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Abstract—Imitation learning is an effective approach for train-
ing game-playing agents and, consequently, for efficient game
production. However, generalization—the ability to perform well
in related but unseen scenarios—is an essential requirement that
remains an unsolved challenge for game AI. Generalization is
difficult for imitation learning agents because it requires the
algorithm to take meaningful actions outside of the training
distribution. In this paper we propose a solution to this challenge.
Inspired by the success of data augmentation in supervised
learning, we augment the training data so the distribution of
states and actions in the dataset better represents the real state–
action distribution. This study evaluates methods for combining
and applying data augmentations to observations, to improve
generalization of imitation learning agents. It also provides a
performance benchmark of these augmentations across several
3D environments. These results demonstrate that data augmen-
tation is a promising framework for improving generalization in
imitation learning agents.

Index Terms—imitation learning, data augmentation, rein-
forcement learning, game AI

I. INTRODUCTION

Playtesting is an essential component of modern video
game production. Gameplay issues and bugs can significantly
reduce the quality of the user experience. The process of
game testing is usually done by designated human testers,
both internal and external to the development team. However,
due to the increased size and complexity of modern video
games, manual playtesting is becoming expensive in regard
to time, manpower, resources, and budget. Stakeholders in
academia and industry have recently proposed automated test-
ing solutions that could free up human resources to focus on
more meaningful tasks, such as evaluating gameplay balance,
difficulty, and player engagement.

Current automated testing techniques rely primarily on
model-based automated playtesting [1, 2], but recent develop-
ments in Reinforcement Learning (RL) [3, 4, 5] have demon-
strated that it is possible to train game Artificial Intelligence
(AI) agents to reach human-level performance in complex
video games, requiring however a vast amount of resources to
achieve such training. These techniques can also train agents
to explore game scenes and exploit environments to detect
bugs [6, 7], thereby improving automated playtesting.

However, most techniques used for automated game test-
ing suffer from an efficiency–generalization trade-off. Model-
based and RL policies are known to easily overfit [8, 9], and
achieving greater generalization requires numerous training
samples. Imitation Learning (IL) was proposed to reduce

the sample-inefficiency problem of RL [8, 10]. An IL agent
learns from demonstrations rather than experience, allowing
game designers to use prior knowledge to guide the agent
towards its goal without additional knowledge of program-
ming or machine learning. Even though IL can mitigate the
sample-inefficiency problem, the generalization issue persists.
To develop an IL agent that can address situations beyond
the demonstration set and minimize the distributional shift
issue—-the phenomenon where the distribution of states and
actions encountered by the learning agent differs from those
in the expert demonstration data, leading to sub-optimal
performance—a significant number of datasamples are needed.
However, producing a large demonstration set can be costly.
Additionally, even with a considerable amount of data, IL
might still overfit to the training environment. Ideally, we
should test the IL policy across various versions of the game,
simulating game developers modifying it. Incorporating priors
for new environments may be challenging, as developers may
not anticipate future changes. Hence, it is crucial to have a
model that can generalize beyond the training environment.

In this paper, we investigate how to improve the general-
ization of IL agents by reducing sample-inefficiency via data
augmentation. While data augmentation is commonly used
to address generalization and efficiency in computer vision
problems [11, 12], recent applications of image-based [13] and
feature-based [14] state spaces have shown promising results
in both online and offline RL. Consequently, we propose
a comprehensive study of the different data augmentation
techniques in IL, with a focus on augmented feature-based
state spaces, as game AI typically operates with feature values
instead of images. We address the following research ques-
tions: Which augmentation techniques perform best in a game
AI IL setting? Which consistently perform well in different
use cases? And which are ineffective in a game AI IL setting?
To answer these questions, we train agents with different
augmentation combinations in a training environment and
evaluate their generalization across four test environments. We
do not propose any new data augmentation techniques; instead,
we conduct a comprehensive study of existing ones used in
various domains and present an analysis of the combination
of augmentations that yield the best results. This study shows
that certain combinations are more suitable for this setting than
others, with the best achieving a performance 1.6 times higher
than that of the non-augmented agent.

Our main contribution aims to provide guidance to those



seeking to use data augmentation to increase generalization
in IL agents, particularly in the game testing context. It
can also be used as a potential starting point for improving
generalization of any feature-based game AI agent.

