

Improving Generalization in Game Agents with Data Augmentation in Imitation Learning

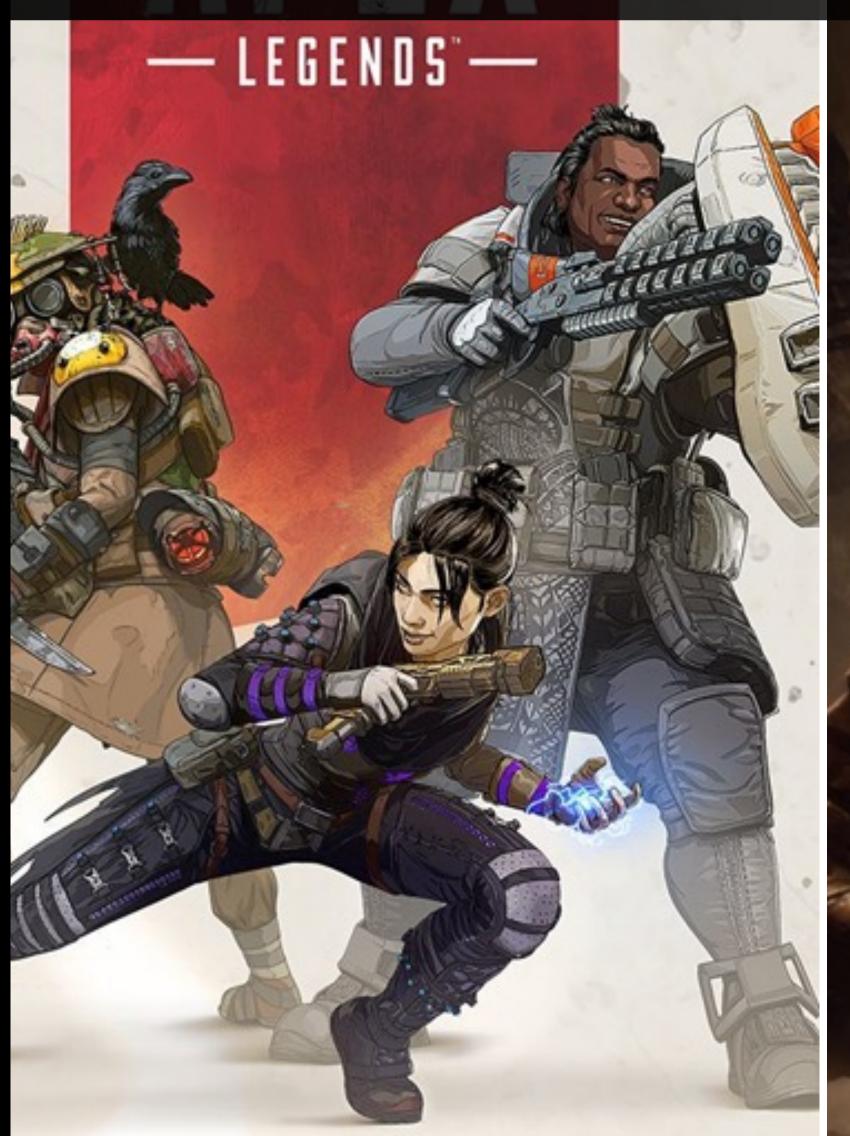
Derek Yadgaroff, Alessandro Sestini, Konrad Tollmar,

Ayca Ozcelikkale, Linus Gisslén

WCCI 2024 - CEC Special Session on Games

Electronic Arts

Automated Game Testing

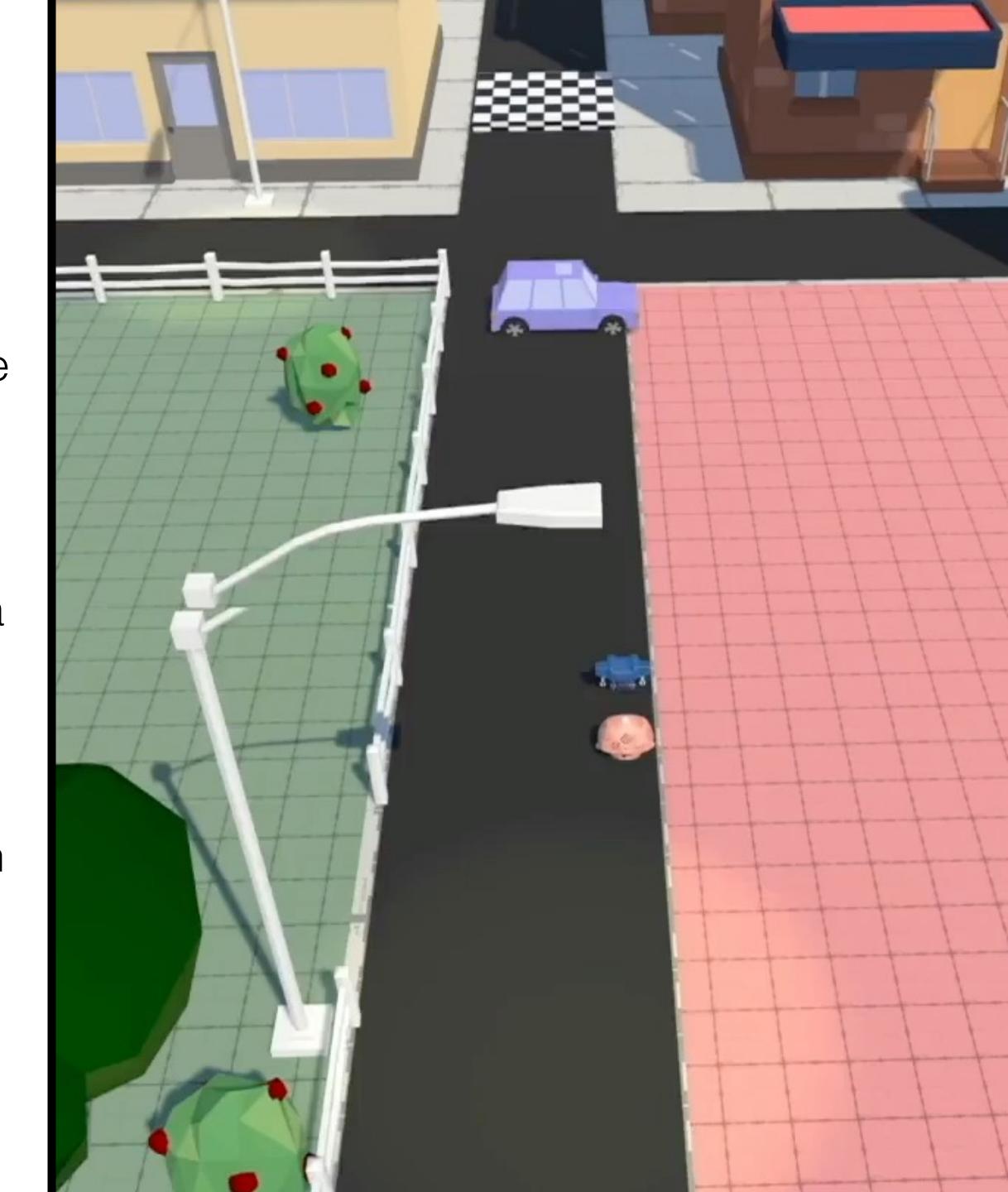


Imitation Learning for Game Testing¹

Property	Scripting	RL	IL
Setup time	<u>O</u> O	<u>OOO</u>	
Exploration			
Exploitation			
Controllability			
Generalization			
ML knowledge required			
Programming needed			

Problem

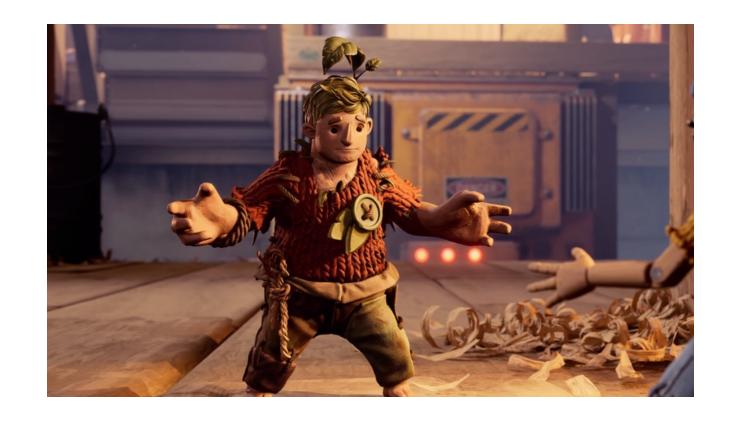
- Designers can use prior knowledge to guide the agent towards its goal.
- For an agent to deal **out-of-distribution** data we need significant number of datasamples.
- We investigate how to improve generalization reducing data need via data augmentation.

