation includes neither these spawning spots nor the
color pieces they produce.

2) Datasets: We use two datasets in our evaluation frame-
work. The main dataset is used for all experiments except for
the style comparison, where we use the stylized one.

• Main dataset: This dataset is composed of 81 designer
levels and 117 levels created with a rule-based approach.
These levels use mainly BLOCK cells, but GAP cells are
used to a lower extent. The training data contains 170
levels, and the validation and test sets contain 15 and 13
levels, respectively.

• Stylized dataset: This dataset is designed to have a local
pattern, that represents a style, easily observed visually.
In this case, we have used a single 2×2 BLOCK pattern
(no symmetries) randomly placed in any position of the
board. The training, validation, and test dataset sizes are
identical to the main dataset, all procedurally created.

Each level in the main dataset is evaluated with a scripted
bot in 30 games to ensure convergence, and the median and
standard deviation values are stored to be used in training and
evaluation. Informal experiments indicate that the bot performs
comparatively to human testers in the development team (for
reference, a random bot would not solve any of the levels in
the training set in less than 20 moves). In our framework, the
bots are allowed to make 39 (2 × valid moves − 1) moves,

Fig. 4. Analysis of the main dataset’s training set. The heatmap represents the
number of levels for each size (x-axis) and each median number of moves for
the level to be solved (y-axis), according to the statistics extracted by our bot.
The horizontal line indicates the threshold that separates valid from invalid
levels.

TABLE I
INFERENCE TIMES. RESULTS ARE REPORTED IN ms per level

(NON-BATCHED) AVERAGED OVER 10 RUNS. THE Stylized MODELS ARE
NOT REPORTED SINCE THE ARCHITECTURE IS THE SAME AS THEIR

COUNTERPARTS.

Avalon (ms/level) Vanilla (ms/level)
Inference in PyTorch 1.69 0.99
Inference in Unity 2.50 2.40

more than the 20 valid moves, to give designers flexibility
in case they want to increase the gameplay length or award
additional moves to the players without the need to retrain.
This also helps increase the dataset size. Figure 4 displays the
distribution of training levels in the main dataset regarding
their size and number of moves needed for them to be solved.
For examples of training samples in both datasets, we refer to
Figure 3a and 3b.

C. Experimental Setup and Performance

All experiments were conducted on a single machine with
an NVIDIA RTX A6000 GPU (48 GB VRAM), an Intel(R)
Xeon(R) Gold 6230 CPU at 2.10 GHz and 64 GB of RAM
using a training solution based on PyTorch [30].

When generating new levels, we choose the maximum value
after a softmax activation. The best model is selected as the
checkpoint that maximizes the average of several metrics in
inference weighted equally: diversity, size, and tile distribution
accuracy (more information in the following sections). All the
metrics are computed by sampling every possible size (48
combinations) using 3 types of symmetry: vertical, horizontal,
and quadrant. This gives a total of 144 generated levels.
For the Avalon generator, we sample a difficulty uniformly
between the minimum value in the dataset and the maximum
number of valid moves, 20, to avoid a combinatorial explosion
and simulate a real scenario. Level generation in Unity was
performed using the Barracuda package [31]. Inference times
can be examined in Table I. Note that batch inference is faster
per level on average.
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The simplified match-3 game and the validation bot were
implemented in Unity [32]. The same bot is used to compute
the statistics used during training and to compute the evalua-
tion metrics.

D. Conditioning Evaluation

Level designers can condition the generation on the size of
the board, the type of symmetry they want to use, and the
median number of moves needed to solve the level for the
Avalon generator.

Early in development, we noticed that the network could
revert to generating empty levels, artificially improving size
and symmetry metrics. To prevent this problem, we introduced
a diversity metric used in previous works such as Di Liello
et al. [10] or Zakaria et al. [7]. Additionally, we report a
plagiarism score to evaluate inference novelty.

• Size accuracy: is computed as the percentage of levels
generated with the exact size used as conditioning. For
a single level, the accuracy is 100% if the size is
correct and 0% otherwise. This metric is similar to the
under/overfilled levelshape metrics in Hald et al. [24].

• Diversity accuracy: is defined as the average Hamming
distance level-wise between all pairs of levels. For a pair
of levels, the accuracy is 100% if two levels are different,
even if it is only by one cell, and 0% if the level is
duplicated. We use level-wise diversity instead of tile-
wise to obtain a more relevant metric due to the general
similarity among match-3 levels.

• Difficulty accuracy: is a new metric designed as the
percentage of generated levels whose difficulty condi-
tioning is within the statistics of the generated level after
validation. For a single level, we evaluate it following the
same steps as for constructing the dataset (as explained in
Section IV-B2). The accuracy will be 100% if the condi-
tional number of moves falls within the standard deviation
of the validated level and 0% otherwise. We also compute
the mean and standard deviation of the distance between
the conditional and the validated number of moves.

• Plagiarism score: is computed as the percentage of gen-
erated levels that are identical to any other level in the
training set. The score is 100% if all the levels generated
exist in the dataset and 0% if all the generated levels are
original.

