
Hello, my name is Graham Wihlidal, and I’m a senior rendering engineer at SEED, 

and the technical architect for Halcyon.



SEED is a technical and creative research division of Electronic Arts. We are a 

cross-disciplinary team with a mission to explore the future of interactive 

entertainment. 



I’d like to start off with a definition – disruptive technology is technology that 

significantly alters the way your business operates. 

Often this technology forces companies to change their business for fear of losing 

market share or becoming irrelevant.



It’s important to embrace disruption, but it is also important to maintain your existing 

business; through the usual safe bets, and risk management.

After all, this is how you’re currently successful, so don’t ruin a good thing.

While being successful in the present, it’s also very important to avoid “horse 

blinders” – which is where you ignore a rapidly evolving market, user base, and 

available technologies.

Some technologies may look like a gimmick or a fad, and many of them are, but some 

may turn out to be the next big thing, and the entire market pivots towards it.



Because of this, innovation is extremely important.

My advice to you is don’t be Kodak!

The digital camera was invented at Kodak in 1975 by an engineer named Steve 

Sasson, and brought to management where they said “that’s cute – but don’t tell 

anyone about it”, for fear of disrupting their analog film business.

In the end, the competition won, by successfully getting the digital camera out to 

market before Kodak knew what hit them. There are also similar misses around photo 

sharing and photo viewing.

This is all too common in large companies.



Lets frame this to game development in particular.

Typically, large game engines have complex build systems, inter-connected 

dependencies, opinionated and rigid APIs, specialized systems, and a very steep 

learning curve.



Why would you ever want that? For good reason, to ship great games!

Often, flexibility and extensibility suffer at the hand of performance and scalability.

Opinionated and rigid APIs help bring about performance, and a consistent way to 

interact with the game engine and its systems.



But, these decisions generally constrain agile prototyping, and make it hard to rapidly 

pivot the architecture to test out significant changes like a new rendering engine, not 

using triangles (Dreams PS4 or Claybook, as an example), emerging platforms like 

cloud, VR/AR/MR/XR, mobile, social, etc..

The engines can of course target these areas on the roadmap, but at a high risk, and 

often requiring a large investment of limited time and resources.

And what if these ideas fail, after all that effort?



Our solution, is to have an agile R&D engine, which allows us to quickly prove out 

technology.

The general premise is we can use this technology platform to scout ahead, share 

findings back to various teams, mitigate overall risk, and guide adoption of successful 

technology.



To show this with a couple images, the game engine is like a Formula 1 race car –

built for speed, requiring an expert driver, and a large support team behind it to keep it 

tuned and on the track.

The race crew aren’t making drastic changes to the car, for fear of losing the race, or 

worse. There is a ton of investment in the car, driver, crew, and race outcomes -

failure is not an option.

On the other side, we have the R&D engine, which is like a soapbox racer – built for a 

good time, constantly evolving after crashes or losses, anyone can drive it, the 

operating cost is negligible, and the race is more about the experience than about the 

outcome.



For another comparison – a game engine is like a highly specialized artisan knife, 

built for just a few purposes, but purposes it excels at.

An R&D engine, on the other hand, is like a swiss-army knife. It looks goofy as hell, 

but it can fulfill a large assortment of purposes, with reasonable enough quality.



So lets talk a bit about our swiss-army knife, called Halcyon.



Halcyon is a rapid prototyping engine - currently supported on Windows, Linux, and 

macOS – and serving a very different purpose than our flagship AAA engine, 

Frostbite.



One of our recent projects using Halcyon was called PICA PICA, which was 

showcased at GDC 2018.

We built PICA PICA from the ground up using Halcyon. The main goal of the project 

was to explore and experiment with hybrid rendering and ray tracing; aiming for clean 

and consistent visuals.

We also wanted to incorporate procedural world creation, and self-learning AI agents 

to navigate and operate the environment. And all of these goals were under the 

banner of no precomputation.

The project was very successful, both inside and outside of Electronic Arts, and 

provided a lot of cutting edge techniques and findings that were provided back to the 

organization.