II. RELATED WORK

While generalization has been widely discussed in rein-
forcement learning literature [9, 15], only a few works have
focused on generalization and imitation learning. In this sec-
tion, we review the most relevant literature related to this work.

A. Imitation Learning and Games

Imitation learning aims to distill, from a dataset of demon-
strations, a policy that mimics the behavior of an expert
demonstrator. It is assumed that the demonstrations come
from an expert exhibiting near-optimal behavior. Standard
approaches are based on Behavioral Cloning (BC), and mainly
employ supervised learning [16, 17]. Generative Adversarial
Imitation Learning (GAIL) is a recent IL technique based on
a generator–discriminator approach [18].

IL has emerged as a widely accepted method for creating
agents to perform tasks in 3D video games without RL [8, 19].
Amiranashvili et al. [20] used an agent trained solely through
BC to play the game Minecraft. Chang et al. [21] used
demonstrations to guide exploration, while Zhao et al. [22]
employed a BC approach to teach agents based on game
designers’ expertise. Harmer et al. [23] trained agents using
a combination of IL and RL with multi-action policies for a
first person shooter game. Additionally, Tucker et al. [24] used
an inverse RL technique to train agents capable of playing a
variety of games in the Arcade Learning Environment suite
[25]. Other notable examples include: the work of Sestini
et al. [10], who combined RL, IL, and curiosity-driven learning
to train playtesting agents; the work of Ferguson et al. [26],
who proposed the use of dynamic time warping IL to imitate
distinct playstyles; and the work of Pearce et al. [27], who in-
troduce several innovations to make diffusion models suitable
for imitating human behaviors in a first-person shooter game.
However, all of these models must address the efficiency–
generalization trade-off: higher levels of generalization require
more demonstrations or more interactions with the environ-
ment. In this paper we examine the latest data augmentation
techniques used in RL to increase generalization and efficiency
and apply them in IL.

B. Generalization in Reinforcement Learning

In several use cases, policies produced with RL, IL or
inverse RL have overfit to their training environments [15, 28].
Techniques like domain randomization and procedural content
generation improve generalization and help prevent overfit-
ting [29, 30]. In inverse RL, Sestini et al. [28] proved that
with the correct training setup, domain randomization can
mitigate overfitting and improve efficiency. However, domain
randomization requires having a procedurally ready game or
access to the environment code to implement randomized

elements. In practical settings such as video game production,
domain randomization is not always feasible.

Data augmentation has also been investigated in the context
of RL and generalization [31]. Laskin et al. [32] proposed
a thorough survey regarding data augmentation and RL for
image data, while Zolna et al. [33] combined data augmen-
tation and the GAIL algorithm to train a sample-efficient IL
agent in a robotic setting. The present work takes inspiration
from the S4RL algorithm of Sinha et al. [14]. These authors
investigated the efficacy of using data augmentation in offline
reinforcement learning on a feature-based state space. They
proposed 7 different augmentation schemes and analyzed
their performance with existing offline reinforcement learning
algorithms. Furthermore, they combined the most successful
data augmentation scheme with a state-of-the-art offline RL
technique. Similarly, this present work investigates the effects
of 6 feature-based data augmentation techniques for training
game-playing agents with IL.

III. METHOD

Here we first review the main IL technique, behavioral
cloning, and discuss the rationale behind its selection. Second,
we review data augmentations previously studied in offline
RL research and explain how we adapt these techniques to
improve sample efficiency and generalization in our use case.

A. Behavioral Cloning

We begin by introducing the main algorithm used in this
study. Since the focus is on data augmentation rather than
selecting the optimal algorithm, we choose one of the simplest
IL algorithms, BC. Recent literature has shown BC to be a
good algorithm for IL in 3D games [8, 19]. Formally, we
describe our domain as a Markov Decision Process (MDP)
consisting of a state space S ∈ Rn, an action space A ∈ Rm,
a transition dynamic function p(s′|s, a) : S × A → p(S) and
a parameterized policy πθ : S → p(A) that is a mapping from
the state space S to a probability distribution over the set of
actions A. Section IV provides a complete description of the
particular state- and action-space used in this work. Note that
in our setting we do not have a reward function since the agent
is learning from expert demonstrations. Given a set of optimal
demonstrations D = {τi | τi = (si0, a
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update the network as:

argmax
θ

E(s,a)∼D[log πθ(a|s)]. (1)

This equation follows the maximum entropy objective: by
increasing the log-probability of the policy π(at|st) for a given
(at, st) ∼ D pair sampled from the expert dataset D, we
enhance the probability of sampling that action in that specific
state or similar states in proximity to st. At optimality, the
policy π mimics the expert behavior represented by D.



