
Interactive Light Map and Irradiance Volume
Preview in Frostbite

Diede Apers, Petter Edblom, Charles de Rousiers, and Sébastien Hillaire
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Abstract

This chapter presents the real-time global illumination (GI) preview system
available in the Frostbite engine. Our approach is based on Monte Carlo path
tracing running on the GPU, built using the DirectX Raytracing (DXR) API. We
present an approach to updating light maps and irradiance volumes in real time
according to elements constituting a scene. Methods to accelerate these updates,
such as view prioritization and irradiance caching, are also described. A light map
denoiser is used to always present a pleasing image on screen. This solution allows
artists to visualize the result of their edits, progressively refined on screen, rather
than waiting minutes to hours for the final result using the previous CPU-based
GI solver. Even if the GI solution being refined in real time on screen has not
converged after a few seconds, it is enough for artists to get an idea of the final
look and assess the scene quality. It enables them to iterate faster and so achieve a
higher-quality scene lighting setup.

1 Introduction

Precomputed lighting using light maps has been used in games since Quake in
1996. From there, light map representations have evolved to reach higher visual
fidelity [1, 8]. However, their use in production is still constrained by long baking
times, making the lighting workflow inefficient for artists and difficult for engineers

Figure 1: Three final shots from different environments, rendered by Frostbite using our
GI preview system. Left: Granary. (Courtesy of Evermotion.) Center: SciFi
test scene. (Courtesy of Frostbite, c© 2018 Electronic Arts Inc.) Right: Zen
Peak level from Plants vs. Zombies Garden Warfare 2. (Courtesy of Popcap
Games, c© 2018 Electronic Arts Inc.)
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to debug. Our goal is to provide a real-time preview of diffuse GI within the
Frostbite editor.

Electronic Arts produces various types of games relying on a wide range of
lighting complexities: static lighting such as in Star Wars Battlefront 2, dynamic
sunlight for time of day simulation such as in Need for Speed, and even destruction
requiring dynamic updates of the GI solution from dynamic lights such as in the
Battlefield series. This chapter focuses on the static GI case, i.e., unchanging GI
during gameplay, for which Frostbite’s own GI solver can be used [9]. See
Figure 1. Static GI relying on baked light maps and probes will always be a good
value: it enables high-quality GI baking, resulting in high-fidelity visuals on screen
without needing much processing power. In contrast, dynamic GI, e.g., from
animated lights, requires extensive offline data baking, has coarse approximations,
and has costly runtime updates.

Light map generation is a conveniently parallel problem where each texel can
be evaluated separately [3, 9]. This can be achieved using path tracing and
integrated using Monte Carlo integration [5], where each path contribution can
also be evaluated independently. The recent real-time ray tracing additions to
DXR [11] and Vulkan Ray Tracing [15] make it convenient to leverage the GPU’s
massively parallel architecture to handle all the necessary computations such as
ray/triangle intersection, surface evaluation, recursive tracing, and shading. The
Frostbite GI solver is built on the DXR API.

This chapter describes the Frostbite path tracing solution built to achieve
real-time GI preview [3]. Section 2 gives details about the path tracing solution
used to generate light maps and irradiance volumes. Section 3 presents the
acceleration techniques used to reduce the GI preview cost, e.g., using view/texel
prioritization or direct irradiance caching. Section 4 describes when GI data are
generated and invalidated based on artist interactions with the scene input, e.g.,
lights, materials, and meshes. Finally, Section 5 discusses the impact on accuracy
and presents performance of the different acceleration components.

2 GI Solver Pipeline

This section discusses our GI solver for previewing light maps and irradiance
volumes. First, Section 2.1 describes the input (scene geometry, materials, and
lights) and output (light map data) of the GI solver and how they are stored on
the GPU. Then, Section 2.2 gives an overview of all parts of the pipeline. Finally,
Section 2.3 describes how the lighting computation is handled.

2.1 Input and Output

2.1.1 Input

• Geometry: The scene geometry is represented with triangular meshes. A
unique UV parameterization is attached to each mesh for mapping them to
light map textures. These meshes are usually simplified geometry, called
proxy meshes, as compared to the in-game meshes, as shown in Figure 2.
Using proxy meshes alleviates self-intersection issues caused by coarse light
map resolution, a common situation due to memory footprint constraints.
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Figure 2: Light map applied to a scene in Star Wars Battlefront II. Left: light map applied
to proxy meshes, against which GI is traced. Right: light map applied to final
in-game meshes by projecting proxy UV coordinates and using normal mapping.
(Courtesy of DICE, c© 2018 Electronic Arts Inc.)

The UV parameterization can be done automatically through some
proprietary algorithms or done manually by artists. In both case, the
parameterization tries to mitigate texel stretching and texel crossing
geometry, which can result in light leaks. Non-manifold meshes are divided
into several charts, which are padded to avoid light bleeding across charts
when the light map is bilinearly sampled at runtime. Multiple instances of a
mesh share the same UV parameterization but cover different areas of the
light map texture. If instances are scaled, by default their light map coverage
will increase. Doing so helps to keep texel size relatively constant over a
scene. Optionally, artists can disable this scaling per instance to conserve
light map space.

• Materials: Each scene geometry instance has certain material properties:
diffuse albedo, emissive color, and backface behavior. Albedo is used for
simulating correct interreflections, while face orientation is used to determine
how a ray should behave when intersecting the backface of a triangle. Since
we are interested in only diffuse interreflections, the usage of a simple diffuse
material model such as Lambert [10] is enough. Surfaces with metallic
material are handled as if they were covered with a dielectric material. In
such a case, the albedo can be estimated based on its reflectance and its
roughness [7]. As a result, no caustics will be generated by our GI solver.

• Light sources: A scene can contain various types of light sources: local point
lights, area lights, directional lights, and a sky dome [7]. Each light should
behave as its real-time counterpart in order to have consistent behavior
between its baked and runtime versions. The sky dome is stored in a
low-resolution cube map.

• Irradiance volumes: In addition to light maps, the GI solver allows us to
pre-visualize lighting for dynamic objects. They are lit by irradiance volumes
placed into levels. See Figure 3(a). Each irradiance volume stores a
three-dimensional grid of spherical harmonics coefficients.