Here is a video we circulated, showing our results from this project.



https://www.youtube.com/watch?v=LXo0W

dlELJk

https://www.youtube.com/watch?v=LXo0WdlELJk


Halcyon allowed us to iterate and move very fast with the development of PICA PICA.

A major goal of Halcyon is to minimize or eliminate busy-work; something I call - artist 

“meta-data” meshes.

Show me one artist that actually enjoys making these meshes over something more 

creative, and I guarantee you they are brainwashed, and need an intervention and our 

caring support.

Another critical goal, is the live reloading of all assets. We don’t want to take a coffee 

break while we shut down Halcyon, launch a data build, come back, and resume 

whatever we were doing.



One luxury we had by starting from scratch, was choosing our feature set and min 

spec. We decided to only target modern APIs, so we are not restricted by legacy.

Another interesting goal is to provide easy access to multiple GPUs, without 

sacrificing API cleanliness or maintainability. To accomplish this, we decided on 

explicit heterogeneous mGPU, not linked adapters.

We also are avoiding any AFR nonsense for a number of reasons, including problems 

with temporal techniques.



Since we also want to experiment with techniques that may not map to average 

present-day hardware, we also decided on supporting scalable computation.

We scale to all cores in a workstation, multiple graphics adapters, local Kubernetes 

clusters, and also Google Cloud Platform.

We also designed our scaling approaches to work under a single abstraction.



We do traditional local rendering, but in addition to scaling computation, we also 

chose to support scaling rendering remotely, and transmitting the results back to the 

application (such as buffers, textures, or swap chains).

In order to deliver on our promise of fast experimentation, we needed to ensure a 

minimal amount of boilerplate code. This includes code to load a shader, set up 

pipelines and render state, query scene representations, etc.

This was critical in developing and supporting a vast number of rendering techniques 

and approaches that we have in Halcyon.



We have a unique rendering pipeline which is inspired by classic techniques in real-

time rendering, with ray tracing sprinkled on top.

We have a deferred renderer with compute-based lighting, and a fairly standard post-

processing stack. And then there are a few pluggable components. We can render 

shadows via ray tracing or cascaded shadow maps.

Reflections can be traced or screen-space marched. Same story for ambient 

occlusion.

Only our global illumination and translucency actually require ray tracing.



Here is an example of a scene using our hybrid rendering pipeline



And here is the same scene uses our traditional pure rasterization rendering pipeline.

As you can see, most of our visual fidelity holds up between the two, especially with 

respect to our materials.



Some guiding principles behind our architecture is that there is no concept of a 

classic ”frame”, and rendering occurs at variable frequency.

In addition to the frequency, there is also no promise that data is locally resident, 

requiring us to design our systems to handle latency, and also massive data.



I am a big proponent of ”separation of concerns”, where systems are designed for a 

single purpose, and monolithic systems are avoided at all cost.

Another principle is that verbosity is hidden with layers.  We provide an explicit low-

level API to users, which can be used directly if desired, but then there are 

convenience APIs on top to avoid the “5000 lines of code to render a triangle” 

problem.



There are a number of rendering layers making up our architecture. The application 

sits on top (for example, PICA PICA) and provides very high level abstractions on top 

of Halcyon itself.

Underneath the application are a number of convenience APIs like render graph, and 

under those are the explicit APIs like render commands going to the various render 

backend and device implementations.



The first layer I will talk about is the render backend



Render backends are implemented as live-reloadable DLLs. Each backend 

represents a particular API, and provides enumeration of adapters and capabilities.

In addition, the backends will determine the ideal adapters to use, depending on the 

desired purpose.



Each render backend also supports a debugging and profiling interface – this 

provides functionality like RenderDoc integration, CPU and GPU validation layers, 

etc..

Most importantly, render backends support the creation and destruction of render 

devices, which I’ll cover shortly.



We have a variety of render backends implemented



For Direct3D 12, we support the latest variant of shader model 6, DirectX ray tracing, 

full bindless resources, explicit heterogeneous mGPU, and DirectML.



