Halcyon + Vulkan
Munich Khronos Meetup

Graham Wihlidal
SEED - Electronic Arts

My name is Graham Wihlidal, and I'm a senior rendering engineer at SEED in
Stockholm, Sweden. Previously, | was on the Frostbite rendering team, and at
BioWare for a long time.

SEED

SEED is a technical and creative research division of Electronic Arts. We are a
cross-disciplinary team with a mission to explore the future of interactive
entertainment. One of our recent projects is an experiment in hybrid real-time
rendering, deep learning agents, and procedural level generation.

Here is a video we circulated, showing our recent real-time ray tracing work.

"PICA PICA™

tory mini-game & world

Goals

Hybrid rendering with DXR [Andersson 2018)
Clean and consistent visuals

Self-learning Al agents [Harmer 2018)
Procedural worlds [Opara 2018]

N N

recomputatior

Uses SEED’s Halcyon R&

We have built the PICA PICA from the ground up in our custom R&D framework

called Halcyon. It is a flexible experimentation framework that is very capable of
rendering fast and shiny pixels.

HALCYON

So lets talk a bit about Halcyon itself

Halcyon Goals

Rapid prototyping*framework:

. Different purpose.than Frostbite
Fast experimentation vs. AAA.games

Windows, Linux, macQOS

Halcyon is a rapid prototyping framework, serving a different purpose than our
flagship AAA engine, Frostbite.

And Halcyon is currently supported on Windows, Linux, and macOS.

Halcyon Goals

Minimize or eliminatesbusy - Work
Artist “meta-data” meshes
Occlusion
Gl / Lighting
Collision
Level-of-detail

Live reloading of all assets
Insanely fast iteration times

A major goal of Halcyon is to minimize or eliminate busy-work; something | call - artist
“‘meta-data” meshes.

Show me one artist that actually enjoys making these meshes over something more
creative, and | guarantee you they are brainwashed, and need an intervention and our
caring support.

Another critical goal, is the live reloading of all assets. We don’t want to take a coffee
break while we shut down Halcyon, launch a data build, come back, and resume
whatever we were doing.

Halcyon Goals

Only target modern~ARls
Direct3D 12
Vulkan 1.1
Metal 2

Multi-GPU

Explicit heterogeneous mGPY
No AFR nonsense
No linked adapters

One luxury we had by starting from scratch, was choosing our feature set and min
spec. We decided to only target modern APls, so we are not restricted by legacy.

Another interesting goal is to provide easy access to multiple GPUs, without
sacrificing API cleanliness or maintainability. To accomplish this, we decided on
explicit heterogeneous mGPU, not linked adapters.

We also are avoiding any AFR nonsense for a number of reasons, including problems
with temporal techniques.

Halcyon Goals

Local or remote stréeaming

- Minimal boilerplate code

Variety of rendering techniques and approasa

ag
Rasterization e

Path and ray tracing
Hybrid

We chose to support rendering locally, and also performing some computation or
rendering remotely, and transmitting the results back to the application.

In order to deliver on our promise of fast experimentation, we needed to ensure a
minimal amount of boilerplate code. This includes code to load a shader, set up
pipelines and render state, query scene representations, etc.

This was critical in developing and supporting a vast number of rendering techniques
and approaches that we have in Halcyon.

[—

Hybrid Rendering

We have a unique rendering pipeline which is inspired by classic techniques in real-
time rendering, with ray tracing sprinkled on top.

We have a deferred renderer with compute-based lighting, and a fairly standard post-
processing stack. And then there are a few pluggable components. We can render
shadows via ray tracing or cascaded shadow maps.

Reflections can be traced or screen-space marched. Same story for ambient
occlusion.

Only our global illumination and translucency actually require ray tracing.

Here is an example of a scene using our hybrid rendering pipeline

2

Ra\g;t/enzathﬂ OIHW\ S

And here is the same scene uses our traditional pure rasterization rendering pipeline.

As you can see, most of our visual fidelity holds up between the two, especially with
respect to our materials.