The input geometry is preprocessed to produce sample locations for each light
map texel. These world-space locations are generated over the entire scene’s
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(a) Irradiance volume visualization. (b) Ray intersection visualization.

Figure 3: Debug visualizations inside the editor. (a) An irradiance volume placed into a
futuristic corridor scene. This irradiance volume is used for lighting dynamic
objects. (b) Visualization of shadow rays and intersections with transparent
primitives. Yellow lines represent shadow rays, and red crosses represent any-hit
shader invocations to account for transmittance.
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Figure 4: Left: geometry in three-dimensional space. Center: the same geometry un-
wrapped in UV space. Sample positions are generated in UV space using a
low-discrepancy sample set covering the entire texel. Right: only valid samples
intersecting the geometry are kept.

geometric surface. Each is used as the first vertex of a path when path tracing.
Valid sample locations are produced by generating points within each texel’s
boundary in the light map. These points are then tested for intersection with the
unwrapped geometry and transformed into world space using the instance
transformation corresponding to the intersected primitive, as illustrated in
Figure 4. Points without any intersections are discarded, and all valid sample
locations are uploaded to the GPU for later use by the path tracing kernel. The
algorithm proceeds in a greedy fashion, generating samples until (say) eight valid
sample locations in a texel are found. The UV space is sampled using a
low-discrepancy Halton sequence, whose sample enumeration covers the entire
domain. In the case that the sequence does not contain any points that produce
valid sample locations, e.g., a small triangle residing between points, we generate a
sample by clipping the triangle to the pixel’s boundary and by using its centroid
to generate a new valid sample location. Additionally, using this algorithm, it is
also possible that one point in UV space produces multiple sample locations. This
can happen when the light-mapped geometry is overlapping in UV space, which is
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undesirable. The algorithm is resilient and allows for this.
The geometry in the scene is stored in a two-level bounding volume hierarchy

(BVH) (DXR’s acceleration structure [11]). The bottom level contains a BVH for
each unique mesh. The top level contains all instances, each of which has a unique
spatial transform and references a bottom-level BVH node. While this structure is
less efficient during traversal than a single-level BVH, it simplifies scene update,
which is a frequent operation during level editing. For instance, moving a mesh
requires updating only the top-level instance transform matrix, instead of
transforming the entire triangle soup stored in the bottom level.

2.1.2 Output

The GI solver produces several outputs, structured either into light maps or
irradiance volumes. For light map data, instances are packed into one or several
light map atlases, which are coarsely packed on the fly1:

• Irradiance: This is the main output of the GI solver. It describes the
directional irradiance2 for light maps or irradiance volumes. Usually, the
runtime geometry is finer than the geometry used for baking and often
contains detailed normals, e.g., with normal mapping, which are not taken
into account at baking time. See Figure 2. At runtime, the directional
irradiance allows us to compute the actual incoming irradiance for detailed
normals. Several representations are supported, such as the average value,
principal direction, and spherical harmonics [9].

• Sky visibility: This describes the portion of the sky visible from a given light
map texel or irradiance volume point [7]. This value is used at runtime for
various purposes, such as reflection blending or material effects.

• Ambient occlusion: This describes the surrounding occlusion for a given light
map texel or irradiance volume point [7]. It is used at runtime for reflection
occlusion.

2.2 GI Solver Pipeline Overview

The proposed pipeline aims to preview the final outputs as quickly as possible.
Since computing fully converged outputs would likely take several seconds or
minutes for a production-size level, the proposed pipeline refines the outputs
iteratively, as seen in Figure 5. At each solving iteration, the following operations
are done:

• Update scene: All scene modifications since the last iteration are applied,
e.g., moving a mesh or changing a light’s color. These inputs are translated
and uploaded to the GPU. See Section 4.

1When atlasing the different instances’ charts, some padding is added between charts to avoid
interpolating between texels that are not adjacent in world space.

2Directional irradiance stores incident lighting in a way that the irradiance can be evaluated
for a variety of directions.
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Scheduling Irradiance Caching

Tracing

Solving Iteration
Runtime

Accumulated Irradiance

Scene Updates
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Figure 5: Overview of the GI solver pipeline. Light maps and irradiance volumes are
updated iteratively. The camera viewpoint is used to prioritize texels that need
to be scheduled for the tracing steps. Using an irradiance cache, the tracing
step refines the GI data. The traced results are merged with those of previous
frames, before being post-processed (dilated and denoised) and sent back to the
runtime.
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• Update caches: If invalidated or incomplete, the irradiance caches are refined
by tracing additional rays for estimating the incident direct irradiance.
These caches are used for accelerating the tracing step. See Section 3.3.

• Schedule texels: Based on the camera’s view frustum, the most relevant
visible light map texels and visible irradiance volumes are identified and
scheduled for the tracing step. See Section 3.1.

• Trace texels: Each scheduled texel and irradiance point is refined by tracing
a set of paths. These paths allow one to compute the incoming irradiance, as
well as sky visibility and ambient occlusion. See Section 2.3.

• Merge texels: The newly computed irradiance samples are accumulated into
persistent output resources. See Section 2.6.

• Post-process outputs: Dilation and denoising post-process passes are applied
to the outputs, giving users a noise-free estimate of the converged output.
See Section 2.8.