B. Data Augmentations

Inspired by the success of data augmentation for computer
vision and online and offline RL, we apply a set of data aug-
mentation techniques to our data. As we previously mentioned,
our dataset consists of (s, a) pairs, but we augment only the
state s and retain the original action a for the augmented state.
To accomplish this, as noted by Sinha et al. [14], we assume
that applying a small transformation to an input state s results
in a physically realizable state ŝ, and that the original action
a remains a valid action for the state ŝ. For the experiments
detailed in Section V-B, to ensure this assumption holds, we
use our prior knowledge of the environment to define our
augmentations and select their hyperparameters.

We denote a data augmentation transformation as τi(ŝt|st),
where st ∼ D is an original state sampled from the dataset
D at timestep t, ŝt is an augmented state, and τi ∈ T is
a stochastic augmentation with T representing the set of all
available augmentations defined below. In contrast to Sinha
et al. [14], who used only 1 augmentation per dataset, we
apply from 1 to 3 sequential augmentations (see Section V-B).
In this way we assess whether a combination of augmentations
performs better than individual ones. For instance, if we
augment the data with τ1, τ2, and τ3, the resulting state will
be ŝt = τ3(τ2(τ1(st))).

As we see in Section IV-A, our state space is composed
of both continuous and categorical values, and we choose
to keep these separate when applying our augmentations. In
particular, Gaussian noise, uniform noise, scaling, state mix-
up and continuous drop-out are only applied to the continuous
values of the state vector whereas semantic dropout is only
applied to the categorical values. With that in mind, we next
define the set of augmentations T . For the sake of convenience,
we represent vectors with i.i.d. components with a certain
distribution with s ∼ X(), e.g. s ∼ N(µ, σ) represents a
vector of i.i.d. Gaussian variables with mean µ and standard
deviation σ.
Gaussian Noise: We sample ϵ ∼ N(µ, σ) and let
ŝt = τgauss(st) = st + ϵ. We set µ = 0 and experiment with
different values of σ from {0.03, 0.003, 0.0003, 0.00003}.
Uniform Noise: We sample ϵ ∼ U(−λ, λ) and let
ŝt = τuni(st) = st + ϵ. We set λ = 0.0003.
Scaling: We sample ϵ ∼ U(α, β) and let ŝt = τsm(st) =
st ∗ ϵ where ∗ represents element-wise multiplication. We set
α = 0.0003 and β = 0.0006. [32].
State-mixup: We sample ϵ ∼ β(α, α) with α = 0.4 and let
ŝt = τmixup(st) = ϵ ∗ st + (1− ϵ) ∗ st+1 [34].
Continuous Dropout: We zero-out values of randomly cho-
sen subset of continuous-valued elements of st. In particular,
let ϵ be a vector of 1’s with the same size as st. Let S be
the indices of the elements of continuous-valued part of st.
We sample n random and unique indices from S and set
the elements of ϵ corresponding to these indices to zero. The
resulting state is defined as ŝt = τdrc(st) = st ∗ ϵ. For our
experiments, we set n = 3.

Semantic Dropout: We zero-out some random values of the
categorical set of values in the state st. The procedure is the
same as for continuous dropout, but we use n = 12. The
resulting state is defined as ŝt = τdrs(st) = st ∗ ϵ.

IV. EXPERIMENTAL SETUP

Here we detail the main components used in our evaluation,
including the environment, the state space, the neural network
architecture, and the training setup.