Halcyon Goals

-

Implemented lots of bespoke technology =

it
"

“PICA PICA” andiHaleyon billfron scratch;s?i’\

Minimal effort to add a new API or platform

o

Efficient and flexible rendering was a majom

~

N

PICA PICA and Halcyon were both built from scratch, and our goals required us to
implement a lot of bespoke technology.

In the end, our flexible architecture means it is minimal effort to add a new API or
platform, and also render our scenes very efficiently.

Rendering ComponRents

- Render Backend
- Render Device
- Render Handles

- Render Commands
- Render Graph

- Render Proxy

Rendering ComponRents

Application
RenderHandles Render Graph Render Graph

Render Commands

RenderBackend I Render Backend RenderBackend

Render Proxy Render Device Render Device RenderDevice

.

The first component | will talk about is render backend

Render Backena ‘

Live-reloadable DLLS

’\

Enumerates adapters and capabilities
P P N \

Swap chain support
Extensions (i.e. ray tracing, sub groups, ...)

Determine adapter(s) to use

Render backends are implemented as live-reloadable DLLs. Each backend
represents a particular API, and provides enumeration of adapters and capabilities. In
addition, the backends will determine the ideal adapters to use, depending on the
desired purpose.

Render Backend & ‘

Provides debugging and profiling
RenderDoc int tion, validation |
enaervoc integration, vallaa IOI’]&QI;S\‘

-
Create and destroy render deVICESEN. \

Each render backend also supports a debugging and profiling interface — this
provides functionality like RenderDoc integration, CPU and GPU validation layers,

etc..

Most importantly, render backends support the creation and destruction of render
devices, which I'll cover shortly.

Render Backend ‘

Direct3D 12
Vulkan 1.1
Metal 2

Proxy
Mock

We have a variety of render backends implemented

Render Backena

Direct3D 12
Shader Model 6.X
DirectX Ray Tracing
Bindless Resources
Explicit Multi-GPU

DirectML (soon..)

For DirectX 12, we support the latest shader model, DirectX ray tracing, full bindless
resources, explicit heterogeneous mGPU, and we plan to add support for DirectML.

Render Backena ‘

Vulkan 1.1
Sub-groups
Descriptor indexing

External memory

Multi-draw indirect
Ray tracing (soon..)

Vulkan is a similar story to DirectX 12, except we haven’t implemented multi-GPU or
ray tracing support at this time, but it is planned.

Render Backena

Metal 2
Early development
Primarily desktop

Argument buffers

Machine learning

Metal 2 is still in early development, but very promising. We are primarily interested in
using it on macOS instead of iOS.

Render Backena

Proxy

Not discussed in this presentation

We have another pretty crazy backend which | unfortunately won’t get into today, but
a near future presentation will go in depth on this one.

Render Backena

Mock

Performs resource tracking and validation
; -
Command stream is parsed and evaluated

No submission to an APl g \

Useful for unit tests and debugging

Finally, we have our mock render backend which is for unit testing, debugging, and
validation. This backend does all the same work the other backends do, except
translation from high level to low level just runs a validation test suite instead of
submitting to a graphics API.

Render Device “""

Y

The next component to discuss is render device

Render Device

Abstraction of a logical GPU adapter
e.g. VkDevice, ID3D12Device, ...

Provides interface to GPU gqueues

Command list submission

Render device is an abstraction of a logical GPU adapter, such as VkDevice or
ID3D12Device.

It provides an interface to various GPU queues, and provides API specific command
list scheduling and submission functionality

Render Device

Ownership of GPU resources
Create & Destroy

Lifetime tracking of resources

Mapping render handles = device resour&é‘ﬁl

Render device has full ownership and lifetime tracking of its GPU resources, and
provides create and destroy functionality for all the high level render resource types.

The high level application refers to these resources using handles, so render device
also internally provides an efficient mapping of these handles to internal device
resources.

Render Handles

Speaking of render handles...

Render Handles

Resources associated by handle
Lightweight (64 bits)
Constant-time lookup

Type safety (i.e. buffer vs texture)
Can be serialized or transmitted

Generational for safety
e.g. double-delete, usage after delete

The handles are lightweight (just 64 bits), and the associated resources are fetched
with a constant-time lookup. The handles are type safe, like trying to pass a buffer in
place of a texture.