2.3 Lighting Integration and Path Construction

To compute the irradiance E reaching each texel, we need to integrate the radiance
L incident to the upper hemisphere Ω weighted by its projected solid angle ω⊥:

E =

∫
Ωp

Ldω⊥. (1)

Computing the incoming radiance L requires us to solve the light transport
equation, which computes the outgoing radiance L based on an incoming radiance
Li and interacts with the surface material properties. In our case, we are
interested in only the diffuse interreflection. For diffuse materials, with albedo ρ
and emission Le, this equation is

L(ω) = Le +
ρ

π

∫
Ω

Li(ω)dω⊥. (2)

Due to its high dimensionality, Equation 1 can be difficult to solve. Relying on
stochastic methods, such as Monte Carlo, has proven to be a good fit for several
reasons. First, the result is unbiased, meaning it will converge to the correct value
E(E) with enough samples. Second, the end result can be computed in an iterative
fashion, which perfectly suits our needs to display incremental refinement to
artists. Finally, refinements for a given light map texel are independent and thus
can run in parallel. Solving Equation 1 with a Monte Carlo estimator,

E(E) ≈ 1

n

n∑
ζ=0

Lζ
pLζ

, (3)

simply means that averaging n random evaluations Lζ of this integral, weighted by
its probability distribution function (PDF) pLζ , will converge to the correct result.
This is an extremely convenient property.
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A simple way for evaluating Equation 1 is to construct paths composed of
vertices connecting a target texel to a light source. Each vertex lies on a geometric
surface, whose material properties, e.g., albedo, reduce the path’s throughput. This
throughput determines the quantity of light carried. We construct these paths
iteratively from the texel to the light sources, as described by the kernel code in
Listing 1.

1 Ray r = initRay(texelOrigin , randomDirection);

2

3 float3 outRadiance = 0;

4 float3 pathThroughput = 1;

5 while (pathVertexCount ++ < maxDepth) {

6 PrimaryRayData rayData;

7 TraceRay(r, rayData);

8

9 if (! rayData.hasHitAnything) {

10 outRadiance += pathThroughput * getSkyDome(r.Direction);

11 break;

12 }

13

14 outRadiance += pathThroughput * rayData.emissive;

15

16 r.Origin = r.Origin + r.Direction * rayData.hitT;

17 r.Direction = sampleHemisphere(rayData.Normal);

18 pathThroughput *= rayData.albedo * dot(r.Direction ,rayData.Normal);

19 }

20

21 return outRadiance;

Listing 1: Kernel code describing a simple light integration.

The algorithm in Listing 1 outlines a way of integrating the irradiance for each
texel. This simple solution is rather slow and does not scale well. In the following,
we describe a few traditional techniques that can be used to improve performance:

• Importance sampling: It is more effective to importance-sample the upper
hemisphere according to the projected solid angle instead of a uniform
distribution, as grazing directions have little contribution compared to more
vertical ones [10].

• Path construction with random numbers: The initial two vertices of each
path are carefully built to reduce the variance of the estimated irradiance.
First, spatial sample locations, which map texel sub-samples onto meshes,
are pre-generated using a low-discrepancy Halton sequence as described in
Section 2.1. This ensures that the full domain is uniformly sampled. Second,
the directional samples are also sampled using a low-discrepancy Halton
sequence. However, to avoid correlation issues between directional samples of
adjacent spatial samples, a random jitter is added to offset directions. This
construction ensures the full four-dimensional domain, spatial and angular.
Using an actual four-dimensional sequence, rather than two independent
two-dimensional sequences, will sample this space more efficiently, but was
omitted from our first implementation for simplicity. Subsequent path
vertices are built using uniform random values for constructing directional
samples. Sample positions are determined by the ray intersection.

8



• Next event estimation: Building a path until it reaches a light source is
inefficient. The likelihood of reaching a light source becomes smaller as the
number of lights (or their sizes) decreases. In the limit, when a scene has
only local point lights, it is impossible to sample them with a random
direction. One simple approach to solve this issue is to explicitly connect
each vertex of a path to light sources and evaluate their contribution. This is
known as next event estimation. By doing so, we artificially build multiple
paths using existing sub-paths. This simple, yet efficient, scheme improves
convergence drastically. To avoid double contribution, light sources are not
part of the same structure as regular scene geometry.

All the above techniques can be summarized in the simplified kernel code in
Listing 2.

1 Ray r = initRay(texelOrigin , randomDirection);

2

3 float3 outRadiance = 0;

4 float3 pathThroughput = 1;

5 while (pathVertexCount ++ < maxDepth) {

6 PrimaryRayData rayData;

7 TraceRay(r, rayData);

8

9 if (! rayData.hasHitAnything) {

10 outRadiance += pathThroughput * getSkyDome(r.Direction);

11 break;

12 }

13

14 float3 Pos = r.Origin + r.Direction * rayData.hitT;

15 float3 L = sampleLocalLighting(Pos , rayData.Normal);

16

17 pathThroughput *= rayData.albedo;

18 outRadiance += pathThroughput * (L + rayData.emissive);

19

20 r.Origin = Pos;

21 r.Direction = sampleCosineHemisphere(rayData.Normal);

22 }

23

24 return outRadiance;

Listing 2: Kernel code describing the lighting integration.

2.4 Light Sources

A scene can contain a set of point and area light sources. When a path is
constructed, surrounding local lights, directional lights (e.g., sun), and any sky
dome are evaluated at each vertex of the path (next event estimation):

• Local point lights: The irradiance evaluation is trivial. Its intensity is
computed based on its distance to the shading point and its angular
falloff [7]. While point light intensity decays inversely to the square distance,
artists can reduce their influence by tuning the light bounding volume. The
received intensity increases as a light gets closer to a shaded surface and can
approach infinity. To avoid this problem, we use a minimal distance, set to
one centimeter, between the shading point and the light.
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Light Map
Texel to
Update

Area Light

Figure 6: Irradiance evaluation of a texel. For this purpose, a path is constructed in green.
At each vertex of this path, the direct lighting is evaluated by casting rays toward
the area light (a.k.a. next event estimation). The number of samples for each
light is proportional to its subtended solid angle. If no geometry is intersected,
the sky dome radiance is evaluated.

• Area lights: The irradiance evaluation implies integrating the visible surface
for each light. To do so, samples are generated onto the visible part of the
light sources [10] and connected to the current path vertex. Sampling an
area light source can require many samples for resolving not only its
irradiance contribution but also its visibility, which creates soft shadows. To
amortize the path construction, multiple samples are cast for each area light
source, proportionally to their subtended solid angle. These samples are
stratified over the integration domain to build a good estimate of their
contribution. See Figure 6. Sample positions on light sources are generated
with a low-discrepancy Hammersley sequence because the number of
samples, based on the solid angle, is known up front. This sequence is
randomly offset at each path’s vertex to avoid spatial correlation, which
could result in shadow replicates.