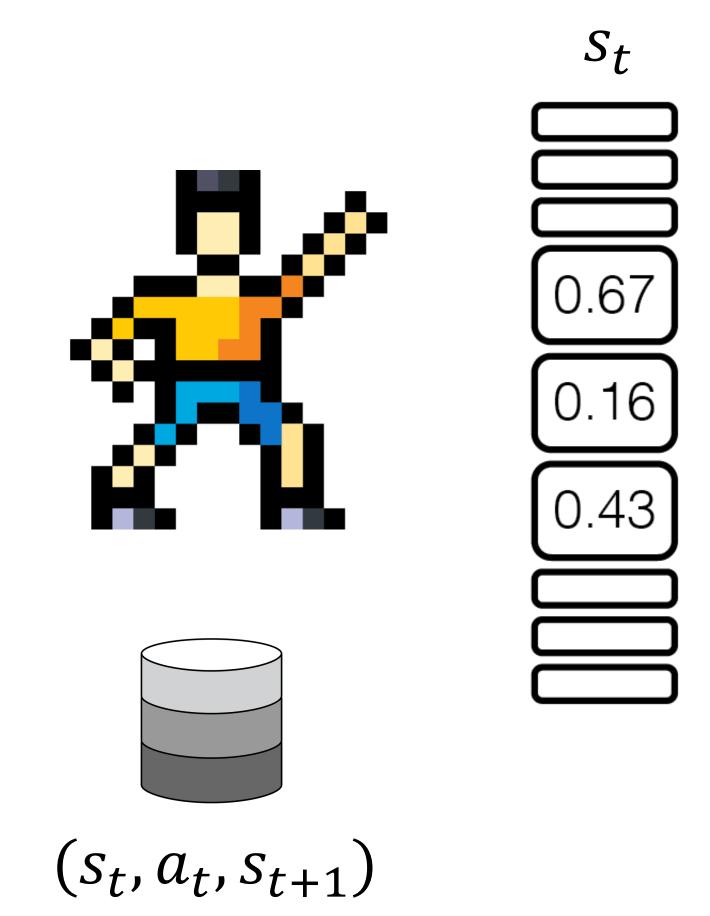


Data Augmentation

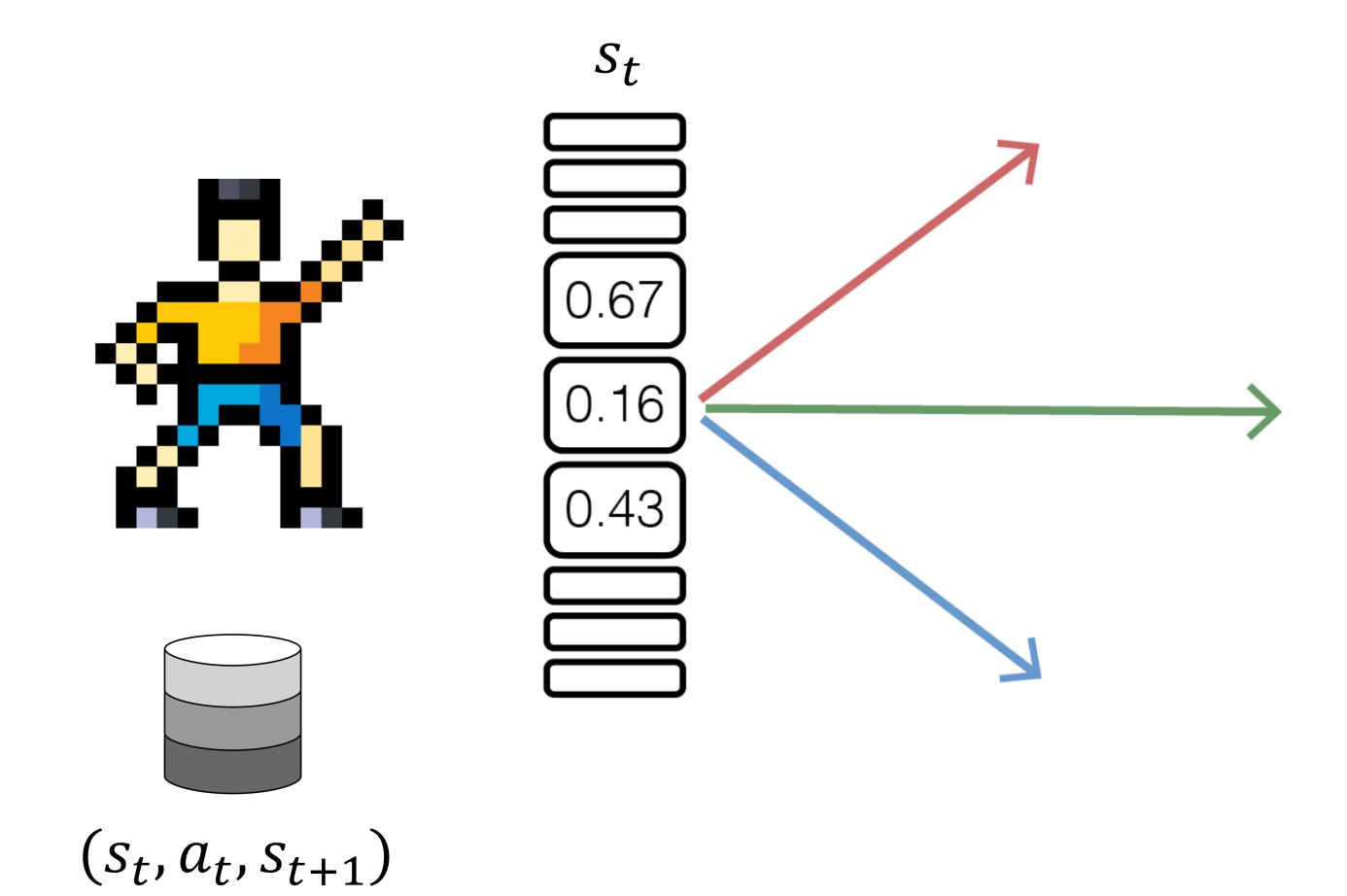
Data Augmentation

Data Augmentation

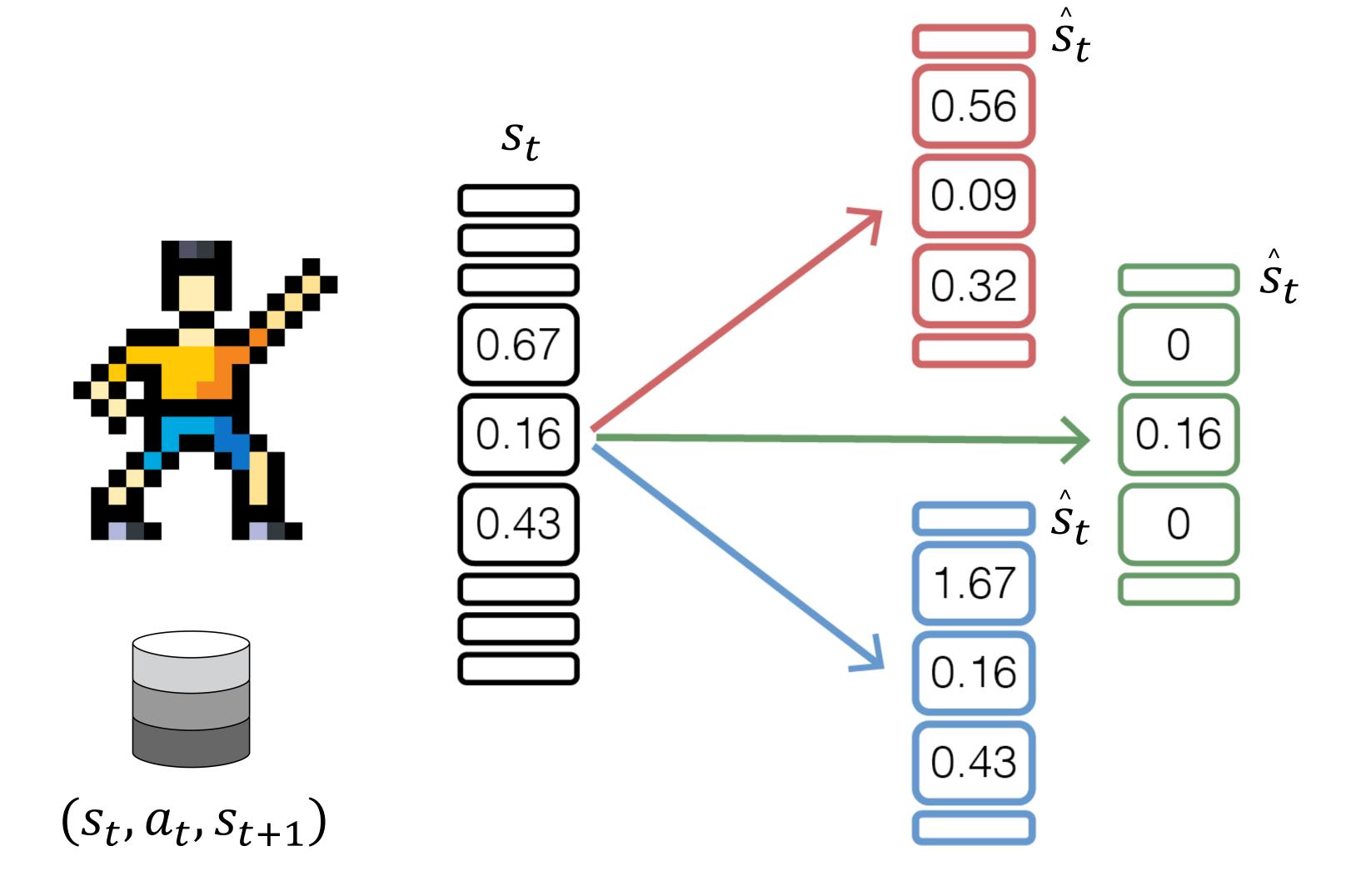




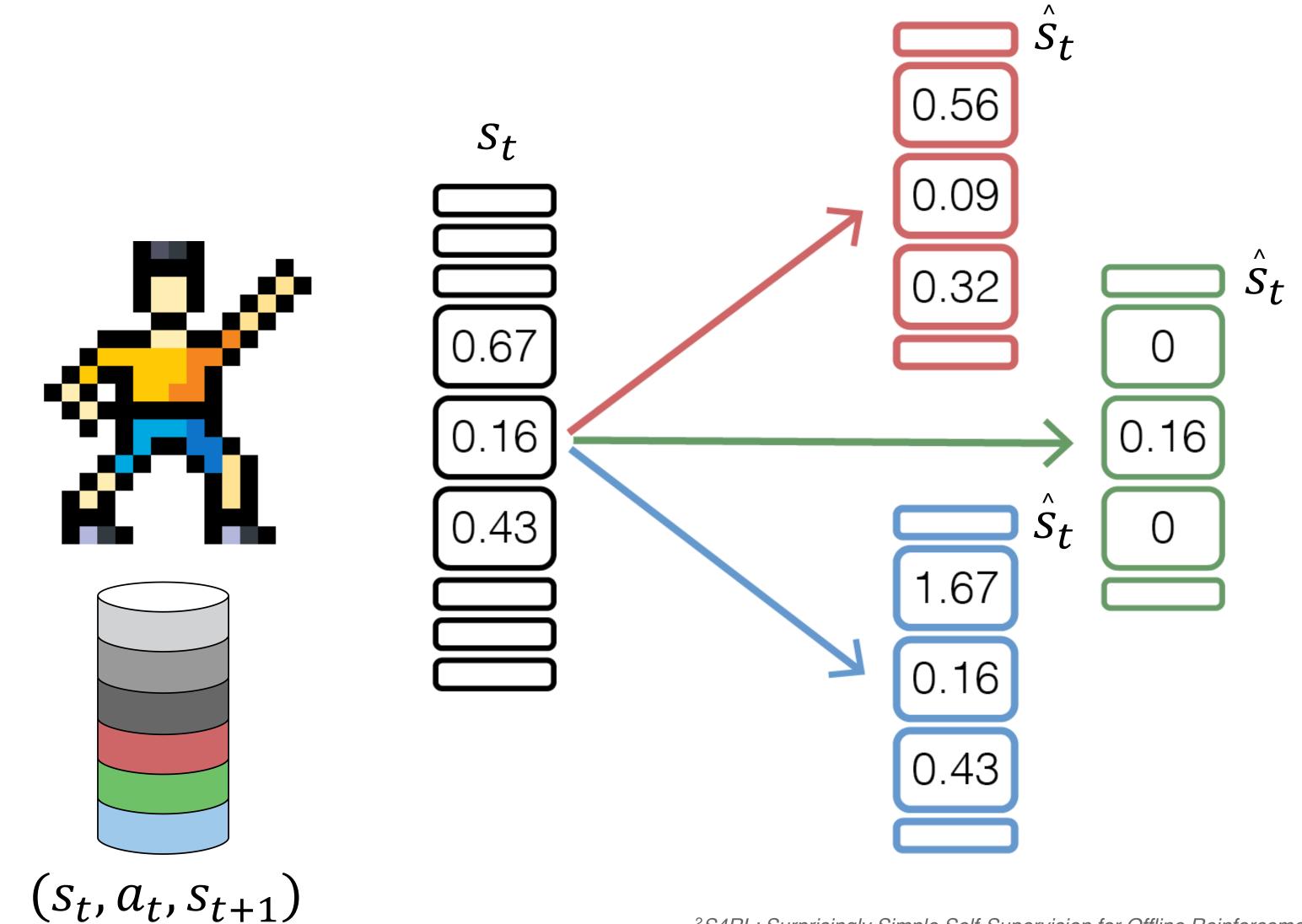
Data Augmentation with Agents²



Data Augmentation with Agents²



Data Augmentation with Agents²



Our Approach - Augmentations

Gaussian Noise: $\hat{S}_t = S_t + \epsilon \text{ where } \epsilon \sim N(\mu, \sigma)$.

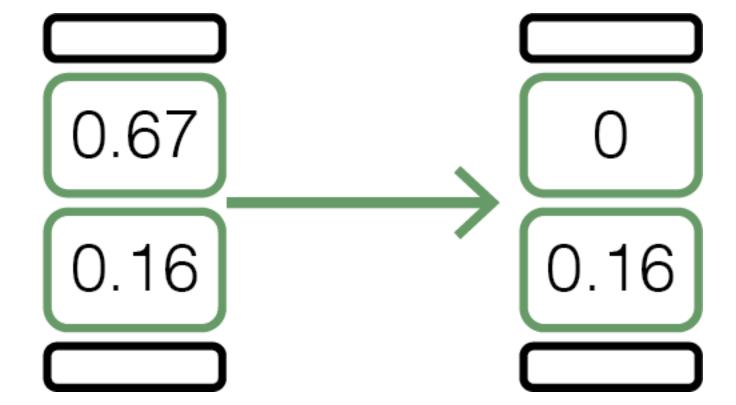