A. Environment and State Space

The environment used in this study is the same as used by
Sestini et al. [8]. The game is an open-world city simulation,
as illustrated in Figure 1(a) and Figure 1(b). The agent has
a discrete action space of size 9, consisting of moving for-
ward, moving backward, right rotation, left rotation, jumping,
shooting, right sidestep, left sidestep, and no action. In our
experiments, as we eliminate the presence of enemies from
the environment, we do not utilize the shooting action. The
state space is the same proposed by Sestini et al. [8] and
consists of a goal position, represented as the R2 projections
of the agent-to-goal vector onto the XY and XZ planes, nor-
malized by the gameplay area size, along with game-specific
state observations such as the agent’s climbing status, contact
with the ground, presence in an elevator, jump cooldown,
and weapon magazine status. Observations includes a list of
entities and game objects that the agent should be aware of,
e.g., intermediate goals, dynamic objects, enemies, and other
assets that could be useful for achieving the final goal. For
these entities, the same relative information from agent-to-goal
is referenced, except as agent-to-entity. For our use case, the
entities are the button to open the door and the goal itself. Plus,
a 3D semantic map is used for local perception. This map is a
categorical discretization of the space around the agent. Each
voxel in the map carries a semantic integer value describing
the type of object at the corresponding game world position.
We use a semantic map of size 5×5×5. In this environment,
an episode consists of a maximum of 750 steps. An episode
is marked a success if the agent reaches the goal before the
timeout. As we discuss in Section V-B, from this game we
create a training environment and different testing ones.

B. Neural Network

We use the same neural network as in the work by Sestini
et al. [8]. First, all the information about the agent and a goal
is fed into a linear layer with ReLU activation, producing the
self-embedding xa ∈ Rd, with d = 128. The list of entities
is passed through a separate linear layer with shared weights,
producing embeddings xei ∈ Rd, one for each entity ei in the
list. Each embedding vector was concatenated with the self-
embedding, producing xaei = [xa, xei ], with xaei ∈ R2d. The
list of vectors is then input to a transformer encoder with 4
heads and average pooling, producing a single vector xt ∈
R2d. In parallel, the semantic occupancy map M ∈ R5×5×5

is first input into an embedding layer of size 8 with tanh
activation and then into a 3D convolutional network with three



convolutional layers, with 32, 64, and 128 filters, stride 2, and
leaky ReLU activation. The output of the latter component is
a vector embedding xM ∈ Rd that is concatenated with xt,
producing xMt. We then input xMt through one linear layer of
size 256 and ReLU activation, and one final linear layer of size
9 and softmax activation, resulting in the action probability
distribution.

C. Training Setup

Training is a supervised learning problem where the in-
put data for each model is the unique dataset described
in Section V-A. We use a neural network, as described in
Section IV-B, built with the TensorFlow framework. Each
model is trained for 300 epochs on a single machine with
an AMD Ryzen Threadripper 1950X 16-Core Processor and
an NVIDIA GV100 GPU, with an average training time of
336 seconds.

V. EXPERIMENTS AND RESULTS

To evaluate the effect of data augmentation on an IL agent’s
generalization performance, we performed an exhaustive study
of unique combinations of different data augmentations. We
first collected a set of demonstrations using a training environ-
ment as described in Section IV-A. We then trained a model for
each augmentation combination using this set. Subsequently,
we tested our augmented models in four different test en-
vironments with modified designs compared to the training
environment. We assessed the augmented models against each
other and against a baseline model, which was trained only
with the original dataset without augmentation.

In the training environment, we began by creating a set
of demonstrations presenting the agent with the desired goal:
the agent must reach a building, press a button to open a
door, and enter the building before the door closes in order
to reach the goal position. This task is the same Use Case
1 in the work by Sestini et al. [8]. The complexity was
relatively low, with few obstacles between the agent’s starting
position and the goal. For the human player, there were two
natural paths to reach the goal: diagonally through the park,
or down the road and to the left. We used both paths to
increase the range of possible states that the agent could
encounter. We alternated between these two paths to maintain
a balanced dataset for supervised learning. We provided human
demonstrations totaling 78 episodes, or 15, 380 samples.

For the test environments, we created four distinct new
environments from the initial training environment by making
design changes to the original. This included moving and
rotating the goal building, increasing the number of obstacles,
and obstructing one of the direct paths to the goal building.
For each environment, the agent had to complete the same task
of navigating to the building, opening the door, and entering
the goal position. Herein, we describe the list of modifications
for each test environment:
Test Environment 1 - the position of the building containing
the goal is slightly different from the training environment,
with a slight rotation to the left. Additionally, we introduce 5

(a)

(b)

(c)

Fig. 1: (a) The original environment where human demon-
strations were created and used for training models. (b) The
player/agent must navigate to the building, press the button to
open the door, and enter the goal state before the door closes.
(c) A modified version of the original environment used for
testing the model’s performance and ability to generalize in a
new environment.