Vulkan is a similar story to Direct3D 12 – it supports basically the same features, but it 

has the added benefit of being cross platform.

Additionally, it is much easier to work with GPU vendors to get access to hardware 

features through Vulkan’s extension system than it is with Direct3D 12, making it an 

ideal render backend for high end research and development.



Metal 2 is still in early development, but very promising.



We have another pretty crazy backend called render proxy, which I discuss later in 

this presentation.



Finally, we have our mock render backend which is for unit testing, debugging, and 

validation. This backend does all the same work the other backends do, except 

translation from high level to low level just runs a validation test suite instead of 

submitting to a graphics API.



The next layer to discuss is render device



Render device is an abstraction of a logical GPU adapter, such as VkDevice or 

ID3D12Device.

It provides an interface to various GPU queues, and provides API specific command 

list scheduling and submission functionality



Render device has full ownership and lifetime tracking of its GPU resources, and 

provides create and destroy functionality for all the high level render resource types.

The high level application refers to these resources using handles, so render device 

also provides an efficient mapping of these handles to internal device resources.



First off, I will describe what our render handles are



Our rendering resources are associated by handle.

The handles are lightweight (just 64 bits), and the associated resources are fetched 

with a constant-time lookup. The handles are type safe, protecting against errors like 

trying to pass a buffer in place of a texture.

The handles can be serialized or transmitted, as long as some contract is in place 

about what the handle represents.

And the handles are generational for safety, which protects against double-delete, or 

using a handle after deletion



Handles allow a one-to-many cardinality where a single handle can have a unique 

representation on each device



There is an API to query if a particular render device has a handle loaded or not. This 

makes it safe to add and remove devices while the application is running.

The handle is owned by the application, so the representation can be loaded or 

reloaded for any number of devices.



Shared resources are also supported, allowing for copying data between various 

render devices.



A crazy feature of this architecture is that we can mix and match different backends in 

the same process!

This made implementing and debugging new backends like Vulkan much easier, as I 

could have DX12 rendering on the left half of the screen, while Vulkan was rendering 

on the right half of the screen.



Another key rendering component is our high level command stream



We developed an API agnostic high level command stream that allows the application 

to efficiently express how a scene should be updated and rendered, but allowing each 

backend to control how this is done, including render state changes and resource 

barriers or transitions.



Each render command specifies a queue type, which is primarily for spec validation 

(such as putting graphics work on a compute queue), and also to aid in automatic 

scheduling, like with async compute.



As an example, here is a compute dispatch command, which specifies Compute as 

the queue type. The underlying backend and scheduler can interpret this 

accordingly



The high level commands are encoded into a render command list. As each 

command is encoded, a queue mask is updated which helps indicate the 

scheduling rules and restrictions for that command list.

The commands are stateless, which allows for fully parallel recording.



The render command lists are compiled by each render backend, which means the 

high level commands are translated to the low level API. Command lists can be 

compiled once, and submitted multiple times, in appropriate cases.

The low level translation is a serial operation by design, as this is basically running 

at memcpy speed. Doing this part serial means we get perfect redundant state 

filtering.



Another important aspect of a new render backend is the translation from our high 

level command stream to low level API calls.



Here is an example of translating a high level compute dispatch command to Vulkan.



And an example of translating a high level begin timing command to Vulkan 

timestamps



And here is an example of translating a high level resolve timings command to 

Vulkan.

Notice that the complexity behind fence tracking or resetting the query pool is 

completely hidden from the calling code.

Each backend implementation can choose how to handle this efficiently.



Another significant rendering layer is our render graph



Render Graph is inspired by Frostbite’s Frame Graph

Just like Frame Graph, we automatically handle transient resources. Complex 

rendering uses a number of temporary buffers and textures, that stay alive just for the 

purpose and duration of an algorithm. These are called transient resources, and the 

graph automatically manages these lifetimes efficiently.

Automatic resource transitions are also performed



We call our implementation Render Graph, because we don’t have the concept of a 

“frame”, as mentioned earlier.