 $\hat{S}_t = S_t + \epsilon \text{ where } \epsilon \sim U(-\lambda, \lambda).$ **Uniform Noise:**

 $\hat{s}_t = s_t * \epsilon \text{ where } \epsilon \sim U(\alpha, \beta).$ Scaling:

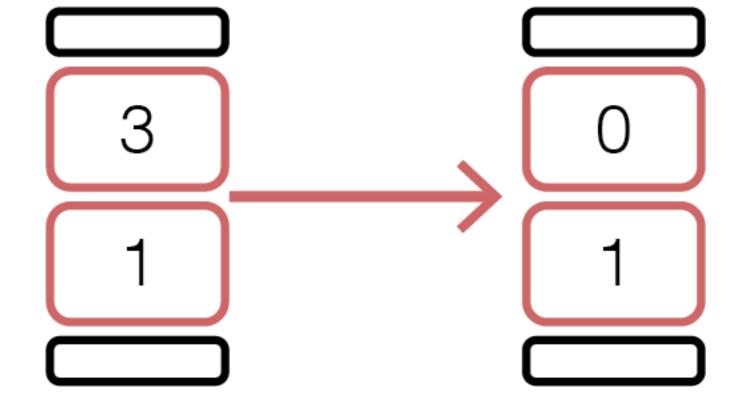
 $\hat{s}_t = s_t * \epsilon + s_{t+1} * (1 - \epsilon)$ where $\epsilon \sim \beta(\alpha, \alpha)$. State-MixUp:

Our Approach - Augmentations

Continuous Dropout:



Semantic Dropout:



Our Approach - Training Algorithm

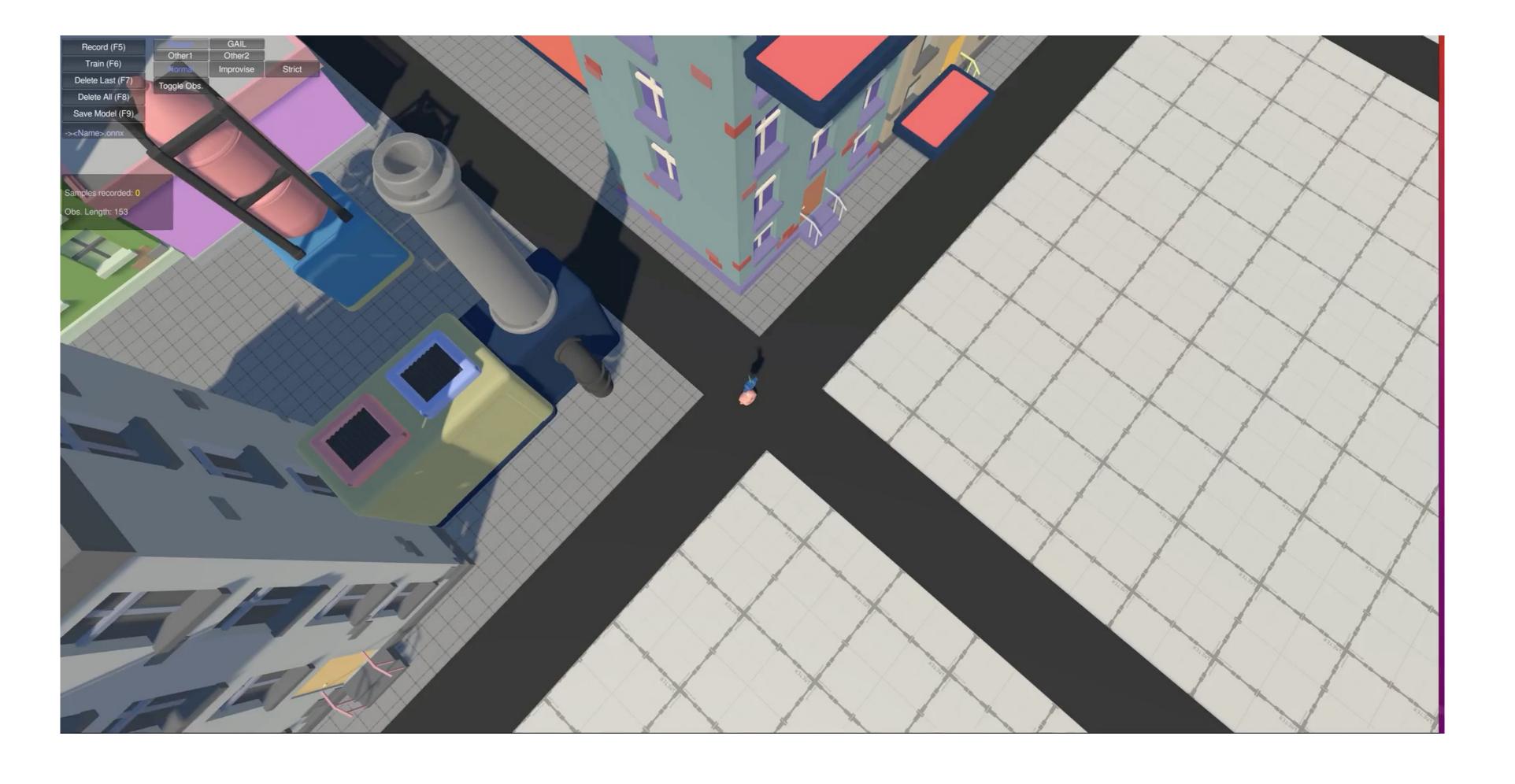
• Given a **demonstration** dataset of N trajectories τ_i :