• Directional lights: Irradiance is sampled at each vertex. Even if at runtime
the directional light is evaluated as a small disk area light, the coarse light
map resolution makes the small disk evaluation unnecessary.

• Sky dome: Irradiance is sampled when the generated direction does not hit
any geometry. For efficient evaluation one could importance-sample for sky
lighting at each vertex of a path, for instance, with the alias method [18].

2.5 Special Materials

In addition to regular diffuse albedo, materials can emit light or let the light pass
through them:

• Emissive surfaces: Geometry instances with emissive surfaces can emit
light, making any regular geometry a potential light source. During path
construction the surface emission is evaluated at each vertex. While this
method produces the correct result on average, it requires many samples,
especially for small emissive surfaces. To address this issue, emissive triangles
can be added to our light acceleration structure; see Section 3.2. These
emissive surfaces would then be part of the regular direct lighting evaluation.
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Figure 7: Scene containing a plane whose material is translucent. Left: translucency is
disabled. No light is diffused through the surface. Right: translucency is enabled,
allowing the light to be diffused into the scene. The transmitted light gets a red
tint in this case.

• Translucency: Instance material properties can describe translucent surfaces
by specifying their backface behavior. For such surfaces, light will be
diffusely transmitted from the other side of the geometry, as shown in
Figure 7. The quantity of light transmitted is driven by the surface albedo
and a translucency factor. Based on this quantity, we stochastically select if
the path should be transmitted or reflected when it hits such a surface.
Direct light evaluation is done on the selected side. Due to this process,
during the direct lighting evaluation, if a translucent surface lies between a
light and a path’s vertex, no light will be transmitted. This path’s vertex
will be shaded only if the path can be extended to connect it with the
translucent surface.

• Transparency: During next event estimation (see Section 2.3), a ray is traced
toward the light source. Intersecting geometry with transparent materials
will attenuate the visibility. Using DXR, this effect is realized by multiplying
visibility by transmittance in an any-hit shader. Geometry that does not
contain any transparent materials can be flagged as
D3D12 RAYTRACING GEOMETRY FLAG OPAQUE. When a ray encounters this type
of geometry, the ray is terminated. For geometry that does contain
transparent materials,
D3D12 RAYTRACING GEOMETRY FLAG NO DUPLICATE ANYHIT INVOCATION must
be used to avoid any double contributions. Figure 3(b) shows how these
any-hit shader invocations are triggered for only transparent geometry.

2.6 Scheduling Texels

This section details the first and third part of our pipeline, as depicted in Figure 5.
Texels are scheduled in a separate pass, prior to being traced. This scheduling
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Figure 8: Left: dispatching strategy for the tracing kernel. Right: samples stored in one
large buffer being accumulated and merged into a single light map texel.

pass runs multiple heuristics to determine if a certain texel should be processed.
Examples of such heuristics are view prioritization (see Section 3.1) and
convergence culling (see Listing 4). Convergence culling analyzes the texel’s
convergence and avoids scheduling texels that are already converged enough. Once
a texel is determined to be scheduled, we select a sample on its surface and
append it to a buffer.

Once all sample locations are appended to that buffer, they are consumed by
the second part of the pipeline. Each sample location can be evaluated multiple
times, depending on our performance budgeting system (see Section 2.7). Figure 8
illustrates our dispatching strategy. To ensure a large enough number of threads to
fully saturate the available hardware resources, we schedule each sample location
multiple times, ns = number of samples. Their contributions are deposited in one
large buffer organized in buckets belonging to each texel, nt = number of texels.
Additionally, we have an inner loop in our kernel that allows us to trace multiple
primary rays from each dispatched thread, ni = number of iterations. The total
number of samples is then nt × ns × ni. The value of nt depends on the result of
view prioritization and is currently bound by 1 sample per 16 pixels in screen
space. Both ns and ni are scaled by the sampleRatio in Listing 3.

Merging of multiple samples into one texel happens in a compute shader. Note
that we do not have to worry about the same texel being scheduled multiple times,
as view prioritization ensures that each visible texel is scheduled only once.
Finally, the output is combined with that from previous frames.

2.7 Performance Budgeting

Path tracing performance can be unpredictable and cause hitches in frame rate.
To provide artists with a smooth workflow, we implemented a performance
budgeting system that tracks the time spent path tracing on the GPU. Based on a
target frame budget (in milliseconds), the system will adaptively scale the number
of samples being traced to align with the performance budget. See Listing 3.

1 const float tracingBudgetInMs = 16.0f;

2 const float dampingFactor = 0.9f; // 90% (empirical)

3 const float stableArea = tracingBudgetInMs *0.15f; // 15% of the budget

4

5 float sampleRatio = getLastFrameRatio ();
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Figure 9: Dilation filter applied to a light-mapped Cornell box. Left: texels covered by
geometries have invalid irradiance, due to paths hitting inner geometry, which is
flagged as invalid. Middle: a dilation filter is applied for removing invalid texels.
Right: top view of the scene showing the valid texels (green) and the invalid
texels (red) for one of the objects.

6 float timeSpentTracing = getGPUTracingTime ();

7 float boostFactor =

8 clamp (0.25f, 1.0f, tracingBudgetInMs / timeSpentTracing);

9

10 if (abs(timeSpentTracing - tracingBudgetInMs) > stableArea)

11 if (traceTime > tracingBudgetInMs)

12 sampleRatio *= dampingFactor * boostFactor;

13 else

14 sampleRatio /= dampingFactor;

15

16 sampleRatio = clamp (0.001f, 1.0f, sampleRatio);

Listing 3: Host code for computing the sample ratio used by the performance budgeting
system.

2.8 Post-Process

The output of the GI solver is built progressively. Therefore, the final result is
likely not completed before several seconds have passed. However, to give a sense
of instant control to the artist, the presented output needs to be representative of
its final version as soon as possible. Three types of issues need to be addressed:

• Black texels: These happen when either a given texel has not received any
irradiance sample yet or samples hit backface surfaces marked as invalid, as
shown in Figure 9. To alleviate both cases, a dilation filter is applied to the
data presented to the user, but not to the progressively built version so as to
not alter the final output. This dilation filter ensures that all texels are valid
for bilinear lookup at runtime. A partially covered texel, i.e, one in which
certain sample locations have not received any lighting, do not need any
dilation, because their final irradiance value is computed by averaging only
valid sample locations. Doing so avoid a darkening effect at geometry
junctions.