Our transitions and split barriers are fully automatic, and there is a single 

implementation, regardless of backend. This is thanks to our high level render 

command stream, which hides API differences from render graph.

We also support multi-gpu, which is mostly implicit and automatic, with the exception 

of a scheduling policy you configure on your pass – this represents what devices a 

pass runs on, and what transfers are performed going in or out of the pass.



Render graph supports composition of multiple graphs at varying frequencies.

These graphs can run on the same GPU - such as async compute. 

They can run with multi-gpu, with a graph on each GPU.

And they can even run out of core, such as in a server cluster, or on another machine 

streamed remotely.



There are a number of techniques that can easily run at a different frequency from the 

main graph, such as object space translucency and reflection, or our surfel based 

global illumination.



Render graph runs in two phases, construction and evaluation.

Construction specifies the input and output dependencies, and this is a serial 

operation by design.

If you implement a hierarchical gaussian blur as a single pass that gets chained X 

times, you want to read the size of the input in each step, and generate the proper 

sized output. Maybe you could split it up into some threads, but tracking 

dependencies in order to do construction in a parallel fashion might be more costly 

than just running it serially.

Evaluation is highly parallelized, and this is where high level render commands are 

recorded, and automatic barriers and transitions are inserted.



Here is an example render graph pass, with the construction phase up top, and the 

evaluation phase at the bottom.



As mentioned, we support explicit heterogeneous multi-GPU. We use a parallel fork-

join approach, and we copy resources through system memory using the copy queue.

It costs roughly 1ms to transfer 15mb of data, so it’s important to minimize how much 

we transfer.

This is done by redundantly replicating immutable data to all GPUs (such as meshes 

and textures), and also tightly packing or compressing data to minimize the transfer 

size.



Our workloads are divided into partitions, where the number of partitions is based on 

the number of available GPUs.

We designate one of the GPUs as the primary device, and the other devices are 

designated as secondaries.

With complex rendering and computation, there are a variety of scheduling and 

transfer patterns needed. We built a simple rules engine to drive the logic of our 

workloads.



For our ray tracing workloads, the common pattern is to run the ray generation on the 

primary GPU. Then we copy slices or sub-regions of this data to the other secondary 

GPUs, where each GPU performs tracing on its own sub-region or partition.

The tracing results are then copied back to the primary GPU, and then filtering is 

performed exclusively on the primary GPU.

This approach avoids many problems with temporal techniques, and also means we 

don’t need to transfer as much data, such as the full g-buffer, to the secondary GPUs.



The workloads are only divided into partitions based on the X axis, or width. This 

simplifies textures vs. buffers, since we can treat all sub-regions as 1D instead of 2D.

Passes are unaware of the GPU count, which keeps the code clean, and avoids any 

edge cases or bugs with untested mGPU configurations.

This code snippet shows all that is needed for a pass to scale the workloads, 

regardless of how many GPUs are in use.



The automatic scaling window works quite well for us, but there were lots of fun 

coordinate snapping bugs to fix up in the beginning, like 3 GPUs partitioning to 0.3 

repeating.



And then some interesting bugs when we did crazy configurations, like 16 GPUs, 

because why not? ☺



Our simple rules engine allows for a pass to specify the scheduling, and also request 

transfers in or out of the pass.



The transfers specify what partitions are copied from source to destination.

And the transfers also specify rules for the transfer destination, allowing for basic 

copies, multi-cast copies, etc..



The transfer partition is specified for both the source and the destination GPU, 

allowing for a variety of transfer patterns. 



Here is an example render graph pass which specifies the mGPU scheduling policy, 

in this case, to run on all available devices.

This example also schedules a transfer of the resultant data back to the primary 

device. Isolated to isolated means that each device will only copy the sub-region or 

partition that it was responsible for computing.

In the bottom half of the code, you can see the evaluation phase which is scaling the 

work dimensions for the compute dispatch, based on the mGPU configuration.



When developing mGPU support for our render graph passes, some scheduling or 

transfer bugs were obvious.