$$D = \{\tau_i | \tau_i = (s_0^i, a_0^i, \dots, s_T^i, a_T^i), i = 1, \dots, N\},\$$

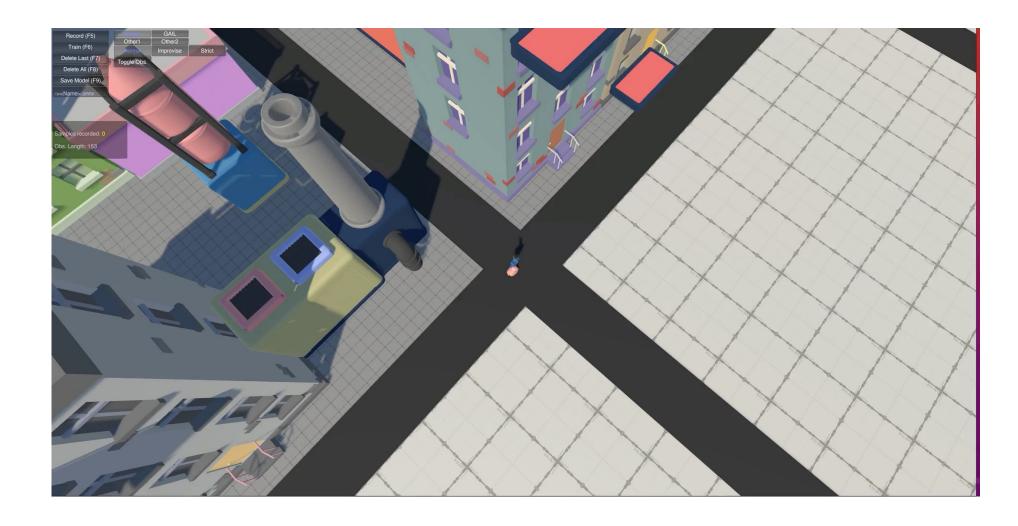
ullet the objective aims to **mimic** the expert behavior which is represented by the dataset D:

