
● Hi everyone and thanks Chris for having me as part of this course! 

● My goal now is to give you some insights on how us at SEED handled the 

transition from raster & compute to real-time raytracing using DXR. 

● I only have 20 minutes so will try to give you as much info, but we can definitely 

chat after if you have any questions whatsoever.



● So who is SEED? For those of you who don’t know, we’re a technical and creative 

research division inside Electronic Arts. 

● We are a cross-disciplinary team with a mission to explore the future of interactive 

entertainment, with the goal to enable anyone to create their own games and 

experiences. 

● We have offices in Stockholm, Los Angeles and Montreal. 

● One of our recent projects was an experiment with hybrid real-time rendering, deep 

learning agents, and procedural level generation. 

● We presented this at this year’s GDC. In case you haven’t see it, let’s check it out!



● PICA PICA is a mini-game that we built for AI agents rather than humans. 

● Using reinforcement learning, the agents learn to navigate and interact with the 

environment. They run around and fix the various machines, so that conveyor belts 

keep running efficiently. If you are interested in the AI part, do check out our paper 

in arXiv. The paper talks about how we train the agents, what they see, and how 

they communicate with game logic.

● We built the mini-game from the ground up in our in-house Halcyon R&D 

framework. It is a flexible experimentation framework that is still young, yet already 

capable of rendering shiny pixels.

● We’ve had the opportunity to be involved early on with DirectX Raytracing, thanks 

to our partners NVIDIA and Microsoft, to explore some of the possibilities behind 

this piece of technology. 

● We decided to create something a bit different and unusual, less AAA than what 

you usually expect from an EA title. 

● For this demo we wanted cute visuals that would be clean and stylized, yet 

grounded in physically-based rendering. We wanted to showcase the strengths of 

raytracing, while also taking into account our small art department of 2 people. 

● We used procedural level generation with an algorithm that drove layout and asset 

placement. You should check out Anastasia’s various talks on the matter in case 

you want to know more how the world was procedurally generated. 

● Pica pica runs at 60 fps on a titanV in 1080p



● And so to achieve this we built a hybrid of classic rendering techniques with 

rasterization and compute, with some raytracing on top. We take advantage of the 

interop between rasterization, compute and raytracing. 

● We have a standard deferred renderer with compute-based lighting, and a pretty 

standard post-processing stack. 

● We can render shadows via raytracing or cascaded shadow maps. 

● Reflections can be raytraced or screen-space raymarched. Same story for ambient 

occlusion. 

● Only global illumination and translucency requires raytracing.



● With this said, the goal of this presentation is to provide you with some tips 

and tricks on how to evolve your engine from being raster and compute to 

supporting raytracing with DXR.

● I’m hoping to give you some practical insights on bringing some easy-to-do 

core raytracing techniques to production, but also warn you about some 

challenges you might face as you go through this awesome transition.



● So one question one might have is… well I’m a developer and I want to take 

advantage of DXR… so what should I do?



● One should know that the transition to DXR won’t be automagical. Some 

effects and techniques are easy to add, such as hard shadows, hard 

reflections, and ambient occlusion. But once that’s done you’ll see that quickly 

the fun starts when things get blurry.

● Actually most raytracing techniques from books assume offline raytracing, so 

there some work to do there if one wants to adapt some techniques for real-

time. This means you need to embrace filtering and adapting techniques to the 

constraints of real-time. 

● That said, from the previous talks you saw that the API is pretty intuitive, so 

out of the box that’s neat! It should be easy to get up and running, implement 

stuff and improve. If your engine already has a good DirectX12 

implementation, then your job should be pretty easy.

● You need to have a good grasp on your resources, and how those get 

packaged together for the scene that you put together for raytracing and the 

various new concepts, such as Shader Table and Acceleration Structures. 



● To get there some stretching and warm-up might be required... 



● First, brush up on raytracing and DXR. You can do this by using the resources 
provided by this course, but also the various open source frameworks that are 
out there, but also our GDC and Digital Dragon talks. 

● Additionally check out yesterday’s presentation from Matt Pharr on adopting 

lessons from offline ray tracing to real-time ray tracing, from the advances in 

real-time rendering course. Pretty awesome stuff there about managing 
variance and noise!

● Let’s get practical. First you’ll need to break down passes so that code can be 
swapped and re-used. And so with HLSL it’s easy since D3D interops with 
raster, raytracing and compute. You should start by building shared functions 
that you can call from any stage, such as your material evaluation lighting code, 
various helpers

● One thing that will really help is making sure your engine can quickly toggle 
between techniques. This will be essential for comparing, cutting corners, 
optimizing and choosing ray counts.