TABLE I: An overview of the changes made to the training environment to create the 4 distinct test environments. These
changes were implemented to evaluate the agent’s generalization performance.

Environment Goal Position Obstacles Subjective Difficulty
Original (Train) x=0, z = 0, rot = 0° 1 obstacle easy

Test 1 x = 2, z = 8, rot = −17° 6 obstacles easy
Test 2 x = 3, z = 0, rot = 0° 17 obstacles medium
Test 3 x = −9, z = −25, rot = −21° 5 obstacles medium
Test 4 x = 65, z = −45, rot = 150° 5 obstacles hard

more obstacles in the path from the agent’s starting position
to the goal. We categorize the subjective difficulty of this
variation as easy, consistent with the training environment;
Test Environment 2 - The position of the building containing
the goal differs slightly along the x-axis, while the rotation
remains the same as in the training environment. However, a
total of 17 obstacles obstruct the path from the agent’s starting
position to the goal. We categorize the subjective difficulty of
this variation as medium;
Test Environment 3 - The position of the building is
significantly different from the one in the training environment,
as can be seen by comparing Figure 1(a) and (c). Furthermore,
the building has a different rotation, with a higher degree com-
pared to Test Environment 1. This environment also includes
a total of 5 obstacles. We categorize the subjective difficulty
of this variation as medium; and
Test Environment 4 - The position of the building is entirely
different from the training environment. In contrast to the
training environment, where the goal is in front of the agent
facing its direction, the goal in this test environment is behind
the agent’s starting position, facing its back. This configuration
requires the agent to follow a completely different trajectory to
reach the goal, one that is not in the expert dataset. Moreover,
there are a total of 5 obstacles. Due to the significant difference
in the goal position, we categorize the subjective difficulty of
this variation as hard.

A summary of design changes and subjective complexity is
available in Table I and a visual for the modified environment
is presented in Figure 1(c).

A. Augmented Models

As a baseline, we used the dataset consisting of the original
78 episodes of data without any applied augmentations. Using
this data and the augmentations, we created different datasets,
each featuring one or more augmentations. We refer to the
models trained using these datasets as augmented models, and
they are labeled with the corresponding dataset’s augmenta-
tions. We applied all the augmentations listed in Section III-B
and all their combinations, up to 3 augmentations, i.e, one
dataset could be augmented with 1 augmentation, 2 augmen-
tations, or 3 augmentations. Preliminary experiments showed
that combining Gaussian and uniform noise together decreased
the overall performances. For this reason, we excluded the
datasets that have both Gaussian and uniform noise. This
process resulted in a total of 38 different combinations of data
augmentations.

Fig. 2: Overview of the augmentation process. We start with
the original set of demonstrations. Then, depending on the
number and type of the selected augmentations, we create a
new, unique dataset. For example, if we select two augmenta-
tions (Gaussian noise and semantic dropout), we start from the
original dataset, apply Gaussian noise to it, and then augment
the resulting dataset with semantic dropout.

We initialized a unique training dataset for each model by
starting with the original demonstration data. We then cloned
the original data, sequentially applied each augmentation from
the combination, and added the resulting data to the dataset.
Additional details of how we applied the augmentations are
provided in Section III. We performed the augmentation step
three times, resulting in a dataset four times as large as the
original data. Augmentations were applied to the data in the
order listed in III-B. This ordering was chosen to maximize
the effect of changing the data by first performing translations
followed by scaling, and to preserve dropout by performing
those augmentations last in the composition. The process is
outlined in Figure 2.

Dataset size and standard deviation of Gaussian noise are
two significant parameters. To better understand their effects,
we conduct a hyperparameter study over these parameters. The
tested ranges were selected following preliminary experiments.
All hyperparameters together with the variations are summa-
rized in Table II. With these variations, we trained a total of
228 different models. Each model is a different combinations
of augmentations, varying their hyperparameters. For instance,
one model could be applying Gaussian noise with θ = 0.03
plus state mixup to 50% of the original data. As we previ-



Fig. 3: Relative performance of the top 20 models, averaged
over all experiments (i.e., the 4 test environments) with stan-
dard error. Abbreviations: gauss (Gaussian noise), uni (uni-
form noise) sca (scaling), sm (state-mixup), drc (continuous
dropout), drs (semantic dropout), rX (X percentage of the
original dataset used), and eX (σ = 3 · 10−X). Additional
details about the augmentations are provided in Section III.

ously said, we have a total of 38 combinations times the 6
different sizes of the dataset. For each model, we repeated the
experiments for 10 different seeds.