$$L = \arg \max_{\theta} \mathbb{E}_{(s,a)\sim D}[\log \pi_{\theta}(a|s)].$$

Experiments - Environment³

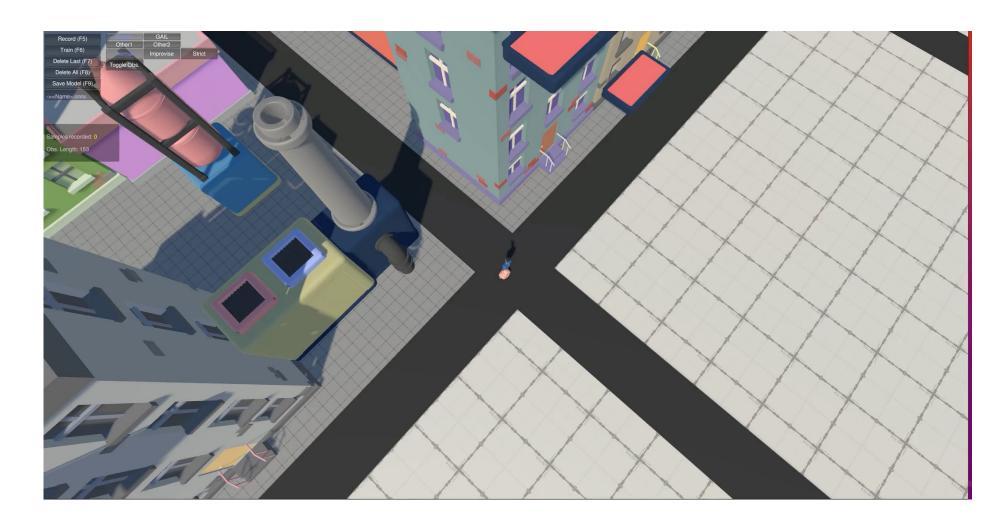


Experiments - Environment³



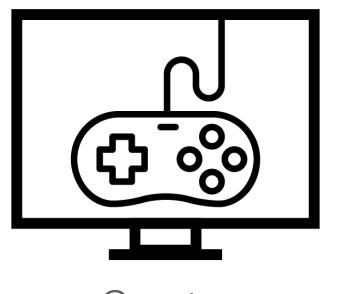
Training Environment

Experiments - Environment³

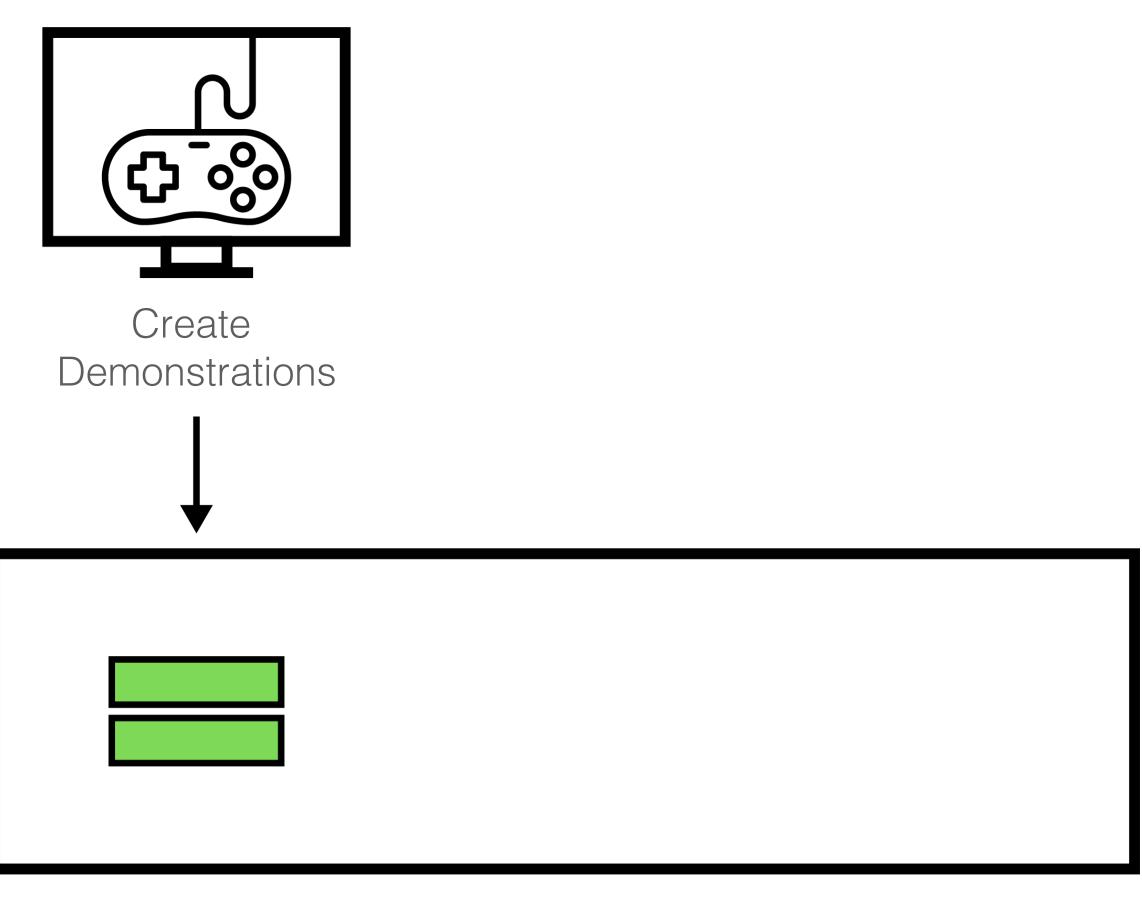


Training Environment

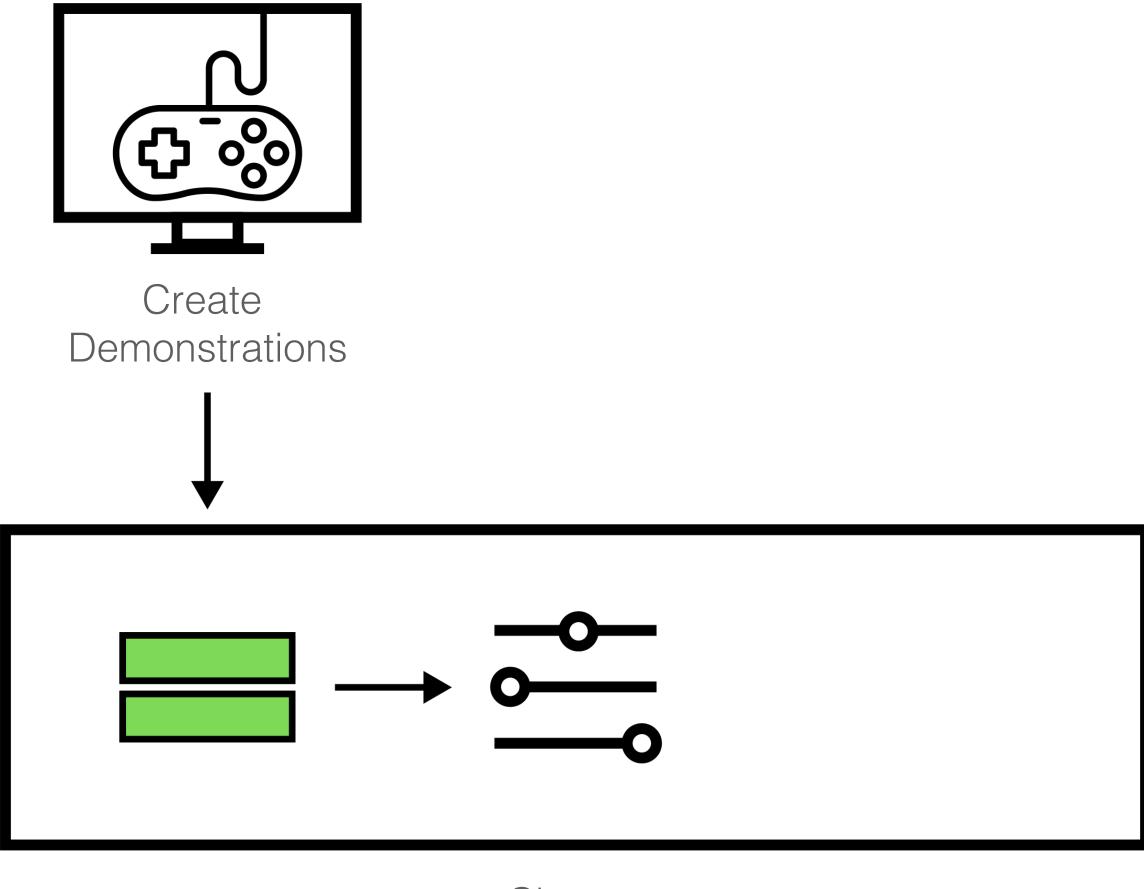
Testing Environment



Create Demonstrations

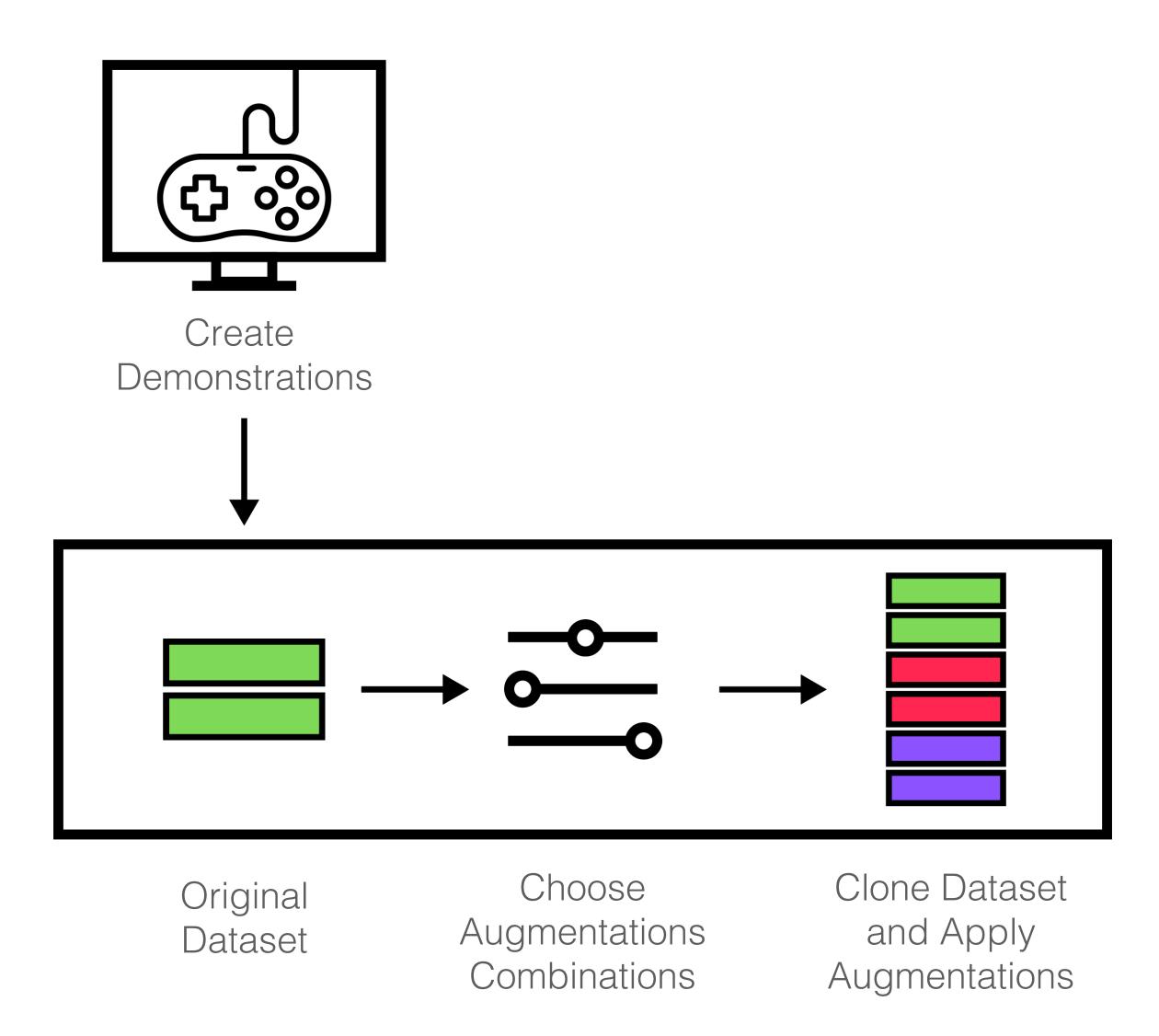