Here’s another example



And then some bugs were very subtle, like this weird cell shading.

Incorrect transfers would result in input data being incorrect or uninitialized, or result 

data not being copied back to the main GPU for filtering.

Incorrect scheduling would cause passes to not run, to run when they shouldn’t, or 

have an incorrect partitioning window, interfering with the work of another GPU.



This is a list of some of our render graph passes in PICA PICA – we ended up adding 

mGPU support to reflections, shadows, lighting, global illumination, and ambient 

occlusion.



The initial implementation of render graph would explicitly chain input and output 

dependencies between passes, but this lead to messy coupling, and also explicit 

checks like if a depth pre-pass has already run, import the depth target, and if not, 

clear the depth target or disable depth.

We improved the implementation to support implicit data flow using explicit scopes. 

This allows for long-distance extensible parameter passing.

A scope is given to each render pass, which supports nested scopes for sub-graphs, 

and the results are stored in the scope.

Hygiene is provided via nesting and shadowing.



The scopes can be looked up by type, such as depth or gbuffer resources. The 

lookup returns parameters stored in plain old data structs.



We have also been experimenting with various implementations of a DSL for 

Render Graph – currently it’s using hacky macro magic, but we’re thinking about 

writing a code generator using Rust, relying on many amazing features of the 

language to develop our DSL.

The goal here is to make render graph fully data driven, and even serializable.



Render graph can collect automatic profiling data, presenting you with GPU and CPU 

counters per-pass

Additionally, this works with mGPU, where each GPU is shown in the list



There is also a live debugging overlay, using ImGui. This overlay shows the 

evaluated render graph passes in-order of execution, the input and output 

dependencies, and the resource version information.





In order to make multi-GPU development easier, we built something we call virtual 

multi-GPU



Most developers typically have just a single GPU in their workstations. It is quite 

uncommon for 2 GPU machines, and it is rare for machines to have more than 2 

GPUs. Having a huge machine is practical for the show floor, and cranking settings 

up to 11, but this is impractical for regular development. Testing these configurations 

becomes challenging.



Our solution was to build a device indirection table. We enumerate available device 

adapters, and based on a setting specifying how many copies of a device are desired, 

we redirect our own virtual device indices to actual adapter indices.



We do this by creating multiple instances of a given device. Similar to multiple 

applications sharing a GPU, the OS (such as WDDM on Windows 10) will execute 

multiple instances of a device sequentially.



This approach increases the overall wall time, so don’t use it for end to end profiling. 

However, this is amazing for development and testing, even estimating the possible 

performance characteristics of the mGPU algorithm in isolation.



There is a fun story around this stuff..   For PICA PICA, all developers only had a 

single GPU, and there was very limited testing with 2 GPUs.

The show floor at GDC 2018 was a machine with 4 GPUs, a configuration we had 

only ever tested using virtual mGPU. We crossed our fingers, and hoped we didn’t 

make a horrible mistake by relying exclusively on virtual mGPU for testing.

The demo worked flawlessly on the first try with the actual hardware, and gave us the 

wall time improvements we had estimated.



Virtual mGPU allows us to develop multi-GPU with only a single GPU

Virtual mGPU even reproduces most mGPU bugs in the same way, which is 

incredibly useful.

Some developers never tested on physical mGPU, and developed entire features like 

our surfel GI using only virtual mGPU. (The night before GDC, I might add..)



Another interesting capability of our architecture is our render proxy



Render proxy is another render backend implementation, like DirectX12 or Vulkan, 

except this allows us to mix any API with any OS.



The way it works is our render API calls get routed remotely using gRPC, which is a 

high performance RPC framework developed by Google.

This lets us use an API on an incompatible OS, such as using Direct3D 12 on macOS 

or Linux.

This is especially nice for bringing up new platforms, as we can get base memory, IO, 

and core functionality running, without initially worrying about the graphics system.



Render proxy allows us to scale large workloads with a GPU cluster. Render graph 

passes that support mGPU can automatically scale to the cluster without any 

additional code, which is a really powerful design.