Figure 3 shows the relative performance of each of the
top 19 models, averaged over all experiments. The figure
illustrates that augmentations can yield large improvements
over the baseline model. However, the large standard deviation
indicates that models may be sensitive to training parameters.
In some instances, this can be interpreted as noise added to
the data sending the agent into an unknown state, from which
it cannot recover. We conduct further experiments to examine
the standard deviation of the augmented models. Our findings
suggest that the standard deviation of these models increases
as the dataset size increases. This particular effect cannot be
seen in the figure due to the fact that only a subset of the
models are shown. For instance, the standard deviation of the
model augmented with Gaussian noise ranges from 0.07 when
using 50% of the dataset to 1.11 when using 100%. Similar
trends were observed with all the other augmentations.

B. Evaluation

During testing, agents run in each environment for 100
episodes. Episodes are reset after a timeout of 750 steps. The
episode is recorded as a success if the agent reaches the goal
before the timeout. For an initial evaluation, we run the full set
of 228 models in the initial training environment. Using the
mean success rate over 10 seeds of each model as a selection
criterion, we narrow the set of models down to 40 to evaluate
generalization performance in the testing environments. This
set of models consists of the following two groups: 1) the
19 top-performing models and 2) a selection of 20 of the
lowest-performing models. For the lowest-performing group,

Fig. 4: Models that consistently outperform the baseline in the
4 different testing environments plus the training environment.
For the abbreviations legend, see Figure 3.

we selected models with relative success rates ranging from
0.00 to 0.39 to obtain a mix of both low-performing and
failing models. In addition, we selected the highest-performing
baseline model and included it in the top-performing group.
Our main focus is to evaluate how data augmentation can
impact the generalization performance of the trained agents.
For this reason, we evaluate only the top 19 models found
in the initial evaluation. We are interested in finding the
relative success rate of each augmented model compared to the
baseline for each test environment. This provides a quantitative
measure of the improvements, if any, that are achieved through
the data augmentation combination, so we use this as our
primary benchmark. We also seek to identify consistency in
model performance across environments, as it might suggest
a clear set of combinations to use—or to avoid—in similar
scenarios, as a starting point for other game environments.

Our first assessment is whether data augmentations could
improve an imitation learning agent’s ability to generalize to
unseen changes in an environment. The results, summarized in
Table III, show that these augmented models outperform the
baseline in each of the test environments. Note that a mean
relative success rate of 1.X corresponds to an improvement
of X%. Hence, the mean relative success rates showed an
improvement of 20% up to 80% for different environments
but with a relatively high variance over different models.

The next assessment is to determine whether a combina-
tion of augmentations consistently improves generalization
regardless of the environment. Figure 4 shows that 6 different
models outperform their respective baselines in 4 of the 5
environments. These 6 models each includes a combination
of at least 2 augmentations and use at least 80% of the data.
While these models are the most consistent in outperforming
the baseline, none of them have the highest relative success
rates, but 3 of them are in the top 6 in the same evaluation (see
Figure 3). This suggests that there is a trade-off between best
achievable generalization performance and consistency over



TABLE II: Summary of available hyperparameters. Values in square brackets were experimentally varied; all others remained
fixed. The ranges were selected following preliminary experiments.

Hyperparameter Values
Gaussian noise µ = 0, σ = [0.03, 0.003, 0.0003, 0.00003]

Data size [50%, 60%, 70%, 80%, 90%, 100%]
State mixup α = 0.4, β = 0.4

Uniform noise low = −0.0003, high = 0.0003
Dropout, num. continuous features 3
Dropout, num. semantic features 12
Max. augmentation combinations 3

Num. data clones 3

TABLE III: Summary of average performance for models which outperformed the baseline. Models shown are taken from the
set of 19 top-performing models. Additional details of how the models were chosen are provided in Section V-A.