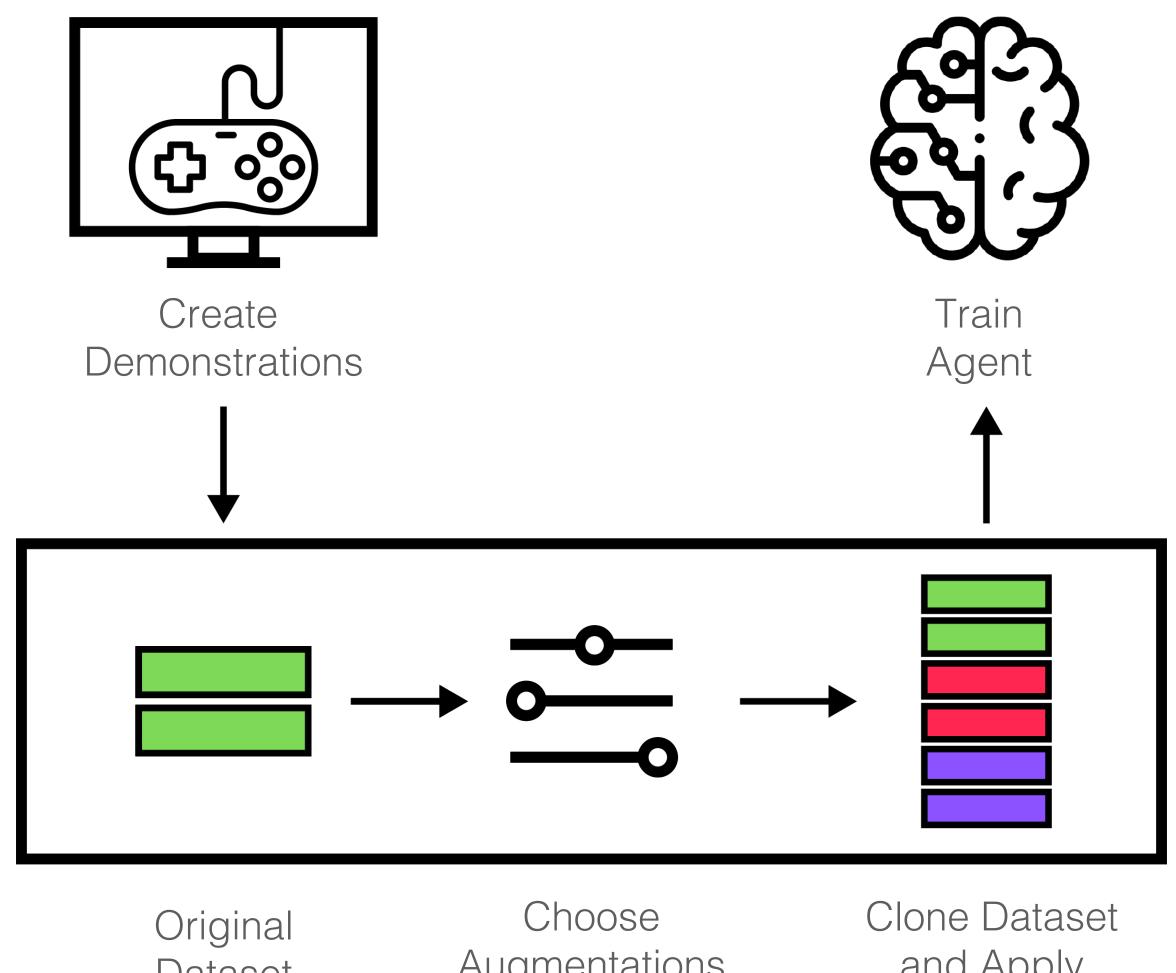
Original Dataset



Original Dataset

Choose Augmentations Combinations

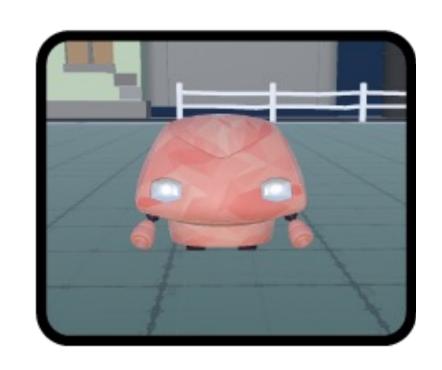




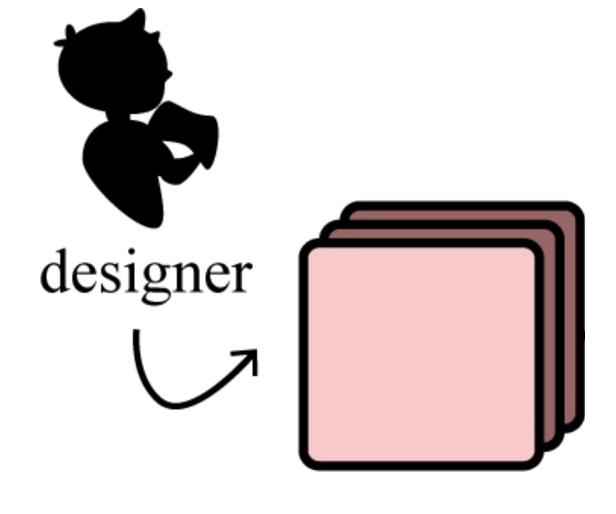
Augmentations Combinations

and Apply Augmentations

Experiments - State Space

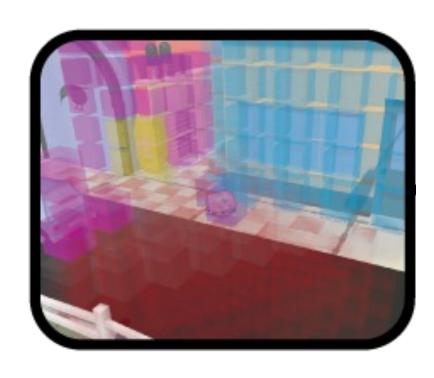


agent position, current health, ammunitions, ...



Entities Info

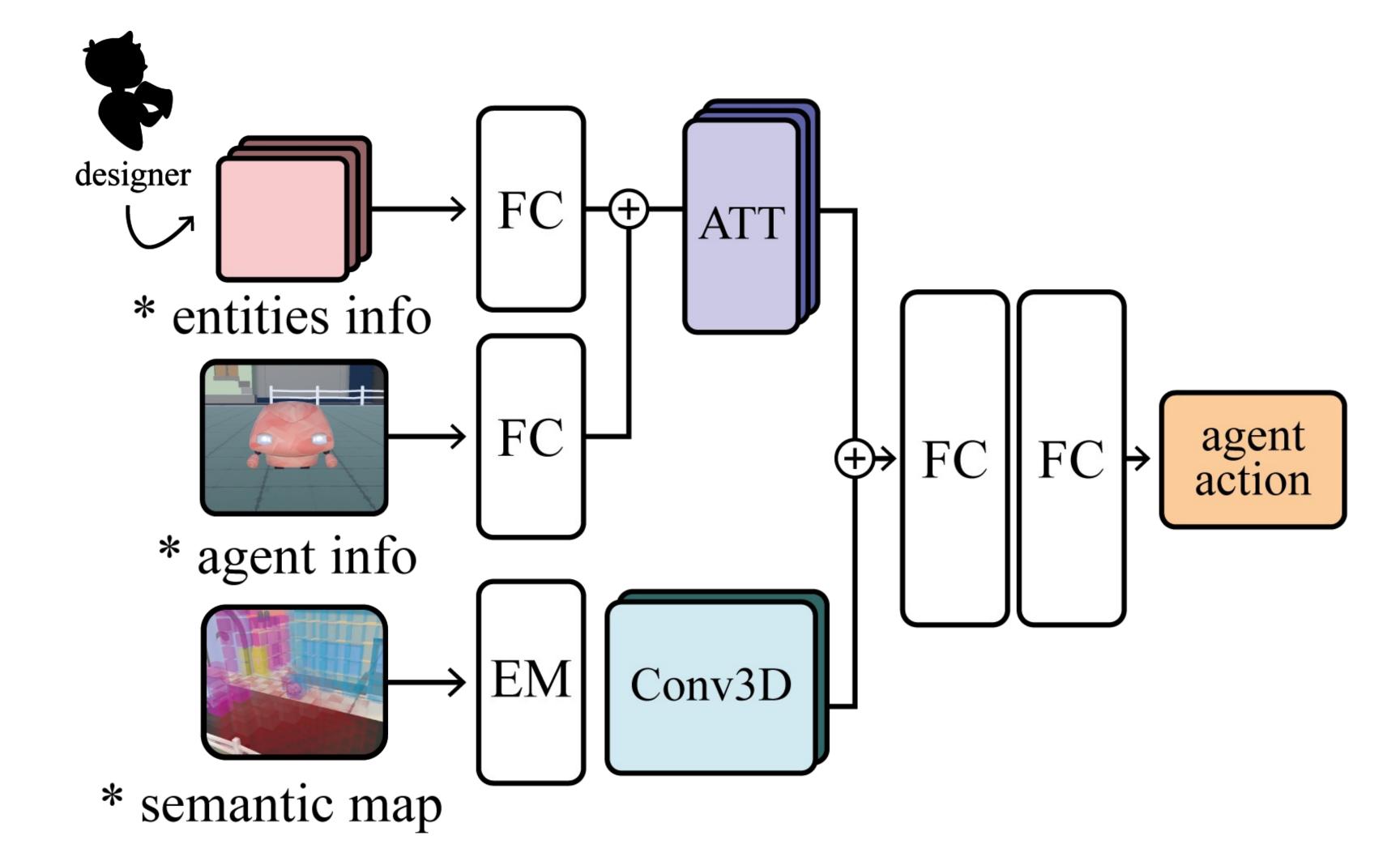
objects of interest, relative and absolute positions, ...