Another interesting property is that only the rendering is routed, the scene state is 

local. This means that the rendering is based on the actual local version of code and 

data, which allows for fast iteration and development.

This lets us work from the couch! Such as using Nvidia ray tracing with a Turing GPU 

on a MacBook



With our render proxy architecture, the possibilities are truly endless!



I also wanted to briefly cover some of our machine learning support in Halcyon



PICA PICA uses deep reinforcement learning, trained with Halcyon rendering 36 

semantic views.

The training is performed with TensorFlow and our on-premise GPU cluster.

The PICA PICA demo did in-process inference with TensorFlow using AVX2 on the 

CPU



We are adding inferencing support with DirectML to Halcyon. This will provide 

hardware accelerated inferencing operators.

DirectML allows us to do our own resource management, schedule ML work 

explicitly, and also interleave ML work with other GPU workloads.

We are investigating a fall back for other APIs if DirectML is not available.



We can treat the trained ML models like any other 3D assets.

We will also expose DirectML with render graph abstractions. We want to reference 

the same render resources, and provide a similar approach to chaining compute 

passes.

Similar to our other high level commands bracketed within a render pass, we will 

record some form of “meta” render commands for ML, bracketed together, and this 

will allow the various backends to fuse or transform these commands for 

performance, if desired.



I wanted to mention some interesting aspects of our asset pipelines



Just like any other engine or framework, we have a variety of asset types that we 

load from a source or intermediate representation, process with a pipeline, and 

produce a more optimal representation for runtime.

An exciting spin is that for geometry and animations, we’ve ditched traditional FBX 

in favor of glTF. 

We’ve also written all our asset pipelines in the Rust programming language. 

Though, I’ll refrain from getting on my usual soapbox and shouting about how 

awesome Rust is.



The cool thing is that all our assets are content addressable - we don’t reference 

resources by virtual file system path, instead we only reference by a hash like 

sha256.

We use Merkle trees for efficient dependency evaluation



The general idea with Merkle trees is that the leaf nodes are data blocks, which are 

hashed, and nodes further up the tree are hashes of their respective children.

You can test if a leaf node is part of a given tree by computing a number of hashes 

proportional to the logarithm of the number of leaf nodes in the tree. This allows for 

efficient dependency evaluation, avoiding redundant network transmission of data, 

and secure verification of data contents.



Our pipelines are all containerized in Linux Docker, running on Kubernetes. We 

can scale our pipelines on Google Cloud Platform, and also in our on-premise 

cluster, comprised of AMD Threadrippers and Nvidia Titan Vs.

Communication between Halcyon and the pipelines is done with gRPC and 

Protobuf, and our content addressable data is all backed by Google Cloud Storage.



Our pipelines support detailed analytics with Prometheus and Grafana. We publish 

custom metrics to an HTTP endpoint, and these metrics get scraped into a rich UI.

We can’t stress enough how important collecting data is – for profiling how long 

pipelines are taking including bottlenecks to improve, and also for tracking down 

errors and bugs.



This is what our on-premise GPU cluster metrics look like when displayed with 

Grafana. This is a very rich and responsive Web UI, and it is very easy for us to 

add in all sorts of interesting metrics and dashboards for whatever we want to 

track.



The last thing I’ll discuss today, is how we handle shaders



We implemented a system which supports multiple microfacet layers arranged into 

stacks. The stacks could also be probabilistically blended to support prefiltering of 

material mixtures.

This allowed us to rapidly experiment with the look of PICA PICA, while at the same 

time enforcing energy conservation, and avoiding common game dev hacks like 

“metalness”.

An in-engine material editor meant that we could quickly jump in and change the look 

of everything.

The material system works with all our render modes, be that pure rasterization, path 

tracing, or hybrid.

And for performance, we can bake down certain permutations for production.



We exclusively use HLSL 6 as a source language, and the majority of our shaders 

are compute

Performance is critical, so we rely heavily on group shared memory, and wave 

operations



We don’t rely on any reflection information, outside of validation. We avoid costly 

lookups by requiring explicit bindings.