• Noisy texels: These are a manifestation of undersampling when integrating
values with a stochastic method. The amount of noise reduces over time,
because with additional samples the average value converges to the expected
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mean. To present meaningful values to the user, we use a denoiser algorithm
whose goal is to predict an estimate of the converged mean value. See
Figure 10. To do so, we use a variance-guided filter [12]. The main idea is to
track texels’ variance and use this information for adapting the strength of
neighborhood filtering. This filter is applied in light map space and uses
instances’ chart IDs to act like an edge-stopping function. Doing so avoids
filtering across nonadjacent geometry in world space. See Figure 11. This
hierarchical filter looks sparsely at surrounding texels with increasing
distance in multiple passes. Doing so allows it to extract the mean value,
even in the presence of several frequencies of noise. Since this filter runs in
light map space, it is preferable to have a relatively consistent texel density
over the scene, and more filtering passes will be needed if the texel density
increases. As the variance reduces, the luminance filter will shrink, as well as
the spacing between samples, converging smoothly to the actual average
value.

The variance of the mean3 of each texel is computed using Welford’s online
variance algorithm [19]. The variance is not updated at each iteration, but
after tracing a certain bucket of samples per texel. The size of this bucket
increases at each update due to the quadratic convergence of Monte Carlo
integration. Our bucket size is initially set to 12 samples and is doubled for
each successive iteration. Using this variance information, the standard
error [20] indicates when the mean has reached a certain confidence interval.
We use a confidence interval of 95%, at which point a texel is considered as
fully converged. For example code, see Listing 4.

• Chart seams: Seams can arise between light map charts, as the lighting can
be different on two texels adjacent in world space but distant in light map
space. This is a known issue with light maps. Our current GPU GI solver
tool does not address this issue yet, and we instead rely on our existing
CPU-based stitcher [4].

1 float quantile = 1.959964f; // 95% confidence interval

2 float stdError = sqrt(float(varianceOfMean / sampleCount));

3 bool hasConverged =

4 (stdError * quantile) <= (convergenceErrorThres * mean);

Listing 4: Kernel code describing variance tracking.

3 Acceleration Techniques

The GI solver relies on several acceleration techniques to reduce the cost of each
refinement step. The goal when using these techniques is to converge faster to the
final GI solution with a minimum of approximations, while presenting a coherent
result on screen to the user (see Section 5.2).

3The variance of the mean is not the same as the variance of accumulated samples within a texel.
The latter is related to the subpixel information, while the former is related to the convergence of
the estimated value.
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Figure 10: Left: light map data visualized after the merge and dilation operations. Right:
light map data visualized after the denoiser step. In both pictures bilinear
filtering is disabled to emphasize the noise reduction.

3.1 View Prioritization

Rendering every texel in the light map is unnecessary when the scene is being
observed from only one point of view. By prioritizing texels that are directly in
view, we can achieve a higher convergence rate where it matters most for artists.
This is referred to as view prioritization and is evaluated during our texel
scheduling pass, as described in Section 2.6.

To schedule each texel in view at least once, we compute the visibility over
multiple frames, as depicted later in Figure 19. Each frame we trace nv rays from
the camera into the scene as described in the following pseudocode. When
multiple visibility queries schedule the same texel, care needs to be taken when
merging this texel. We use atomic operations to ensure that a texel is only
scheduled once each frame.

Search for visible texel from camera:
Stratify near plane
for each stratum do

Generate random point in stratum
Construct ray through point on near plane
if Intersect light-mapped geometry then

Load geometry attributes
Interpolate light map UV coordinates using barycentrics
Determine texel index from UV coordinates
Schedule visible texel

Since the variance of each texel is tracked during the lighting integration (see
Section 2.8), this information is used for scheduling only unconverged texels, i.e.,
texels whose variance is higher than a certain threshold.
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Figure 11: Three passes of the Á-Trous (i.e., with holes) denoiser [12] working in light map
space. At each pass, a 5 × 5 kernel is evaluated (green, light blue, and blue
bands). The gathered samples are spread farther and farther apart to filter
the noise across multiple frequencies. The luminance value and chart ID are
used as edge-stopping functions to avoid overblurring and light bleeding across
geometries. In the texel histogram on the bottom right, texel 2 (green dot)
is currently being filtered. Only texel 4 (blue dot) contributes to the filtered
value, as other texels either have a different chart ID than texel 2 or are out of
the valid luminance range.
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Figure 12: Number of local light queries per texel: blue is none, orange is most dense.
Left: many local lights in a corridor. Right: sparse distribution of local lights
with some hash collisions in an outdoor environment.

3.2 Light Acceleration Structure

A level can contain a large number of lights. Casting shadow rays toward each of
them for the purpose of next event estimation is costly (see Section 2.3). This
needs to be done for each vertex of each path. To counter this issue, an
acceleration structure is used to evaluate only lights that potentially interact with
a given world-space position.

The acceleration structure is a spatial hash function [16]. The world space is
divided in an infinite uniform grid of axis-aligned bounding volumes of size S3D.
Each of these boxes maps to a single entry of the one-dimensional hash function of
entry count ne. When a level is loaded, the table is built once, accounting for all
the lights, and uploaded to GPU memory. Each bounding volume’s hash entry
contains a list of indices, one for each light intersecting with it. Thankfully, each
volume does not contain all lights. This is made possible by the fact that, for the
sake of performance, lights in Frostbite are bounded in space according to their
intensity [7].

The bounding volume of size S3D is computed based on the average size of the
lights’ bounding volumes, divided by a constant factor. This constant factor, 8 by
default, can be used to reduce the cells’s size. The hash function is created with ne

set to a large prime number, e.g., 524,287. In the case of a hash collision, it is
possible for multiple volumes, far from each other in the world, to map to a single
entry of the table. This case can create false-positive lights; however, this has not
been observed as a problem so far. Results using this light acceleration structure
are visible in Figure 12. Please refer to the original paper [16] for more details
about this topic.