Semantic Map

5x5x5 map centered in the position of the agent

Experiments - Neural Network



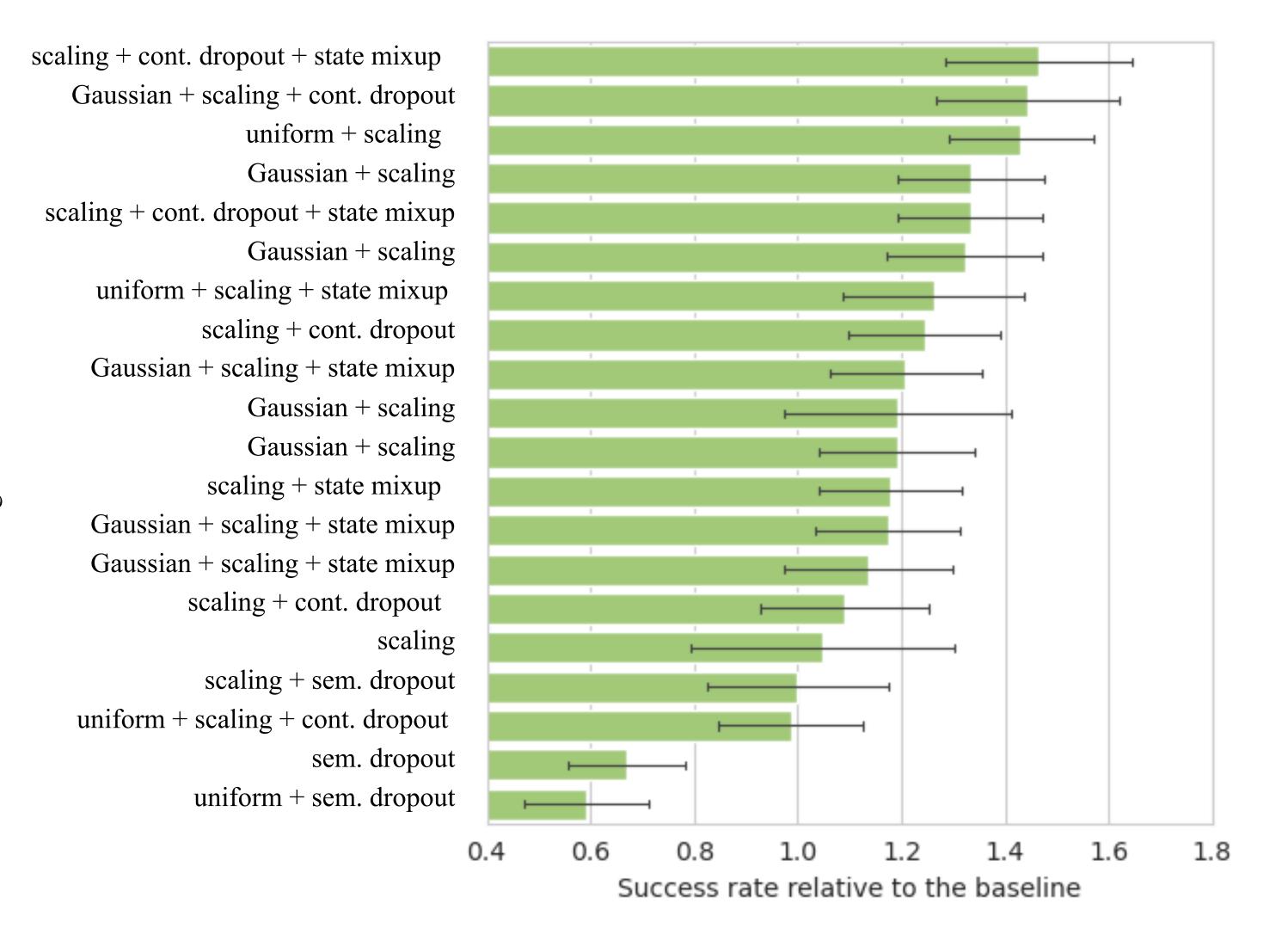
Can we find at least one data augmentation combinations that **improve the performance** of the original agent, especially in the testing environments?

- Can we find at least one data augmentation combinations that **improve the performance** of the original agent, especially in the testing environments?
- What is the best combination of augmentation that has the **highest performance** on all the testing environments?

- Can we find at least one data augmentation combinations that **improve the performance** of the original agent, especially in the testing environments?
- What is the best combination of augmentation that has the **highest performance** on all the testing environments?
- What is the **single most effective** augmentation? Is there a single most effective augmentation?

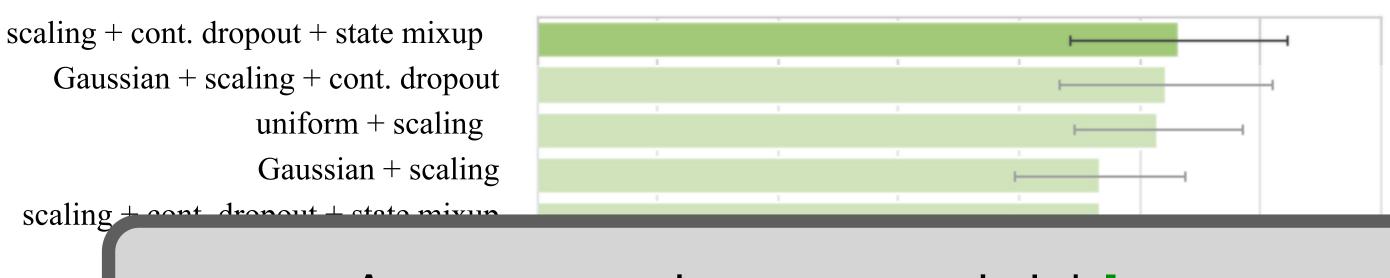
Experiments - Quantitative Results

Augmentations Selected

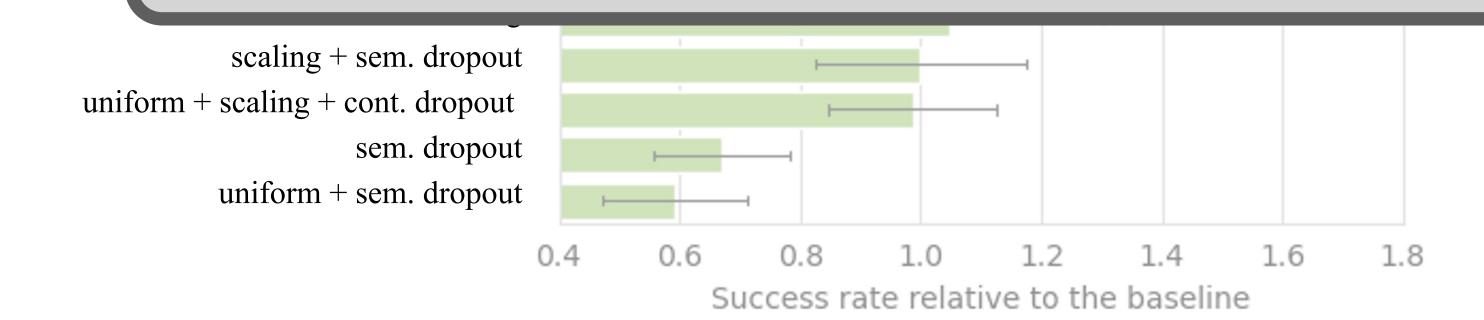


Augmentations Selected

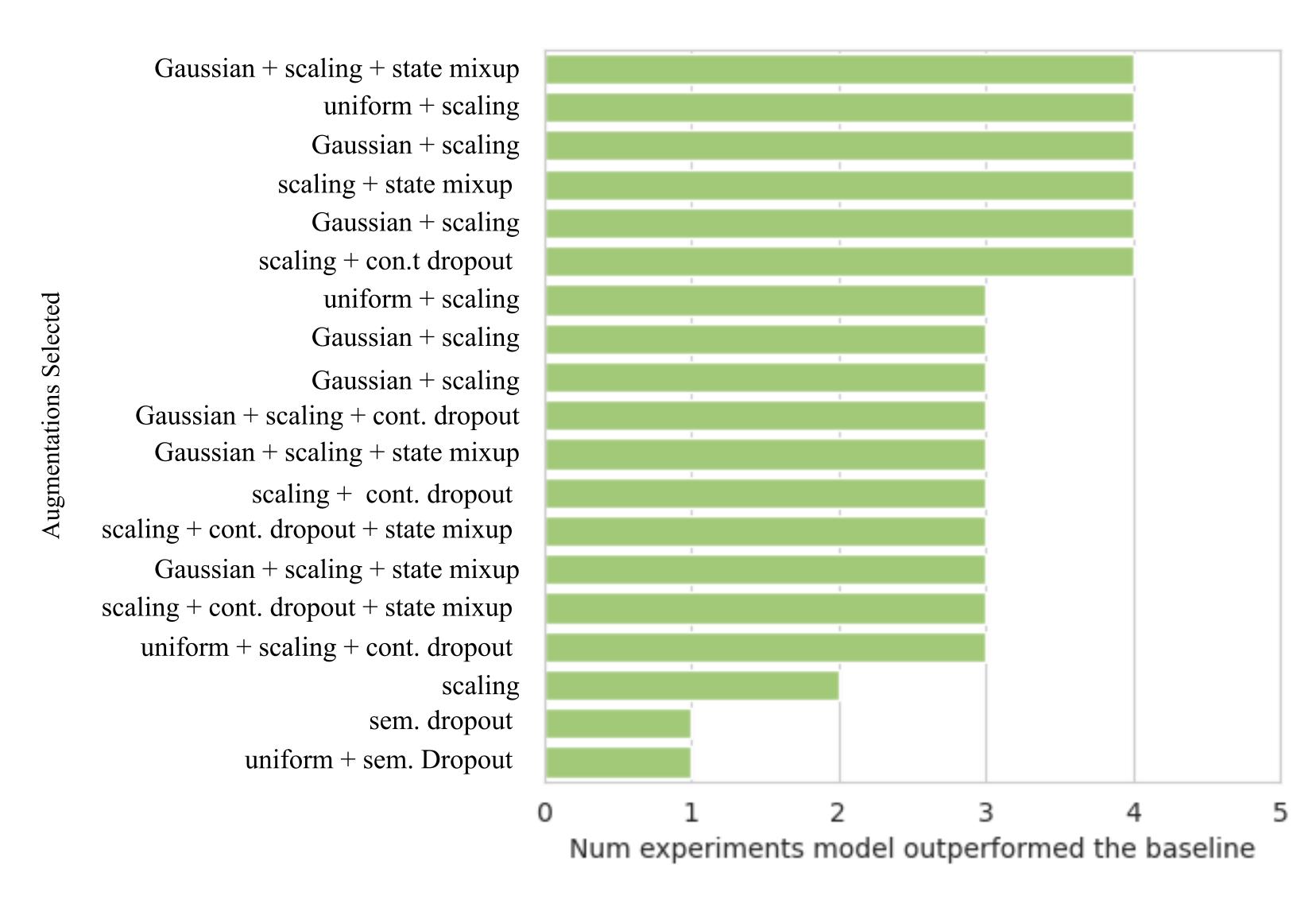
Experiments - Quantitative Results



Augmentations can yield large improvements over the baseline model. However, the large standard deviation indicates that models may be sensitive to training parameters.