The handles can be serialized or transmitted, as long as some contract is in place
about what the handle represents.

And the handles are generational for safety, which protects against double-delete, or
using a handle after deletion

Render Handles

- Handles allow one-to-many cardinality [handle->devices]
- Each device can have a:unique representation of the handle

RenderHandle

DX12: Adapter 0 DX12: Adapter 1 DX12: Adapter 2 DX12: Adapter 3

ID3D12Resource

Handles allow a one-to-many cardinality where a single handle can have a unique
representation on each device

Render Handles

- Can query if a device has a handle loaded
- Safely add and remove.devices
Handle owned by application, representation can reload on device

RenderHandle

DX12: Adapter 0 DX12: Adapter 1 DX12: Adapter 2 DX12: Adapter 3

ID3D12Resource

There is an API to query if a particular render device has a handle loaded or not. This
makes it safely add and remove devices while the application is running. The handle

is owned by the application, so the representation can be loaded or reloaded for any
number of devices.

Render Handles

- Shared resources are supported

- Primary device owner, secondaries alias primary

RenderHandle

DX12: Adapter 0 DX12: Adapter 1 DX12: Adapter 2 DX12: Adapter 3

ID3D12Resource

Shared resources are also supported, allowing for copying data between various
render devices.

Render Handles

Can also mix and match backends in the same process!
Made debugging VK implementation much easier
DX12 on left half of screen, VK on right half of screen

RenderHandle

DX12: Adapter O DX12:Adapter1 | VK: Adapter 0 Proxy: Adapter 0

D3D12Resource D3D12Resource Vkimage

A crazy feature of this architecture is that we can mix and match different backends in
the same process!

This made debugging Vulkan much easier, as | could have Dx12 rendering on the left
half of the screen, while Vulkan was rendering on the right half of the screen.

Render Commands *w ™

An key rendering component is our high level command stream

Render Commands

Draw - Transitions - UpdateToplLevel
Drawlndirect - BeginTiming - UpdateBottomLevel
Dispatch - EndTiming - UpdateShaderTable

Dispatchlndirect - ResolveTimings
UpdateBuffer - BeginEvent
Update Texture - EndEvent
CopyBuffer - BeginRenderPass
Copy Texture - EndRenderPass
Barriers - RaylTrace

We developed an API agnostic high level command stream that allows the application
to efficiently express how a scene should be updated and rendered, but letting each
backend control how this is done.

Render Commands

RenderCommandQueueType : uint8

Queue type specified

Spec validation

A”OWQd to ru n? RenderCommand

RenderCommandType type RenderCommandType: :

<RenderCommandType TY , RenderCommandQueueType QUEUETYPE>

Automatlc SChedU“ng RenderCommandTyped RenderCommand
Where can it run? RenderCommandType
RenderCommandQueueType
Async compute

rCommandTyped

Each render command specifies a queue type, which is primarily for spec validation
(such as putting graphics work on a compute queue), and also to aid in automatic
scheduling, like with async compute.

Render Commands

RenderCommandDispatch : RenderCommandTyped<RenderCommandType: : , RenderCommandQueueType::

RenderResourceHandle |
ShaderArgument sha
uint32

uint32
uint32
uint32

As an example, here is a compute dispatch command, which specifies Compute as
the queue type. The underlying backend and scheduler can interpret this
accordingly

Render Command-List

- Encodes high level commands

- Tracks queue types encountered
- Queue mask indicating scheduling rules

- Commands are stateless - parallel recording

The high level commands are encoded into a render command list. As each
command is encoded, a queue mask is updated which helps indicate the
scheduling rules and restrictions for that command list.

The commands are stateless, which allows for fully parallel recording.

Render Compilation

- Render command lists are “compiled®
- Translation to low level API
Can compile once, submit multiple times

- Serial operation (memcpy speed)
Perfect redundant state filtering

The render command lists are compiled by each render backend, which means the
high level commands are translated to the low level API. Command lists can be
compiled once, and submitted multiple times, in appropriate cases.

The low level translation is a serial operation by design, as this is basically running
at memcpy speed. Doing this part serial means we get perfect redundant state

filtering.