3.3 Irradiance Caching

Section 2 presents how path tracing is used to estimate light maps and volumes
storing irradiance [9]. For each vertex of a traced path, the surrounding local light
sources are sampled, resulting in an estimate of direct lighting. For each of these
events, a ray is traced to assess the visibility of each light. However, a scene can
have many lights, making this process, which is run for each vertex of a path,
expensive. Furthermore, paths are built independently, so there is a high chance
that paths will diverge quickly. Divergence can result in a higher overall cost of
the process due to incoherent spatial structure queries and rays causing scattered
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Figure 13: Visualization of the irradiance caches on the Granary scene, lit by local lights,
a direction light, and a sky dome. Top left: indirect lighting stored into a light
map. Top right: the directional light irradiance cache. Bottom left: the local
light irradiance cache. Bottom right: red dots showing where the irradiance
cache is computed.

memory access with higher latency. To accelerate this step, we use irradiance
caching.

3.3.1 Direct Irradiance Cache Light Maps

The idea behind irradiance caching is to store the incoming light on a surface
patch (irradiance) into a structure that is fast to query. A complete description of
irradiance caching is available from Křivánek et al. [6]. Frostbite’s GI solver stores
direct irradiance in light map space according to a one-to-one mapping with the
GI light map parameterization of the scene. See Figure 13. A cache is built for
each type of light source: local lights, the sun, and the sky dome. This separation
is important, as it avoids rebuilding the local lights cache when only the sky has
changed (see Section 4.2). Once computed, these direct irradiance cache textures
can then be fetched at each vertex of a path to accumulate the direct irradiance
instead of explicitly sampling lights (see Section 2.3).

As illustrated in Figure 14, the direct irradiance evaluation from lights,
previously achieved using many rays (Figure 6), is now replaced by a few simple
texture fetches, leveraging hardware-accelerated bilinear filtering. Thus, it has less
impact on performance than incoherent tracing toward many lights interacting
with each vertex of a path. These cache textures can easily have their resolution
scaled up to increase accuracy. Otherwise, large texels will miss finer details
resulting from complex occlusions and the final GI will look blurry. Increasing
resolution is also a way to reduce the light map blurring resulting from the texture
bilinear filtering used when sampling the cache.

Using direct irradiance caches results in large performance wins, which are
presented in Section 5.1. Timings are shown in Table 3. Convergence is greatly

18



Light Map
Texel to
Update

Area Light

Figure 14: When using path tracing for next event estimation, to accumulate direct irra-
diance, a visibility test ray (dashed yellow lines) must be cast toward each light
source for each vertex of a path (green dots). When using direct irradiance
caching, a single texture fetch for each vertex can give the direct irradiance
result for every light in the scene. Caching removes all the traced yellow rays
toward each light source and thus accelerates the path tracing kernel. Direct
irradiance cache texels are represented as small rectangles on the surfaces, in
yellow for irradiance E > 0 or black if E = 0.

improved, as depicted in Figure 17, depending on the scene, light setup, and
viewpoint.

3.3.2 Cache Update Process

Every cache is invalidated when a scene is opened in the editor. When the sun is
modified, only the direct sunlight irradiance cache is invalidated, with similar
limitations for the sky dome and local light caches. When a cache is invalidated,
its update process starts. Taking the local light cache as an example, the following
process is followed for each update round:

1. A number nic of samples are chosen for each texel of the light map cache.

2. For each sample, the direct irradiance is evaluated using ray tracing toward
every light source.

3. For area lights, uniform samples are chosen over the light surface. The
number of samples is adapted for each area light as a function of its
subtended solid angle [10]: the larger it is, the more samples it gets to
properly resolve its complex visibility.

4. The samples are accumulated in the direct irradiance light map.

The same process is applied for the sun and sky dome lights. Both are also
uniformly sampled by distributing samples on the sun’s disk and the sky dome
hemisphere. Since the number of samples that are going to be taken for each
source is known, low-discrepancy Hammersley sampling is used. In the case of the
sun, only nsun

ic = 8 total samples are used, assuming sharp shadows. In the case of
local lights, up to nL

ic = 128 samples are used; more samples are needed to
integrate area light irradiance and soft shadows. In the case of the sky dome,
nsky

ic = 128 samples are taken. A high number is needed, since a physically based
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sky simulation can result in high-frequency variations, especially when the sun is
at the horizon [2]. During these steps, we ignore translucent surfaces (see
Section 2), because for this interaction to happen, a path has to traverse a surface.
However, the direct irradiance cache stores only non-occluded, i.e., directly visible,
contributions to irradiance. Since each update round uses nic = 8 samples per
cache, each irradiance cache update is considered done after 1, 16, and 16
iterations, respectively, for the sun, local lights, and sky dome caches. These
values are settings available for users to tweak according to their preference and
the game on which they are working. For instance, some games or levels could rely
mostly on sun and sky dome lighting instead of local lights, thus more samples
would need to be allocated for sun and sky sampling.

3.3.3 Future Improvements

Indirect irradiance cache In addition to direct light caching, accumulated
indirect irradiance can be used to shorten path sampling. As described in
Section 2.8, each texel convergence is tracked. When a texel is fully converged, its
value can be used as an estimate of incident indirect lighting. By doing so, the
path can end there, reducing the amount of computation.

Emissive surfaces As of today, emissive surfaces are not taken into account in
any of the direct irradiance caches. In Section 2.4, we mention that such surfaces
could be converted to triangle area lights. Such area lights could be sampled to
populate a direct irradiance cache light map dedicated to emissive surfaces. This
cache would then only be updated when a mesh is moved or a material property
affecting emitted surface radiance is modified by an artist.