Experiments - Consistency



2

Experiments - Consistency

Augmentations Selected

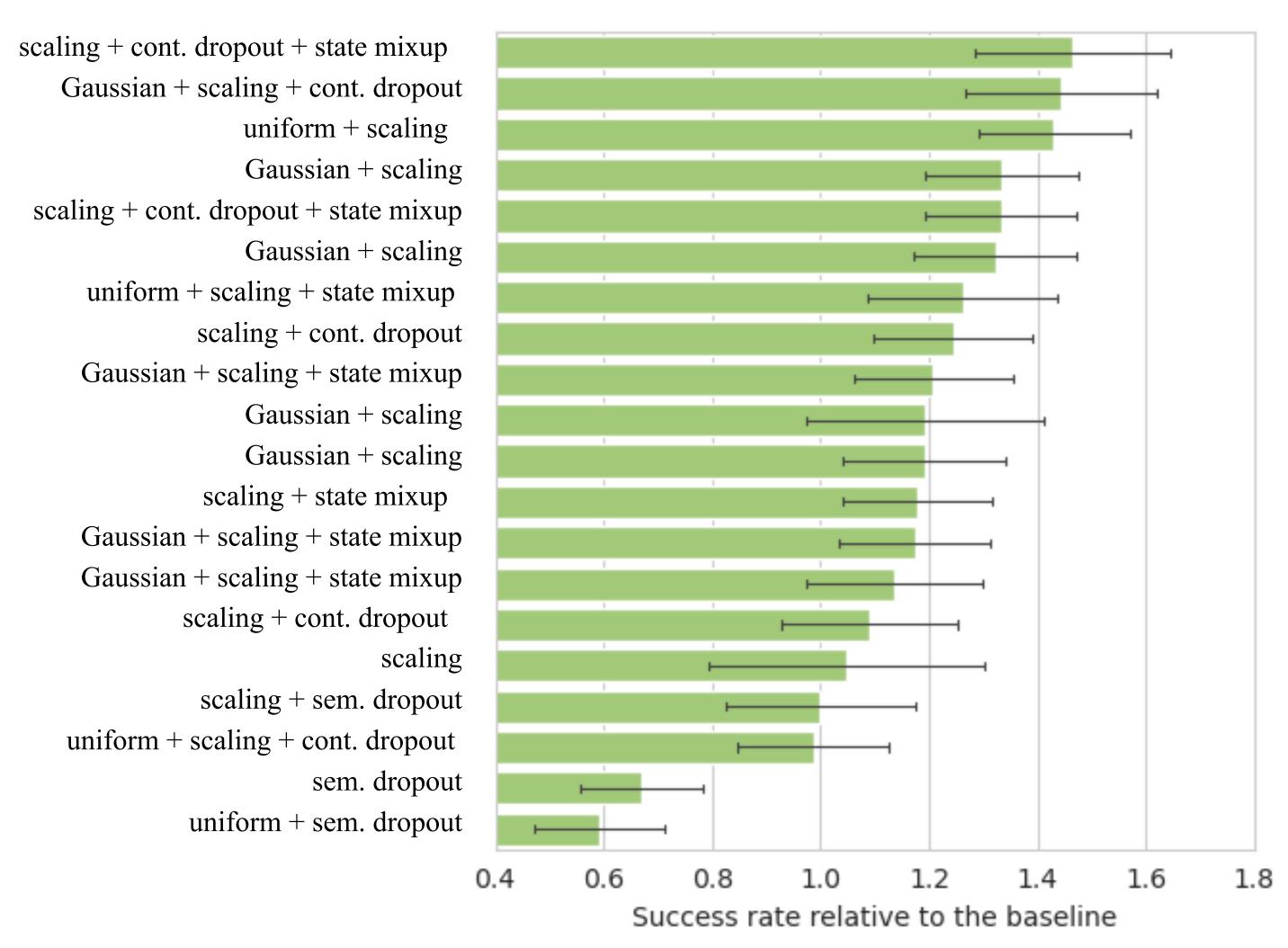
scaling + Gaus scaling +

Gaus

unifori

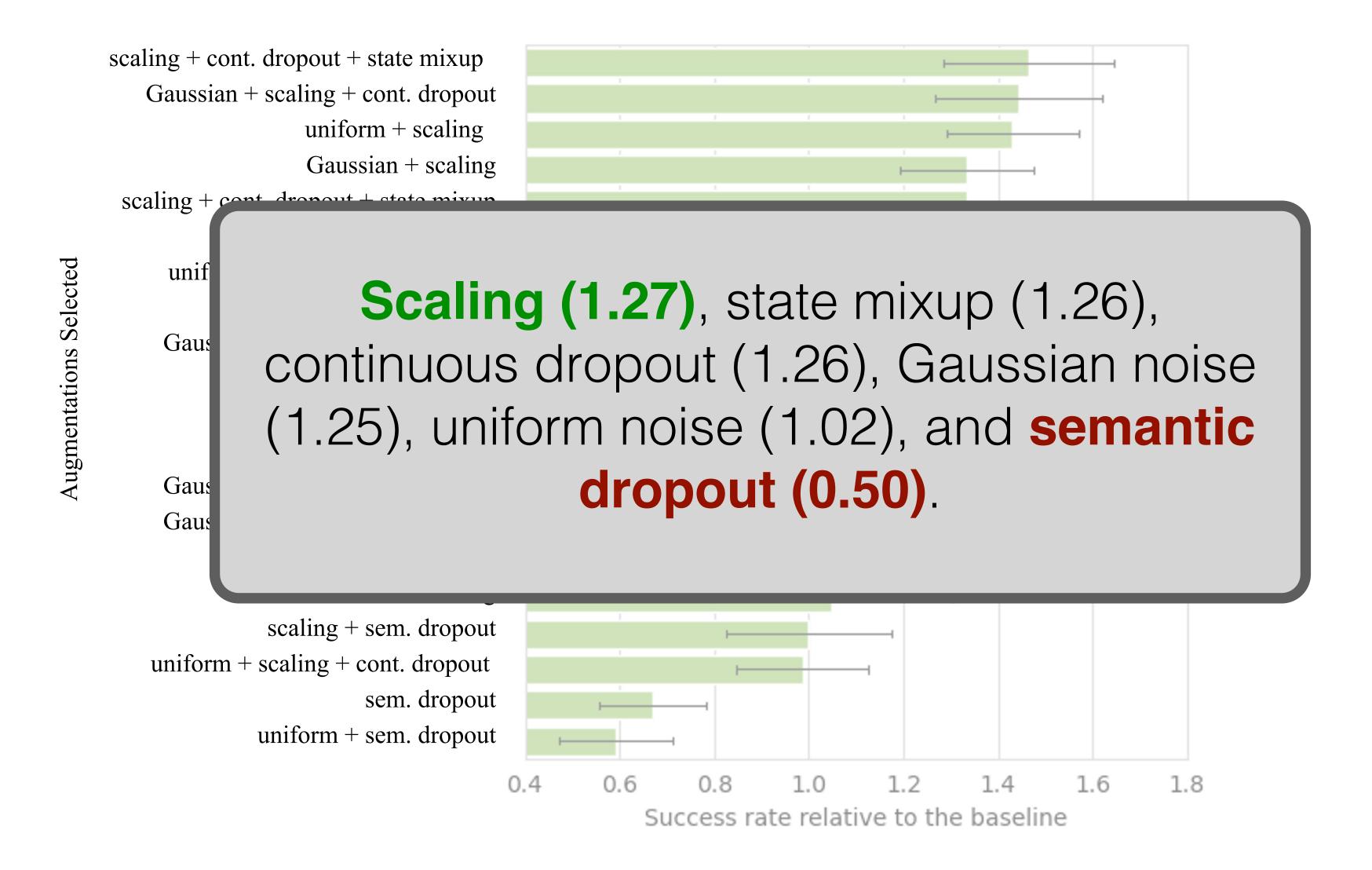
None of the best have the highest relative success rates. This suggests that there is a trade-off between best achievable **generalization** performance and **consistency** over all testing environments.

Experiments - Consistency



3

Experiments - Consistency



Contacts

Electronic Arts: https://www.ea.com

Open Positions: <u>ea.com/careers</u>

SEED: <u>seed.ea.com</u>

Role	Area of Interest	Location	Apply
Senior Computer Vision Researcher (Digital Humans) - SEED	Software Development	Toronto, Canada Vancouver, Canada	Apply Now
SEED Master Thesis Intern	Software Development	Stockholm, Sweden	Apply Now
Senior Research Scientist (Computer Vision) - SEED	Software Development	Toronto, Canada Vancouver, Canada	Apply Now
Senior Physics Software Engineer	Software Development	Toronto, Canada Vancouver, Canada Guildford, United Kingdom	Apply Now
Rendering Engineer - SEED	Software Development	Toronto, Canada Vancouver, Canada	Apply Now

References

[1] S4RL: Surprisingly Simple Self-Supervision for Offline Reinforcement Learning, Sinha et al., 2021

[2] Towards Informed Design and Validation Assistance in Computer Games Using Imitation Learning, Sestini et al., 2023

[3] Improving Generalization in Game Agents with Data Augmentation in Imitation Learning, Yadgaroff et al., 2024