Render G‘ifa‘:p

~
h\

Another significant rendering component is our render graph

Render Graph

Inspired by FrameGraph [O’Donnell 2017]

Automatically handle transient resources

Import explicitly managed resources

Automatic resource transitions
Render target batching
DiscardResource
Memory aliasing barriers

Render graph is inspired by Frostbite’s Frame Graph

Just like Frame Graph, we automatically handle transient resources. Complex
rendering uses a number of temporary buffers and textures, that stay alive just for the
purpose and duration of an algorithm. These are called transient resources, and the
graph automatically manages these lifetimes efficiently.

Automatic resource transitions are also performed

Render Graph

ement

vt taraget . irrent

Irrent consoles

Basic memory manag

{
Fine grained memory reuse sub-optimal with current PC
Lose ~5% on aliasing barriers and discards

Automatic queue scheduling
Ongoing research
Need heuristics on task duratior
e.g. Memory vs AL
Not enough to specify dependencies

Compared to Frame Graph, we opted for a simpler memory management model. We
are not targeting current consoles with Halcyon, so we don't fine grained memory
reuse. Current PC drivers and APIs are not as efficient in this area (for a variety of
reasons), and you lose ~5% on aliasing barriers and discards.

In render graph, we support automatic queue scheduling (graphics, copy, compute,
etc..). This is an area of ongoing research, as it's not enough to just specify input and
output dependencies. You also need heuristics on task duration and bottlenecks to
further improve the scheduling.

Render Graph

Frame Graph = RenderGraph: No conce

Fully automatic transitions and split barriers

Single implementation, regardless of backend
Translation from high level render command stream
API differences hidden from render graph

Support for mGPU
Mostly implicit and automatic
Can specify a scheduling policy
Not discussed in this presentation

We call our implementation Render Graph, because we don’t have the concept of a
“frame”.

Our transitions and split barriers are fully automatic, and there is a single
implementation, regardless of backend. This is thanks to our high level render
command stream, which hides API differences from render graph.

We also support multi-gpu, which is mostly implicit and automatic, with the exception
of a scheduling policy you configure on your pass — this represents what devices a
pass runs on, and what transfers are performed going in or out of the pass.

Render Graph

ymposition of multiple graphs at varying fréquencies

Same GPU: async compute
mGPU: graphs per GPU
Out-of-core: server cluster, remote streaming

Render graph supports composition of multiple graphs at varying frequencies. These
graphs can run on the same GPU - such as async compute. They can run with multi-
gpu, with a graphs on each GPU. And they can even run out of core, such asin a
server cluster, or on another machine streamed remotely.

Render Graph

ymposition of multiple graphs at varyingfréeguencies

e.g. translucency, refraction, global illumination

There are a number of technigues that can easily run at a different frequency from the
main graph, such as object space translucency and reflection, or our surfel based
global illumination.

Render Graph

Two phases

‘.Vﬂ];‘[N CONSTIruc Tl N
Specify inputs and outputs
Serial operation (by design)

« Graph evaluation
Highly parallelized

Record high level render commands
Automatic barriers and transitions

Render graph runs in two phases, construction and evaluation.

Construction specifies the input and output dependencies, and this is a serial
operation by design.

If you implement a hierarchical gaussian blur as a single pass that gets chained X
times, you want to read the size of the input in each step, and generate the proper
sized output. Maybe you could split it up into some threads, but tracking
dependencies in order to do it in a parallel fashion might be more costly than actually
running it serially.

Evaluation is highly parallelized, and this is where high level render commands are
recorded, and automatic barriers and transitions are inserted.

RenderGraphBuild& ¢

<RenderGraphOutputTexture>
<RenderGraphViewData>()

s derarachioust G InaYTeROmes () < Construction phase

<RenderGraphFinalTexture>().fina xture, RenderBindFlags::
re, RenderBindFlags::
| (RenderGraphRegistry& registry, RenderCommandList&

RenderPoint |

RenderBox t

< Evaluation phase

Here is an example render graph pass, with the construction phase up top, and the
evaluation phase at the bottom.