● Preparing your passes for being able to swap inputs and outputs. For example, 
break your shadows into a full screen shadow mask, so that you can swap 
CSMs with RT shadows. The same idea applies for screen-space reflections 
and raytraced reflections.



● There are a few techniques you 

should implement first, that give 

you the most bang for the buck. 

● In difficulty order that’s shadows, 

ambient occlusion, then reflections.



● First, raytraced shadows are great because they perfectly ground objects in the 

scene. This is not too complicated to implement. Just launch a ray towards the 

light, and if the ray misses you’re not in shadow

● Hard shadows are great… but soft shadows are definitely better to convey scale 

and more representative of the real world

● This can be implemented by sampling random directions in a cone towards the 

light

● The wider the cone angle, the softer shadows get but the more noise you’ll get, so 

we have to filter it

● You can launch more than one ray, but will still require some filtering

● In our case, we first reproject results TAA-style, and accumulate shadow and 

variance

● We then apply an SVGF-like filter. We modified SVGF to make it more responsive 

for shadows. We coupled it with a color bounding box clamp similar to the one in 

temporal-antialiasing, with a single scalar value which is cheap to evaluate. We 

used Marco Salvi’s variance-based bounding box method, with a 5x5 kernel 

estimating the standard deviation in the new frame. The result is not perfect, but 

the artifacts aren’t noticeable with full shading.



● Another technique that maps and scales well to real-time ray tracing is of course 

ambient occlusion, which we apply to indirect lighting.

● Being the integral of the visibility function over the hemisphere, we get more 

grounded results because all the random directions used during sampling actually

end up in the scene, unlike with screen space techniques where rays can go 

outside the screen, or where the hitpoint is simply not visible.

● Just like in the literature, this is done by doing cosine hemispherical sampling 

around the normal. 

● In our case we launch rays using the gbuffer normal, use the miss shader to figure 

out if we’ve hit something

● You can launch more than 1 ray per frame, but even with one ray per frame you

should get some nice gradients after a few frames.

● We apply a similar filter as the one for the shadows



● Just like for AO, the ability to launch rays from the g-buffer also allows us to trace 

reflections. 

● We raytrace them at half resolution, so for every four pixels you get one reflection 

ray. This gives us a quarter of a ray per pixel. Then at the hit point shadows will 

typically be sampled with another ray. This totals to half a ray per pixel.

● This works for hard reflections, but we also support arbitrary normal and varying 

roughness.

● We do this by applying spatiotemporal reconstruction and filtering

● Our first approach combined it with SSR for performance, but in the end we just 

raytraced for simplicity and uniformity.

● We have presented some extended info on how we do this, so check out our GDC 

2018 and Digital Dragons talks



● Without going into too many details, which you can get from the talks, here’s a 

high-level summary of the raytracing pipeline.

● We start by generating rays via BRDF importance sampling. This gives us rays 

that follow the properties of our materials. 

● Scene intersection can then be done either by screen-space raymarching or 

raytracing. As I said in the end we only raytrace but support both. 

● Once intersections have been found, we proceed to reconstruct the reflected 

image. 

● Our kernel reuses ray hit information across pixels, upsampling the image to full-

resolution. 

● It also calculates useful information for a temporal accumulation pass. 

● Finally we run a last-chance noise cleanup in the form of a cross-bilateral filter.



● Looking only at the reflections, this is the raw results we get at 1 reflection ray 

every 4 pixels.



● This is after the spatial reconstruction



● Followed by temporal accumulation & bilateral to further clean up the image



● And finally by a much simpler bilateral filter that removes up some of the 

remaining noise. 

● It overblurs a bit, but we needed it for some of the rougher reflections. 

● Compared to SSR, ray tracing is trickier because we can’t cheat with a blurred 

version of the screen for pre-filtered radiance

● There’s much more noise compared to SSR, so our filters need to be more 

aggressive too.

● To prevent it from overblurring, we use a variance estimate from the spatial 

reconstruction pass and use it to scale down the bilateral kernel size and 

sample count



● With temporal anti-aliasing, we then get a pretty clean image. Considering this 

comes from one quarter rays per pixel per frame, and works with dynamic 

camera and object movement, it’s quite awesome what can be done when 

reusing spatial and temporal 



● Going back to the raw output, it’s quite a change!



● In the case of reflections, and any other technique you want to implement with 

hybrid rendering, it’s also key to compare against ground truth.

