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Abstract

In this master thesis report, a scheme for adaptive hardware terrain tessel-
lation is presented. The scheme uses an offline processing approach where
a height map is analyzed in terms of curvature and the result is stored in a
resource called density map. This density map is then bound as a resource
to the hardware tessellation stage and used to bias the tessellation factor

for a given edge. The scheme is implemented inside Frostbite
TM

2 by EA
TM

DICE
TM

and produces good results while making the heightfield rendering
more efficient. The performance gain can be used to increase the render-
ing detail, allowing for better visual appearance for the terrain mesh. The
scheme is currently implemented for hardware tessellation but could also
be used for software terrain mesh generation. The implementation works
satisfactory and produces good results with a reasonable speed.



Sammanfattning

I den här rapporten för examensarbete presenteras en algoritm för att utföra
adaptiv hårdvarutessellation av terräng. Algoritmen använder sig av ett
offline-steg där ett höjdfält analyseras med avseende på kurvatur och re-
sultatet lagras i en densitets-karta. Den här densitets-kartan används sedan
som en resurs i hårdvarutessellationen där den påverkar en tessellations-
faktor för en given triangel-kant. Algoritmen har implementerats i spelmo-

torn Frostbite
TM

2 skapad av EA
TM

DICE
TM

och producerar goda resultat
samtidigt som den gör rendering av terrängen effektivare. Detta medför
att detaljnivån för terrängrenderingen kan ökas, vilket i sin tur leder till en
visuell förbättring. Algoritmen är för närvarande endast implementerad
för hårdvarutessellation men skulle också kunna användas för mjukvaru-
generering av terrängens geometri. Algoritmen fungerar tillfredsställande
och producerar goda resultat med en acceptabel hastighet.
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Chapter 1

Introduction

The Frostbite
TM

2 terrain system is a highly scalable terrain system. With
the introduction of tessellation hardware with DirectX 11/OpenGL 4 class

graphics cards, detail displacement mapping was implemented in the Frostbite
TM

2 terrain system. The problem with this approach is that it is a brute-force
algorithm that does not take the shape of the terrain into account.

In this chapter, the foundations of terrain rendering will be described as an
introduction to the subject. It will furthermore present a number of earlier
approaches to adaptive terrain rendering.

1.1 Terrain Rendering

Terrain rendering is a challenging task for real time applications since the
terrain typically needs to be very large in order to be convincing. The mem-
ory and rendering cost makes it impossible to use a large mesh structure,
often referred to as a polygon soup. To solve this, a heightfield function is of-
ten used to describe the shape of the terrain. This function can have values
described in a texture (a height map) giving the height for a given world
space position, z = f (x, y). A height map is however limited in terms of
resolution and can not be infinitely large. For smaller terrains this is gener-
ally not an issue, but to be able to support very large terrains, it is necessary
to use level of detail support for the height map.

1.1.1 Mesh Generation

The terrain mesh is typically generated in runtime by placing a mesh grid
on top of the height field and then displacing the vertices vertically accord-
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ing to the height map. To be able to support large terrains it is necessary to
not generate too many primitives in this control mesh. To account for this,
a level of detail1 scheme is needed also for the control mesh. This level of
detail is often based on camera distance and can also contain other mea-
sures such as view angle, curvature, etc. Since the mesh is dependent on
the viewer, it is generated procedurally at runtime.

1.1.2 Adaptive Terrain LOD

For adaptive terrain mesh generation on the CPU, there are many algo-
rithms. The most widely known method is perhaps ROAM, presented by
Duchaineau et. al. in 1997 [5]. ROAM means Real-time Optimally Adapt-
ing Meshes and uses two priority queues to drive a series of split and merge
operations, producing an optimal mesh for a particular view.

ROAM is a dynamic mesh representation based on triangle bintrees. Tri-
angle bintrees are the triangle counterpart of a binary tree. At the lowest
LOD, the tree consists of one triangle, the root triangle. The base triangula-
tion is precomputed and the bintree is then defined recursively by splitting
each triangle along an edge formed from the apex vertex of the triangle. Se-
ries of split and merges can then be used to obtain any triangulation of the
mesh. The splits and merges can also be animated using vertex morphing
where a lower LOD triangle is morphed into a higher LOD triangle or vice
versa.

Split Queues

The split and merge operations in the bintree stucture provides a way to
achieve any triangulation and there is no need to take special care to avoid
cracks or T-vertices. With the split and merge framework in place, a mea-
sure to control the triangulation is needed. Duchaineau et. al. uses a pri-
ority queue for this purpose, that tells which triangles to split. First, all
triangles in the bintree are put into the priority queue. Then the triangle
with the highest priority is found in the queue and it is split. The split
queue is then updated by removing the newly split triangle and adding
any created triangles. This is then repeated as long as the triangle mesh is
too small or inaccurate, and will create a triangle mesh that minimizes the
maximum priority in the queue (often an error measure).

1Hereafter LOD
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Frame-to-Frame Coherence

The above works well for a static view, but for an interactive view, the
frame-to-frame coherency has to be taken into account to get a good fram-
erate. Duchaineau et. al. uses the observation that the changes in priority
from one frame to the other are in general relatively small. They introduce
a second priority queue, the merge queue. This queue contains all merge-
able triangle diamonds (two neighboring triangles from the same LOD) for
the current triangulation. The priorities in this queue are obtained by using
the maximum of the two diamond triangle priorities. A condition is now
added to the algorithm to check if a triangle should be split or if one should
be merged. This way, the algorithm becomes incremental in the sense that
it produces an optimal mesh based on the mesh for the previous frame.
The worst case for this algorithm is when very few triangles are common
from one frame to the next and the remedy for this case is to fall back to the
original algorithm as if the current frame was the first frame.