Render Graph

- Automatic profiling data

- GPU and CPU counters per-pass

- Works with mGPU
Each GPU is profiled

Render graph can collect automatic profiling data, presenting you with GPU and CPU
counters per-pass

Additionally, this works with mGPU, where each GPU is shown in the list

Render Graph

Live debugging overlay

Evaluated passes in-order of execution

Input and output dependencies

Resource version information

There is also a live debugging overlay, using ImGui. This overlay shows the
evaluated render graph passes in-order of execution, the input and output
dependencies, and the resource version information.

View Vodes Osfault
Oisp Mocer Full

\\

-

Render Graph

Some of our render graph passes:

This is a list of some of our render graph passes in PICA PICA

Shaders are also an important component

Shaders

- Complex materials
Multiple microfacet layers
[Stachowiak 2018)

Energy conserving
Automatic Fresnel between layers

All lighting & rendering modes

Raster, path-traced reference, hybrid

lterate with different looks

Bake down permutations for production

We implemented a system which supports multiple microfacet layers arranged into
stacks. The stacks could also be probabilistically blended to support prefiltering of
material mixtures. This allowed us to rapidly experiment with the look of our demo,
while at the same time enforcing energy conservation, and avoiding common
gamedev hacks like “metalness”. An in-engine material editor meant that we could
quickly jump in and change the look of everything.

The material system works with all our render modes, be that pure rasterization, path
tracing, or hybrid.

For performance, we can bake down certain permutations for production.

Shaders

Exclusively HLSL
Shader Model 6.X

Majority are compute shaders

Performance is critical
Group shared memory
Wave-ops/ Sub-groups

We exclusively use HLSL 6 as a source language, and the majority of our shaders
are compute

Performance is critical, so we rely heavily on group shared memory, and wave
operations

Shaders

No reflection
Avoid costly lookups
Only explicit bindings
... except for validation

Extensive use of HLSL spaces
Updates at varying frequency

Bindless

We don’t rely on any reflection information, outside of validation. We avoid costly
lookups by requiring explicit bindings.

We also make extensive use of HLSL spaces, where the spaces can be updated at
varying frequency.

Shaders

HLSL

|

SPIRV-CROSS

e —

SPIR-V

! |

Direct3D 12 Vulkan1.1

Here is a flow graph of our shader compilation. We always start with HLSL
compiled with the DXC shader compiler. The DXIL is used by Direct3D 12, and the
SPIR-V is used by Vulkan 1.1. We also have support for taking the SPIR-V,
running it through SPIRV-CROSS, and generating MSL for Metal, or ISPC to run
on the CPU.

Shader Arguments

- Commands refer to resources with “ShademArguments”
Each argument represents an HLSL space
MaxShaderParameters = 4 [Configurable]

of spaces, not # of resources

RenderCommandDispatch : RenderCommandTyped<RenderCommandType: : , RenderCommandQueueType: :

RenderResourceHandle pipelineState;

ShaderArgument haderArguments|[MaxShaderParameters]; —

uint32

uint32 dispatchX
uint32 dispa
uint32 dispat

We have a concept in Halcyon called shader arguments, where each argument
represents an HLSL space. We limit the maximum number of arguments to 4 for
efficiency, but this can be configured. It is important to note that this limit represents
the maximum number of spaces, not the maximum number of resources.

Shader Arguments

- Each argument contains:

“ShaderViews” handle
Constant buffer handle and offset

“ShaderViews”
Collection of SRV and UAV handles

Each shader argument contains a “ShaderViews” handle, which refers to a
collection of SRV and UAV handles. Additionally, each shader argument also
contains a constant buffer handle and offset into the buffer.

Shader Arguments

- Constant buffers are all dynamic
Avoid temporary descriptors

Just a few large buffers, offsets change frequently.
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC
DX12 Root Descriptors (pass in GPU VA)

- All descriptor sets are only written once
Persisted / cached

Our constant buffers are all dynamic, and we avoid having temporary descriptors.
We have just a few large buffers, and offsets into these buffers change frequently.
For Vulkan, we use the uniform buffer dynamic descriptor type, and on Dx12 we
use root descriptors, just passing in a GPU virtual address.