● Internally we’ve built a path-tracer that acts as our ground truth, which we can 

toggle when working on a feature.

● Actually we used this constantly during PICA PICA.

● Also because of interop there is minimal to almost no maintenance required, 

so having this ground truth comparison tool shouldn’t add too much work.

● Image: http://www.cristanwilliams.com/b/2012/01/10/apple-separatism/



● This is what it looks like when we toggle the path tracer and wait 15 seconds. The 

image looks nice but has some noise because of difficult light paths and caustics.



● And this is with out hybrid approach on the latest hardware at 60 FPS on a titan V. 

● It’s not quite the same as the path traced version since it’s missing caustics and 

some small-scale interreflections, but still pretty decent.



● If we continue talking about practical things, make sure to take advantage of 

DirectX’s interop, where you can easily share code, types and results between 

stages. 

● For example you can evaluate your actual HLSL material shaders from the 

raytracing stage. Quite convenient. No conversions required.

● Actually you should be taking advantage of each stage’s strength and use that 

as you build your hybrid pipeline.

● Interop allows for solving new sparse problems and with raytracing as a new 

tool in the bag, interop makes even more sense these days and will become 

your new best friend.



● Here are some additional practical tips and tricks when working with DXR.

● Since you’ll be launching many rays, and as mentioned by Chris, the 

importance of minimizing what each ray carries can influence performance.

● Depending on what kind of rays you’re launching, you can have different kinds 

of payloads, some leaner than others.

● Embrace lean recursiveness. Make your performance and IHVs happy by not 

having infinite recursiveness. You often don’t need it.

● Finally you can also use shader spaces to organize your data. Makes it useful 

to keep things organized especially when things get updated at different 

frequencies.



● Speaking of rays, handling coherency is key for real-time raytracing 

performance

● You will get some adjacent rays that perform similar operations and memory 

accesses, and those will perform well, while some might trash cache and 

affect performance

● Depending on what techniques you implement, you will have to keep this in 

mind

● And so use ray sparingly and trace only when necessary, tuning ray count to 

importance and adaptively. And set the max recursivity on the shader state 

object.

● The is no way right now in HLSL to specify if rays to be launched are expected 

to be coherent or incoherent. Providing a hint to IHVs could be good. Who 

knows maybe we’ll be able to do this in the future, as the API keeps evolving.

● As you saw from our work, reconstruction and denoising allows for great 

results, so take advantage of spatial and temporal domains. Lots of great work 

in that field lately.



What about texture LOD?



- As many of you are aware, we don’t have shading quads for ray tracing



● We’ve barely scratched the surface:

● Works great for materials where the texture sampling is very clear

● Need to look at anisotropy & dependent texture lookups in complex shader graphs 

● Technique assumes static Uvs, so need to look at recomputing texture coordinates 

on the fly?

● For pica pica we used it but the difference is minimal because of the super clean 

visuals

● Even with detail normal on all objects, with a ton of TAA on top sampling mip0 was 

not noisy

● Does affect performance, so you don’t want to only sample mip0

● A good start though, but still work to do here. Make sure to check out the pre-print



● And this was just a glimpse on some of the stuff you may have to tackle, and 

we haven’t solved everything. Still lots of work to do! 

● There are a bunch of open problems that we’ll have to tackle together in the 

years to come, and this is awesome! 

● Check out my HPG keynote this year where I go into detail about some of 

these topics

● Hopefully some great collaborations between offline raytracing experts and 

the game industry!



● To wrap things up, raytracing makes it possible to replace refined hacks with 

unified approaches, making it possible to finally phase out some screen space 

techniques that are artifact-prone.

● Out of the box, raytracing also enabled higher quality visuals without some of the 

painful artist time.

● There is no free lunch though, and considerable efforts need to be put into 

reconstruction and filtering.

● And now with raytracing hardware the possibilities are even more awesome! 

Tomorrow I will give some performance numbers on the new hardware, compared 

to TitanV. It’s pretty impressive!

● But don’t forget that raytracing is also just another tool in the box, and should be 

used wisely where it makes the most sense.

● I think it’s very encouraging that we can begin to approach the quality of path 

tracing with just over two rays per pixel.

● Looking forward to what you come up with and how you can take advantage of 

hybrid rendering with raster, compute and raytracing



● Academia always asks for content from the games people and often doesn’t get it. 

● And so for SIGGRAPH we have decided to release all the assets from PICA PICA

● You can download them via Sketchfab and on our website, use them in your 

research for free, build your ray tracing pipeline and compare with ours. 

● Challenge Accepted?