4 Live Update

4.1 Lighting Artist Workflow in Production

Frostbite-based game teams have dedicated artists responsible for designing the
lighting and thereby setting the mood of a scene. There are several editing
operations that lighting artists use to accomplish this. The most common include
placing lights sources, adjusting them, moving objects, and changing their
materials. Other operations include modifying light map resolution for individual
objects and switching objects from being lit by a light map or by irradiance
volumes. These two operations mainly aim to adjust memory usage to fit within a
certain light map budget.

As stated in Section 1, the offline Frostbite GI solver uses CPU-based ray
tracing. Historically, getting feedback on the work performed in the game editor
with regard to global illumination takes minutes to hours when using a CPU-based
solver. The transition to GPU-based ray tracing allows the time range for this
process to become seconds to minutes.

The raw performance when taking a scene from nothing to one with reasonable
global illumination is important in this context. The general acceleration
techniques used are described in Section 3. The next section focuses on
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Invalidates: Light Map Sky Sun Light

Mesh × × × ×
Sky × ×
Sun × ×
Light × ×
Material ×
Resolution × × ×

Irradiance Cache

Table 1: When an input is changed (left column), GI states may need to be reset (upper
row). Those states are marked with a cross.

optimizations made possible when dealing with a specific modification done to the
scene by the artist.

4.2 Scene Manipulation and Data Invalidation

For a scene, light maps, irradiance volumes, and irradiance caches are considered
states, which are updated after each iteration of the GI preview. When a light,
mesh, or material is updated, the current GI states become invalid. However, it is
vital to not present misleading results to the artist. A straightforward solution is
to clear all the states and restart the lighting solution integration. At the same
time, the user experience relies on not doing excessive invalidation that would
cause unnecessary computations while restarting the lighting solution, which
results in noisy visuals. The goal is to invalidate the smallest possible data set
while still presenting valid results.

Table 1 presents what state is reset after an input has been updated. It shows
that the light map (or irradiance volumes) are invalidated in all cases, except when
scaling the resolution of a mesh light map. Scaling resolution without invalidation
is possible because, during GI preview, each mesh has a dedicated light map
texture. We use per-mesh instance textures together with bindless techniques to
sample all these textures when rendering a scene. Material changes will also affect
indirect light, but at least here irradiance caches are still valid since they include
only direct light, before it is affected by a surface material. One can also notice
that irradiance caches need to be invalidated only when the associated light source
type is modified.

The real bottleneck come from meshes. Each time a mesh is added, updated,
transformed, or removed, light maps and irradiance caches all need to be reset. It
is wasteful to invalidate the light maps across the whole scene just for the
movement of one mesh. A task for future work would be to experiment with the
possibility of selectively invalidating mesh light maps based on their relative
distance and lighting intensity. Furthermore, only texels within an area around the
considered mesh could be invalidated by setting their sample count to 0. This
might be sufficient to improve the lighting artists’ workflow in this case, without
misleading them or presenting wrong information on screen.

21



(a) Granary by Night (rendered). (b) Zen Peak (light maps).

Figure 15: Test scenes from the selected viewpoint. (a) Granary by Night. (Courtesy of
Evermotion.) (b) Zen Peak is a level from Plants vs. Zombies Garden War-
fare 2. (Courtesy of Popcap Games, c© 2018 Electronic Arts Inc.)

5 Performance and Hardware

5.1 Method

In recent ray tracing–related work, the performance metrics used are often
technically oriented, such as giga-rays per second or a simple frames per second.
In this project, the focus instead has been on the lighting artist’s experience, and
therefore our methods to assess performance reflect this. Performance manifests
itself to the artist as refresh rate and convergence rate, i.e., how often and to what
quality lighting conditions are presented to the user.

The quality of the GI solver’s progressive output is assessed using a perceptual
image difference measure, and the error is tracked over time. The L1 metric was
simple and sufficient for our use case [13]. The L1 metric is applied to the results
of the GI solver, i.e., light maps or irradiance volumes. Only texels in view that
affect the viewed result are part of the calculation. A texel is considered significant
if it is scheduled in at least 1% of all the update iterations. To limit the number of
independent variables, the refresh rate has been fixed to 33 milliseconds in these
tests.

To be able to calculate a perceptual image difference, an image representing
ground truth is needed. It is computed using the base version of our GI solver
pipeline, without optimizations or simplifications and without using time
restrictions. Convergence is computed continuously. When each texel has reached
a certain threshold of convergence (for details see Section 2), the resulting light
maps and irradiance volumes are stored as a reference.

A specific acceleration technique can be assessed by adding it to the GI solver.
The test starts by invalidating the state, depending on what user operation we
want to simulate (as described in Section 4). As the process continues, after each
iteration the results are compared with the reference and the metric gets applied.

The metric results in an error, or distance, from the ground truth. The error is
logged and used to graph how it changes over time, and it is compared to a GI
solver that does not include the acceleration technique.
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Scene
Light Map texels Mesh Triangles Lights

Scene View Point Area

Granary by Night  

Zen Peak

510k 25k 278k 89 18

600k 25k 950k 297 0

Table 2: Test scene complexity. Local point lights include point, spot, and frustum lights.

Granary by Night Zen Peak

Irradiance Cache Building

View Prioritization 0.2 ms 0.2 ms

Irradiance Cache 25.7 ms 3.4 ms

Trace 5.0 ms 27.3 ms

Denoise 0.7 ms 0.7 ms

Irradiance Cache Converged

View Prioritization 0.2 ms 0.2 ms

Trace 32.7 ms 32.6 ms

Denoise 0.7 ms 0.7 ms

Table 3: Average time spent each iteration. As explained in Section 3.3.2, the irradiance
cache cost will completely disappear once the cache has converged, i.e., after all
the required samples have been resolved.

5.2 Results

Two different scenes with one viewpoint for each of them are used to measure
performance. They are meant to represent typical use cases for our lighting artists.
The first is an indoor scene mainly lit by local lights (Granary by Night) and the
second is a large-scale outdoor scene from a production game (Zen Peak level from
Plants vs. Zombies Garden Warfare 2 ). To give a sense of the complexity of each
scene’s view, both are presented visually in Figure 15 and their statistics are
presented in Table 2. Apart from what is shown in the table, a relevant difference
is the amount of overlapping local light. Zen Peak has lights distributed over the
entire scene, while Granary by Night has clusters of 10 or more lights affecting the
same area. The latter makes the light evaluation cost high, as shown by the time
spent on the irradiance cache in Table 3.