All our descriptor sets are only written once, then persisted or cached.

g_albedo : register(tO, spaced);
g_normal : register(tl, spaced);
g_roughness : register(t2, space@);
g _metalness : register(t3, space0d);
g _ao : register(t4, space0);
g _emissive : register(t5, space0d);

> g _translucency : register(t6, space0);

> g_indexBuffer : register(t@, spacel);
> g _vbPositions : register(tl, spacel);

> g _vbTangentSpace : register(t2, spacel);

> g_vbTexAndColor § : register(t3, spacel);

> g_geometry : register(b@, spacel);
> g_material : register(bO, space0d);

ShaderArgument(materialConstants.buffer, materialConstantsOffset, materialShaderViews),

ShaderArgument(geometryConstants.buffer, geometryConstantsOffset, geometryShaderViews)

}

Here is an example HLSL snippet showing one usage of spaces. Each space
contains a collection of SRVs and a constant buffer. The shader argument
configuration on the CPU is shown below.

Vulkan Implementation

- Architecture simplified developmenteeftort

- Vulkan specific:
Backend and device implementation
Memory allocators (e.g. AMD VMA)
Barrier and transition logic
Resource binding model

Our architecture simplified the development effort, for Vulkan we just needed a new
backend and device implementation, API specific memory allocators, barrier and
transition logic, and a resource binding model that aligned with our shader
compilation.

Vulkan Implementation

The first stage was to get command translation working, and performing the correct
barriers and transitions. This was done using the Vulkan validation layers, and lots
of glorious printf debugging

Vulkan Implementation

o~ Caners Cebuy @

The second stage was getting basic ImGui, resource creation, and swap chain flip
working. This meant | could easily toggle any display mode or render settings while
debugging.

Vulkan Implementation

Naturally, fun bugs occurred

Vulkan Implementation

The third stage was to bring up more of the Halcyon asset loading operations, and
get a basic entry point running

Vulkan Implementation

Plenty of fun bugs with this, as well

Vulkan Implementation

Plenty of fun bugs with this, as well

Vulkan Implementation

The final stage was to bring up absolutely everything else, including render graph!

To simplify things, | worked on getting just the normals and albedo display modes
working.

| relied on the fact that render graph will cull any passes not contributing to the final
result, so | could easily remove problematic passes from running while | get the
basics working.

\/ul'lg_a'_n’ I_m,plementation

With that working, | started to bring up the more complicated passes. As expected,
there were plenty of fun issues to sort through.

Eventually, everything worked!

Eventually, everything worked!

Vulkan! ©

Eventually, everything worked!

Vulkan Implementation

- Shader compilation (HLSL - SPIR-)
Patch SPIR-V to match DX12
Using spirv-reflect from Hai and Cort

spvReflectCreateShaderModule
spvReflectEnumerateDescriptorSets
spvReflectChangeDescriptorBindingNumbers
spvReflectGetCodeSize / spvReflectGetCode
spvReflectDestroyShaderModule

An important part of our Vulkan backend, was consuming HLSL as a source

language, and fixing up the SPIR-V to behave the same as our Dx12 resource
binding model.

We decided to use the spirv-reflect library from Hai and Cort; it does a great job at
providing SPIR-V reflection using DX12 terminology, but we use it exclusively to
patch up our descriptor binding numbers.

SPIR-V Patching

- SPV_REFLECT_RESOURCE_FLAGSSRY
- Offset += 1000

- SPV_REFLECT_RESOURCE_FLAG_SAMPLER
- Offset += 2000

- SPV_REFLECT_RESOURCE_FLAG_UAV
- Offset += 3000

SRVs, Samplers, and UAVs are simple. These types are uniguely namespaced in
DX12, so t0 and sO wouldn’t collide. This is not the case in SPIR-V, so we apply a

simple offset to each type to emulate this behavior.

SPIR-V Patching

- SPV_REFLECT_RESOURCE_FLAG=EBY

- Offset Unchanged: O
Descriptor Set += MAX_SHADER_ARGUMENTS

- CBVs move to their own descriptor sets
ShaderViews become persistent and immutable

Constant or uniform buffers are a bit more interesting. We want to move CBVs to
their own descriptor sets, in order to make our ShaderViews representing the other
resource types persistent and immutable.