Environment Mean relative success rate STD relative success rate Number of models which outperform the baseline in each environment
Train 1.210187 0.854240 19
Test 1 1.765625 1.214967 16
Test 2 1.197297 0.976769 5
Test 3 1.800574 1.525612 17
Test 4 1.234450 1.028380 1

Fig. 5: Relative performance, averaged over all environments,
is consistently poor or failing for the bottom group of models.
Abbreviations: gauss (Gaussian noise), uni (uniform noise)
sca (scaling), sm (state-mixup), drc (continuous dropout), drs
(semantic dropout), rX (X percentage of the original dataset
used), and eX (σ = 3 · 10−X).

all testing environments.
For the 20 lowest-performing models in the training envi-

ronment defined above, we assess whether their poor relative
performance is consistent between the training environment
and across the testing environments. Figure 5 shows the aver-
age success rate relative to the baseline across all environments
remains quite low and these results are consistent with the
results from the training environment.

Finally, this study aims to determine if there is a single most
effective augmentation for agent performance and if it exists,
to identify it. To do this, we grouped all models tested in the
testing environment by augmentation, and computed the aver-

age success rate relative to the baseline. For example, in the
Gaussian noise group, we include all models containing gauss
in their set of augmentations. From this analysis, we found
the following average relative success rates: scaling (1.27),
state mixup (1.26), continuous dropout (1.26), Gaussian noise
(1.25), uniform noise (1.02), and semantic dropout (0.50).
These investigations, combined with the consistency study,
highlight scaling as one of the most promising augmentations.
State mixup is one of the most effective augmentations for
generalization in certain environments but it did not outper-
form the baseline as consistently as models augmented with
scaling. Gaussian noise and continuous dropout follow the
same trend, with the latter exhibiting the lowest consistency.
Lastly, uniform noise had the least impact on generalization
while semantic dropout clearly had a negative effect on gen-
eralization. Nevertheless, due to the sensitivity to the training
parameters previously mentioned, particularly for noise-based
augmentations, these results should be considered as promising
starting points for further studies to cover a wider range of the
possible augmentations with different parameters.

VI. CONCLUSION AND DISCUSSIONS

In this paper we have conducted a comprehensive study of
data augmentation in imitation learning. Training self-learning
agents with either reinforcement learning or imitation learning,
involves a generalization–efficiency trade-off: we can increase
generalization, but at the cost of sample efficiency. Data aug-
mentation can help improve generalization while maintaining
sample efficiency. Building on the success of data augmen-
tation in supervised learning and reinforcement learning, we
investigated data augmentation techniques for feature-based
imitation learning and their effects on the training of imitative
agents. We evaluated our agents in four distinct 3D test envi-
ronments. The main findings of this paper are twofold. First,
data augmentations can indeed improve performance in an
imitation learning setting. The imitative agents demonstrated
improved generalization in previously unseen situations when



trained on an augmented dataset. Second, our study indicates
that certain combinations of data augmentations consistently
enhance performance across a variety of generalization envi-
ronments, even if the performance of individual augmentations
may vary depending on the parameters used.

This improvement in generalization with augmented data
is not surprising. Data augmentation in supervised learning
involves manipulating the images to resemble a visual system.
Rotation, cropping, translation, noise, etc., are augmenta-
tions that can be translated into game-state observations. The
challenge lies in identifying which augmentations contribute
to generalization and which do not. Our preliminary study
revealed that combining multiple augmentations yields better
results than using single augmentations alone. At the same
time, of the single augmentations tested, scaling emerged as
one of the most consistently performing throughout our study,
followed by continuous dropout and Gaussian noise.

This study provides a promising research direction for
data augmentation and imitation learning. However, several
limitations warrant consideration. Our preliminary results in-
dicate that certain augmentations are particularly sensitive
to the training parameters, thus requiring a more thorough
study to assess their contribution. Furthermore, we tested
these augmentations only in an internal game environment,
and exclusively on navigation and interaction tasks. Exploring
these augmentations in different environments, and with differ-
ent tasks, should prove valuable. Furthermore, although most
game AI agents use a similar state space, alternative solutions
exist. Hence, testing these augmentations in a larger range
of environments, task and observation spaces is a promising
future research direction.
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