All the graphs in Figures 16–18 show the normalized error over time, with a
logarithmic y-axis scale. Notice that the outdoor scene converges faster, requiring
a different interval on the same axis.

Intuitively, prioritizing texels that are visible in the scene is a substantial
acceleration technique. As can be seen in Table 2, the different test scenes have a
similar number of texels in view. The potential speedup should be relative to the
fraction of texels in view. The results using view prioritization (described in
Section 3.1) are shown in Figure 16. They are based on a full reset, and the error
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Figure 16: Convergence plots for demonstrating performance gain by using view prioriti-
zation on two scenes: Granary by Night (left) and Zen Peak (right). These
plots show the error (L1) compared to a reference light map. View prioriti-
zation (dashed curve) allows for faster convergence, especially during the first
few seconds, compared to scheduling all light map texels at once (red curve).

is plotted for the GI solver with and without view prioritization enabled. As seen
in these graphs, the first test scene exhibits the significant speedup expected, but
the second test case suffers from our measurement method, where every texel in
the light map is equally important. The view prioritization algorithm will not hit
tiny texels that cover less than a pixel in that view, thus the improved convergence
rate is lower than expected.

The irradiance cache is the second major acceleration technique described in
this chapter. Initially, it will use computing power to fill the cache with data,
which is not directly used. It performs work on all texels in the scene, not only the
ones hit by a ray during path traversal. This affects initial convergence, but, as
shown in the first test case in Figure 17, after only a second the irradiance cache
outperforms the base version of the GI solver. While the irradiance cache also
converges quickly in the second test, it introduces an error bias of about 4.5%.
This error is caused by a lack of resolution in areas where there are many tiny
details or high frequencies in the lighting. See Section 3.3 for issues related to
direct irradiance caching. Note that the irradiance cache is valuable long after
being populated and needs to be reset only after certain user operations; see
Section 4.

Denoising is primarily used to make the result look more pleasant to the user.
The performance tests in Figure 18 show that it also improves the convergence
rate. This is important, as denoising does not contribute to the total convergence.
Instead, it only temporary affects what the user sees. Figure 19 summarizes
visually the impact of all the described techniques.

5.3 Hardware Setup

When a single GPU is available, the Frostbite editor together with the GI solver
will be scheduled concurrently on the same GPU. In this case, the operating
system will try to schedule the workload evenly. However, by default, this setup
will fail to provide a smooth experience, since there is no way for it to divide the
work uniformly to target an even frame rate. Either a large ray tracing task is run
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Figure 17: Convergence plots for demonstrating performance gain by using irradiance

cache on two scenes: Granary by Night (left) and Zen Peak (right). These
plots show the relative error (L1) compared to a reference light map. Using an
irradiance cache (dashed curve) achieves a faster convergence compared to next
event estimation at every path’s vertex (red curve). This difference is especially
visible on the Granary scene, which contains many local lights and so requires
additional occlusion rays for estimating their visibility.
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Figure 18: Plots illustrating the converge gain obtained by denoising the light map output
on two scenes: Granary by Night (left) and Zen Peak (right). These plots
show the relative error (L1) compared to a reference light map. This denoising
step removes most of the high- and medium- frequency noise and allows us to
quickly present a result similar to the converged output.
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Figure 19: Visual comparison of convergence rate between different acceleration tech-
niques. First row: all texels are scheduled equally, and next event estimation
is done at every vertex of all paths. Second row: view prioritization (View) is
used for scheduling only visible texels. Third row: irradiance cache (IC) is used
for avoiding next event estimation. Fourth row: combination of view prioriti-
zation and irradiance caching. Fifth row: combination of view prioritization,
irradiance caching, and denoiser.
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Figure 20: The Frostbite editor renders the game while the GI solver runs asynchronously
on a side GPU. This enables a stutter-free experience, with both processes
each leveraging the full power of a GPU.

and the Frostbite editor slows down considerably, or the ray tracing work is
scheduled less often and the time to convergence is longer and updates are less
frequent. A dual-GPU setup is recommended to avoid our GI path solver and
Frostbite competing for the same GPU resources.

As shown in Figure 20, when two GPUs are used, the first can be used to
render the editor and the game, while the second handles the GI solver doing ray
tracing. Once an update cycle is done, the light map and light probe volumes are
copied over to the GPU running the editor view for visualization. To this aim, the
DirectX 12 multi-adapter mode is used, where each GPU is controlled explicitly
and independently [14]. The most-capable GPU is selected to run the path tracing
work, while the Frostbite editor requires at least a DirectX 11 compatible GPU.

In the future, the GI solver could be extended to handle n+ 1 GPUs, n doing
path tracing and one presenting the game editor to artists. The current dual-GPU
approach is already a good fit for artists, providing a smooth, stutter-free
experience for Frostbite games currently in production.

6 Conclusion

This chapter describes the real-time global illumination preview system used in
production going forward by Electronic Arts titles running on Frostbite. It allows
lighting artists to preview what the final global illumination baking process will
produce while editing a level, in a matter of seconds rather than waiting minutes
to hours for the final result. We strongly believe that it will make artists more
efficient while allowing them to focus on what is important: art and their creative
process. As a result they will have more time to iterate and polish each scene, and
thus they will be more likely to produce higher-quality content.

The acceleration techniques put in place, such as dynamic light map texel
scheduling and irradiance caching, enable reaching a higher convergence rate with
minimal impact on quality. A light map denoising technique is also put in place to
make sure the result is pleasing to the eye, even for a low sample count, for
instance when the light map evaluation is restarted.

Going forward, more advanced caching representations could be investigated,
such as path guiding for long paths and bidirectional path tracing [17]. For a
smooth user experience, a dual-GPU local machine setup is recommended, allowing
lockless asynchronous GI updates. Going further, a farm of DXR-enabled GPUs
could be installed around the world, providing global illumination previewing and
high-quality baking as a service for everyone in each of Electronic Arts’ studios.
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