To do so, we don’t adjust the offset, as we’ll have a single CBV per descriptor set.
However, we do shift the descriptor set number by the max number of shader
arguments.

This means if descriptor set O contained a constant buffer, that constant buffer
would move to descriptor set 5 (if max shader arguments is 4).

SPIR-V Patching

- If 2 of 4 HLSL spaces in use:

Set0

Set 1

Set 2

Set3

Set4

Setb

SRVs (>=1000) Samplers (>=2000)

SRVs (>=1000) Samplers (>=2000)

Unbound
Unbound
Dynamic Constant Buffer (Offset: 0)

Dynamic Constant Buffer (Offset: 0)

UAVs (>=3000)

UAVs (>=3000)

If a dispatch or draw is using 2 HLSL spaces, the patched SPIR-V will require the
following descriptor set layout. Notice the shifted offsets for the SRVs, Samplers,
and UAVs, and how the dynamic constant buffers have been hoisted out to their

own descriptor sets.

Vulkan Implementation

C(E_PACKET(TYPE_STRUCT)
TYPE_STRUCT ype:

» Translate commands (Tcons ond(s TYPE_STRUCT> (conmand))

Read Command |ist tox command : recorded)

(command->type)

| MPILE_PACKET (RenderCommandDraw) ;
Write Vulkan API LS DAY (hancar o trect)

T(RenderCommandDispatch);
(RenderCommandDispatchIndirect);
(RenderCommandUpdateBuffer);
(RenderCommandUpdateTexture);
(RenderCommandCopyBuffer);
(RenderCommandCopyTexture

T(RenderCommandBarriers);

T(RenderCommandTransitions

T(RenderCommandBeginTiming

T(RenderCommandEndTiming) ;
(RenderCommandResolveTimings);
(RenderCommandBeginEvent);

T(RenderCommandEndEvent) ;
(RenderCommandBeginRenderPass);
(RenderCommandEndRenderPass);

COMPILE_PACKET

Another important aspect of a new render backend is the translation from our high
level command stream to low level API calls.

RenderCompileContextVulkan:: RenderCommandDispatch&

Here is an example of translating a high level compute dispatch command to Vulkan.

RenderCompileContextVulkan:: RenderCommandBeginTiming&

<RenderTimingHeapVulkan*>

uint32

Here is an example of translating a high level begin timing command to Vulkan
timestamps

RenderCompileContextVulkan: : RenderCommandResolveTimings&

<RenderTimingHeapVulkan*>

> 0);

uint64),

uintéd4),

And here is an example of translating a high level resolve timings command to
Vulkan. Notice that the complexity behind fence tracking or resetting the query pool is

completely hidden from the calling code. Each backend implementation can choose
how to handle this efficiently.

Ongoing Work!

This comparison shows that our Vulkan implementation is nearing the performance
of our DirectX 12 version, and is completely usable. There are a number of reasons
for the delta, but none of them represent any amount of significant work to resolve.

| will briefly mention some useful tools used for the Vulkan implementation

Tools

RenderDoc

NV Nsight

AMD RGP

._

For debugging and profiling, the usual suspects were quite helpful, and used
extensively.

Co mmEeO0O

DOt () Onages (M9 DM (48) O Memory () Mumtrais v Guned | Mamery

Avadabe Kevemms (1)

For debugging and profiling, the usual suspects were quite helpful, and used
extensively.

Ovaws: 1901 Oipatchess 3 Clears 27 BMw | Presests: | Command Ust xecutes 20 Signabs 0 Waits 0 Misc. Data Update: 2 NomAPL 33 Others 10095 Totah 12064

e St [y %
e ateButte Varw . 8.2 +
VAR ateOescrptorsets . e COs
ARt ommandtool (7) 2
ACrrateimageview = %] is
AW oot emcen. 2)

VA reateRenderPass | J
VRACgueretie st magei R |

ARevet! emcen |

VAP apttemony |

VA reatetes rptorool . |
vhUgpdateDescnptorsets |

ACreatet ramebatter

A Ummapt tremory

Do troyRender®an

vADestrov! ramebufier

ADestroyDes rptorPool

£3

|
i

Bt

T

£

|

:
2009

£
9
&

A mdDr o 2 > x P8 3

The API statistics view in Nvidia Nsight is a great way to look at the count and cost of
each API call.