We compare the Avalon and Vanilla generators trained on
the main dataset and report the above metrics for inference.
Note that direct comparison with the Stylized models is not
relevant since they are trained on a different dataset.

Symmetry accuracy is not reported explicitly since the result
of using the partial generation and postprocessing approaches
consistently attains 100% accuracy.

E. Playability Evaluation

To measure the robustness of our method, we compare the
percentage of valid levels generated by the Avalon generator
as opposed to that of the Vanilla generator.

We define a level as valid if it can be solved in the maximum
number of moves according to the designers’ guidelines, in our

TABLE II
QUANTITATIVE RESULTS OF TWO BASELINE MODELS.

* THE NUMBER OF VALID LEVELS IN THE DATASET IS 46.15%

Avalon (%) Vanilla (%)
Size accuracy 88.48 91.94
Diversity accuracy 96.51 97.93
Plagiarism score 00.00 00.00
Difficulty accuracy 33.33 N/A
Valid levels* 51.39 43.75
Tile dist. accuracy 55.81 65.12

case, 20 moves. We consider levels that can be solved in more
than 20 moves as invalid.

F. Style Evaluation

Style evaluation is an open problem for generative models.
Previous works such as Torrado et al. [4] or Hald et al.
[24] have tried to show that the generation is similar to the
dataset by comparing the training and generated distributions
of different types of tiles.

The distribution of tiles can vary substantially depending
on the size of the board and, thus, the available playing
area. Hence, we have adapted this methodology. Additionally,
given the large number of plots to compare and the need
for a numerical value to use as part of the framework to
select the best model, we have designed a quantitative proxy
denominated tile distribution accuracy. We consider the distri-
butions comparable if the median of the inference distribution
is contained within the first and the third quartile, Q1 and Q3,
of the training distribution. This metric is a proxy and only
partially explains the problem.

As already mentioned, we train the VanillaStylized and
AvalonSylized generators on the stylized dataset to show
qualitatively how close the results follow a predefined style
and how they differ from the results obtained from the models
trained on the main dataset.

V. RESULTS

A summary of the results of the evaluation methodology de-
scribed in Section IV can be found in Table II. In the following
sections, we will summarize these results by focusing on
model comparisons.

A. Avalon vs Vanilla

Firstly, we compare our proposed method, Avalon, and the
ablated alternative without difficulty conditioning, Vanilla. Our
results show that the Avalon model generates more valid levels
than the Vanilla model, increasing from 43.75% to 51.39%.
For reference, the dataset contains 78 (46.15%) valid levels.
This indicates that difficulty conditioning does, indeed, help
improve the generator in terms of playability. As an interesting
note, Avalon consistently outperforms Vanilla under the same
evaluation framework even if the validity threshold is increased
to a higher number of moves.

However, adding the difficulty conditioning seems to create
a trade-off between the accuracies of the previous learning
task (size, diversity, and tile distribution accuracy) and the
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new requirement. The results in Table II show a decrease of
3 percentage points in size accuracy, 1 in diversity accuracy,
and 10 in tile distribution accuracy.

The decrease in diversity is not significant compared to
the other metrics and can be explained by the solution space
reduction introduced by adding a new constraint. However, the
size and tile distribution accuracy decrease suggests a potential
generation degradation. The tile distribution metric might not
be robust enough to describe the problem correctly due to
the lack of data for some sizes and the ambiguous correlation
between style and distribution (further analyzed in the next
section). In the case of size accuracy, and difficulty accuracy,
the performance decrease might be related to unreasonable
conditional requirements that can result in conflicting charac-
teristics. For example, very small playing areas require more
moves to solve the level, as the number of available moves is
constrained. Consider a case where a small size is sampled,
e.g., 4×4, and a low number of moves, e.g. 10. The generator
will be forced to miss the target size by making a bigger level
that can be solved in the target number of moves or miss the
difficulty target by staying true to the requested size.

Additionally, the low difficulty accuracy together with a
significant distance between the conditional and validated
number of moves (average distance of µ = 10.19 and standard
deviation σ = 8.93) seems to point towards other problems,
including the sparsity of valid levels in the dataset (see Figure
4) and the lack of a validation metric that can help choose a
checkpoint that maximized the difficulty accuracy (presented
in Section IV-C).

It is worth noting that the plagiarism score is 0, which
indicates that all of our generated levels are original, i.e. are
not contained in the training set.

B. Style Analysis

The second comparison focuses on evaluating how well the
network follows the style of the dataset. Given the lack of
a clear pattern in the main dataset, we trained models using
the stylized dataset, which contains very discernible patterns
and is easier to evaluate visually. We evaluate these Stylized
models quantitatively and qualitatively and draw parallelisms
between each pair of main and stylized versions.

From a qualitative point of view, the Stylized generated lev-
els contain more block-like structures than their counterparts,
which show more vertically blocked configurations or single-
blocked structures, as illustrated in Figures 3d-3c and 3f-3e
respectively. This follows the patterns contained in the training
set (Figures 3a and 3b). However, the results of the Stylized
generators clearly show that the well-defined 2 × 2 BLOCK
pattern is not correctly generated.