We also make extensive use of HLSL spaces, where the spaces can be updated at 

varying frequency.



Here is a flow graph of our shader compilation. We always start with HLSL 

compiled with Microsoft’s DXC shader compiler. The DXIL is used by Direct3D 12, 

and the SPIR-V is used by Vulkan 1.1. We also have support for taking the SPIR-

V, running it through SPIRV-CROSS, and generating MSL for Metal, or ISPC to run 

on the CPU.



We have a concept in Halcyon called shader arguments, where each argument 

represents an HLSL space. We limit the maximum number of arguments to 4 for 

efficiency, but this can be configured. It is important to note that this limit represents 

the maximum number of spaces, not the maximum number of resources.



Each shader argument contains a “ShaderViews” handle, which refers to a 

collection of SRV and UAV handles. Additionally, each shader argument also 

contains a constant buffer handle and offset into the buffer.



Our constant buffers are all dynamic, and we avoid having temporary descriptors. 

We have just a few large buffers, and offsets into these buffers change frequently.

For Vulkan, we use the uniform buffer dynamic descriptor type, and on Dx12 we 

use root descriptors, just passing in a GPU virtual address.

All our descriptor sets are only written once, then persisted or cached.



Here is an example HLSL snippet showing one usage of spaces. Each space 

contains a collection of SRVs and a constant buffer. The shader argument 

configuration on the CPU is shown below.



An important part of our Vulkan backend, was consuming HLSL as a source 

language, and fixing up the SPIR-V to behave the same as our Dx12 resource 

binding model.

We decided to use the spirv-reflect library from Hai Nguyen and Cort Stratton; it 

does a great job at providing SPIR-V reflection using DX12 terminology, but we use 

it exclusively to patch up our descriptor binding numbers.



SRVs, Samplers, and UAVs are simple. These types are uniquely name spaced in 

DX12, so t0 and s0 wouldn’t collide. This is not the case in SPIR-V, so we apply a 

simple offset to each type to emulate this behavior.



Constant or uniform buffers are a bit more interesting. We want to move CBVs to 

their own descriptor sets, in order to make our ShaderViews representing the other 

resource types persistent and immutable.

To do so, we don’t adjust the offset, as we’ll have a single CBV per descriptor set. 

However, we do shift the descriptor set number by the max number of shader 

arguments.

This means if descriptor set 0 contained a constant buffer, that constant buffer 

would move to descriptor set 5 (if max shader arguments is 4).



If a dispatch or draw is using 2 HLSL spaces, the patched SPIR-V will require the 

following descriptor set layout. Notice the shifted offsets for the SRVs, Samplers, 

and UAVs, and how the dynamic constant buffers have been hoisted out to their 

own descriptor sets.





On one last note, I would like to point out that we’re hiring for multiple positions at 

SEED. If you’re interested, please give us a shout!



Thank you to the Reboot Develop Blue event organizers and Khronos for inviting 

me to speak, and also to the awesome team at SEED working on Halcyon.



And with that I’d like to open it up for any questions you may have.



I will briefly mention some useful tools used for the Vulkan implementation



For debugging and profiling, the usual suspects were quite helpful, and used 

extensively.



For debugging and profiling, the usual suspects were quite helpful, and used 

extensively.



The API statistics view in Nvidia Nsight is a great way to look at the count and cost of 

each API call.



Another awesome feature with Nsight is the ability to export a capture as a 

standalone C++ application. Nsight will write out binary blobs of your resources in the 

capture, and write out source code issues your API calls. You can build this app and 

debug problems in an isolated solution.



Another awesome feature with Nsight is the ability to export a capture as a 

standalone C++ application. Nsight will write out binary blobs of your resources in the 

capture, and write out source code issues your API calls. You can build this app and 

debug problems in an isolated solution.



Here is our bug being reproduced in the standalone C++ export



With our goal of having everything be live-reloadable and live-tweakable, we used 

DearImGui and ImGuizmo extensively for a number of useful overlays