Tools

- C++ Export!

Standalone

Another awesome feature with Nsight is the ability to export a capture as a
standalone C++ application. Nsight will write out binary blobs of your resources in the
capture, and write out source code issues your API calls. You can build this app and
debug problems in an isolated solution.

12 .@@e

OONOONNONONNDNNNONDOD - DNDDDORERRERC 0
TZFi5555i

Another awesome feature with Nsight is the ability to export a capture as a
standalone C++ application. Nsight will write out binary blobs of your resources in the
capture, and write out source code issues your API calls. You can build this app and
debug problems in an isolated solution.

® Nvda Replayer

Here is our bug being reproduced in the standalone C++ export

Dear ImGui + ImGuZm

Live tweaking

Very useful!

With our goal of having everything be live-reloadable and live-tweakable, we used
DearlmGui and ImGuizmo extensively for a number of useful overlays

! Halcyon Browser - SGPU - NVIDUA

View Mode: Defaultil)
015play Mode: Fulll

THE METAVERSE

¥ mbient Occlusion

¥ Bt AO Settings

> Gt AO Settings
¥ Post Processing

References

[Stachowiak 2018] Tomasz Stachowiak. “Towards Effortless Photorealism Through Real-Time Raytracing”

nline

sson, Colin Barré-Brisebois. "DirectX lving Microsoft's Graphics Platform”

[Harmer 2018] Jack Harmer, Linus Gisslén, Henrik Holst, Joakim Bergdahl, Tom Olsson, Kristoffer Sjo6 and Magnus
Nordin. “Imitation Learning with Concurrent Actions in 3D Games”

[Opara2018] Anast para. “Creativity of Rules and Pattens”

[O’Donnell 2017] Yuriy O'Donnell me Graph: Extensible Rende

Thanks

Matthaus Chajdas - Baldur Karlsson M‘ei‘Z"ng/

Rys Sommefeldt - Cort Stratton /BQ’R&H
Timothy Lottes - Mathias Schott * Noah Fredriks
Tobias Hector . Rolando Caloca « Qun Lin

Neil Henning - Sebastian Aaltonen - Ehsan Nasiri,

John Kessenich - Hans-Kristian Arntzen . Steven Perron
Hai Nguyen « Yuriy O'Donnell . Alan Baker
Nuno Subitil « Arseny Kapoulkine « Diego Novillo
Adam Sawicki « Tex Riddell

Alon Or-bach - Marcelo Lopez Ruiz

A special thanks to all these people, that were helpful in our Vulkan journey

Than

Ski=

ks

D

Johan Andersson
Colin Barré-Brisebois
Jasper Bekkers
Joakim Bergdahl
Ken Brown

Dean Calver

Dirk de la Hunt
Jenna Frisk

Paul Greveson
Henrik Halen
Effeli Holst

Andrew Lauritzen

Magnus Nordin
Niklas Nummelin
Anastasia Opara
Kristoffer Sjoo
Ida Winterhaven

Tomasz Stachowiak

Microsoft

Chas Boyd
Ilvan Nevraev
Amar Patel

Matt Sandy

/
TomasAkenine-Méller

Nir Benty

Jiho Choi
Peter Harrison
Alex Hyder
Jon Jansen
Aaron Lefohn
Ignacio Llamas
Henry Moreton
Martin Stich

And before | finish, | would like to thank all the people who contributed to the PICA
PICA project. It was a very awesome and dedicated effort by our team, and we could
not have done it without our external partners either.

/| SEARCH FOR EXTRAORDINARY EXPERIENCES DIVISION

STOCKHOLM - LOS ANGELES - MONTREAL - REMOTE

SEED.EA.COM

WE'RE HIRING!

On one last note, | would like to point out that we’re hiring for multiple positions at
SEED. If you're interested, please give me a shout!

Questions?

Thank you for listening! And if we still have some time, | would love to answer your
guestions