From a quantitative perspective, the Stylized models achieve
a lower tile distribution accuracy than their counterparts:
65.12% compared to 39.58% for the Vanilla and VanillaStyl-
ized generator and 55.81% compared to 35.42% for the
Avalon and AvalonStylized generator. This shows a discrepancy
between the quantitative metric and the qualitative results. We
hypothesize that the spread of the main dataset’s distribution
is larger, and thus, easier for the median of the inference

Fig. 5. Additional Avalon generated levels. We show examples using all types
of symmetries (columns), 3 levels of difficulty (2 rows per difficulty) and 8
different sizes (repeated every 2 rows).

distribution to fall within the [Q1, Q3] range of the training
examples. Moreover, not all the layout sizes are as well
represented in the training set (see Figure 4), which makes
the distribution comparison imprecise.

Our partial generation strategy allows us to generate sym-
metric levels with the Stylized generators even though the
dataset used to train them did not contain any such examples.
However, it is possible that a GAN model under this condi-
tional framework would capture better patterns while featuring
similar behaviors.

A more extensive exemplification of different combinations
of symmetries, sizes, and moves generated by the Avalon
model can be found in Figure 5.
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VI. CONCLUSION AND FUTURE WORK

This paper presents Avalon, an auto-validation level generation
framework that enhances generative models through condi-
tioning using gameplay statistics during training. This method
learns from both the style of previous examples and level-
validating data generated automatically through bots.

We have applied our method to the generation of simplified
match-3 layouts using a cVAE conditioned on game mechanic
features, in this case the median number of moves to solve
the level as a proxy for difficulty, and relevant visual fea-
tures, like size and symmetry. Our novel partial generation
approach effectively solves the symmetry generation problem,
and conditioning on the median number of moves allows for
more fine-grained controllability at inference time. Our results
show that conditioning the cVAE on the difficulty achieves a
percentage of 51.39% valid levels. This is an improvement
over an equivalent model without this condition (43.75%) and
the dataset baseline (46.15%).

However, our results also suggest that adding a difficulty
condition can decrease the performance of other requirements
measured by our quantitative metrics, like size or tile dis-
tribution accuracy. This could be accentuated by sampling
conditional features with contradictory effects and the lack
of good data. As noticeably highlighted by Figure 4 the
training set is extremely sparse with respect to the condition
parameters, and especially lacking in the small-sized range of
valid levels. The qualitative evaluation of the model trained on
the stylized dataset shows that, even though high-level patterns
in the dataset are captured, the model has a harder time with
detailed low-level patterns.

The strategy for selecting a checkpoint does not currently
account for the difficulty, since in our case, this is a very costly
process. In cases where this metric can be easily computed in
the learning framework, its addition to the group of metrics
being averaged would help create a model that performs better
in that area. Additionally, a user study could be carried out
to analyze the effect of different weights when averaging
the evaluation metrics. Models with different characteristics
could be used in different design scenarios. To avoid retraining
models, checkpoints can be saved during training according to
particular weighting strategies.

The comparison between the models with and without diffi-
culty conditioning assumes equivalent architectures. However,
generating levels according to the number of moves necessary
for solving them is more complex. The Avalon method might
benefit from a higher capacity architecture to be able to model
these complex relationships and more training data, to deal
better with the harder learning task. A better approach for
creating synthetic data that covers the solution space with
respect to the conditioning parameters would doubtlessly help
with the data problem, too. A complementary exploration of
the proposed framework using alternative generative models
could improve the ability to capture style patterns more
accurately than the cVAE we implemented.

Further, using RL agents trained to play match-3 games,
e.g. Karimi et al. [33], could provide improved validation
capabilities for the difficulty conditioning. Heuristic bots do

not necessarily capture the dynamic gameplay strategies that
could emerge through RL. These strategies may be closer to
those of human players, aligning better the number of moves
needed to solve a level in the desired use case scenario, with
human players. For games in production, player or tester data
could also be tested in this framework.

The next step for the match-3 generation would be to solve
the generation of complete levels. To do so, the representation
needs to account for complex and stacked objects. This could
be done with a multi-layer representation, similar to that
of Volz et al. [26] or Hald et al. [24], which is already
compatible with our method. One interesting approach would
be to use a chain of networks to generate subsequent layers
conditioned on the output of the previous network or input
from the designer. This format would support both mixed
initiative generation and a fully automated solution. The step-
by-step generation would affect the final difficulty of the level
depending on how the layers interact with each other. For
example, it would allow designers to start from an easy layout
and add elements that would increase or decrease the difficulty
of the level, e.g. using blockers or power-ups.

Finally, it would undoubtedly be helpful for the community
if this approach were to be tested on different game genres.
Here, we present some examples. For games widely studied in
the literature, like Super Mario Bros. or Zelda, the difficulty
proxy can be represented by a combination of completion
time and number of enemies. For other genres, like racing
games the difficulty could be defined as the time difference
with the best-performing rival. In ‘capture the flag’ modes in
other genres, the win rate balance between the teams might
be appropriate. The definition of the problem will depend on
the needs of level designers.
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