Error Metrics

To be able to use the priority queues they need to have some kind of metric
attached to them to drive the prioritization. Duchaineau et. al. base this
error metric on the geometric screen space distortion for the triangle. That
is, how far is the surface point from where it is supposed to be in screen
space. In practice this is done by calculating an upper bound for the maxi-
mum distortion. For each triangle in the triangulation, a local upper bound
on the distortion can be found by projecting the wedgie of the triangle into
screen space. A triangle wedgie is defined as the volume of world space
that contains points (x, y, z) of the triangle T in a way such that (x, y) ∈ T
and |z − zT(xy)|, where zT(x, y) is the height value as described by the
height map at position (x, y).

1.1.3 Chunked LOD

Thatcher Ulrich proposed a new technique for rendering large terrains adap-
tively in 2002 [9]. The technique generates static meshes as a preprocessing
step which are stored at different LOD levels in a quadtree. In runtime, the
needed LOD is calculated and rendered from the quadtree. When quadtree
nodes with different LOD meet, there will be cracks at the borders. Ul-
rich proposes a hybrid solution to the problem using vertical skirts that are
simple triangles that extend vertically at the edge of the patch to cover the
crack that occurs. This means that the bottom edge of the skirt has to extend
below the full LOD of the mesh at the edge and has to extend below any
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possible simplifications of it. The skirts belong to a chunk and is contained
in them and may be textured using the chunk texture.

Texturing is simple for this LOD scheme. When preprocessing, each chunk
is assigned a static texture. This makes it possible to have a consistent res-
olution that is at least one texel per screen pixel.

The rendering of the terrain chunks is done in a view-dependent manner.
This means that for a view, chunks are chosen from the quadtree structure
to match the desired fidelity of the terrain model. Each chunk (node) in
the quadtree has an associated maximum geometric error and a bounding
volume. This makes the calculation of which node to use

ρ =
δ

D
K (1.1)

where ρ is the maximum screen space error that this particular node will re-
sult in, δ is the maximum geometric error associated with the chunk and D
is the distance from the camera to the closest point on the chunk. Further-
more, K is a perspective scaling factor that takes viewport size and field-of-
view into consideration. K is computed as

K =
viewport width

2 tan horizontal fov
2

. (1.2)

To render a chunk, the quadtree is traversed from the root with a prede-
fined maximum tolerable screen space error. If the current chunk in the
traversal is acceptable by means of screen space error calculated by equa-
tion 1.1, the chunk is rendered. If the screen space error of the current chunk
is too large, the tree traversal continues with the children of the node.

Avoiding Pops

When a parent node in the quadtree is replaced by child nodes, there will
be a distinct pop between the two different LOD levels. This can be solved
by adding a small morph to the vertical coordinate of each vertex. The
morph parameter is uniform over the whole chunk. For a chunk, a ver-
tex morph target has the same horizontal coordinate and the vertical co-
ordinate is calculated by sampling the height of the parent chunk at these
known horizontal coordinates.

When the chunk is rendered, the morph parameter is calculated in such a
way that it is always 0 when the chunk is about to split and 1 when the
chunk is about to merge. This means that the shape of the chunk will be
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consistent over LOD switches. The morph parameter can be calculated
with the help of the previously defined error metric ρ in equation 1.1

tmorph = clamp(
2ρ

τ
− 1, 0, 1). (1.3)

Equation 1.3 will give tmorph = 0 exactly at the distance where a chunk is
split into four smaller ones and tmorph = 1 exactly at the distance where
four child tiles are merged into one. The equation comes from the fact that
δ of the parent node is 2δ for the child nodes.

Paging

The chunked LOD system also supports paging of out-of-core chunks. This
means that only chunks needed for the current view are kept in main mem-
ory. Chunks are then swapped out and read from disk as they are needed.
Therefore, it is necessary to keep a pool of terrain chunks in main memory
such that nodes that has not been used for some time can be freed.

1.1.4 CDLOD

Another, more recent approach is the CDLOD approach proposed by Filip
Strugar in 2010 [7]. This algorithm also organizes the height map into a
quadtree just as Chunked LOD by Ulrich. The selection algorithm then
assures that the on-screen triangle complexity is kept constant, regardless
of the distance to the viewer.

LOD Transition

CDLOD means continuous distance-dependent level of detail and this is
accomplished by using a continuous morph between LOD levels. In con-
trast to the approach proposed by Ulrich [9], CDLOD does not use any
stitching geometry to avoid cracks in LOD switches. Instead, the higher
level mesh is completely transformed into the lower level mesh before the
switching occurs. This means that there is no popping when changing LOD
levels. It also allows for a simpler rendering since only one rectangular grid
mesh is needed to render everything. This LOD transition approach is also
better as a platform for hardware tessellation since there will be no sud-
den changes in the underlying heightfield mesh, resulting in less popping
artifacts.
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1 2 4 8 16 32

Figure 1.1: The range table for six LOD ranges with relative sizes at the
top. The morph area of each range is shown in gray.

Rendering the Terrain

The first step in rendering terrain with the CDLOD terrain system is to
select an appropriate node from the quadtree structure. This step is per-
formed every time the view is changed. To make rendering more efficient,
the quadtree is laid out such that each depth level in the quadtree corre-
sponds to a LOD level. The reason this makes rendering of the terrain
simpler is that the same single fixed mesh can be used to render all nodes.
Since nodes are stored in a quadtree, each node has four child nodes, with
each of the child nodes occupying a fourth of the area of the parent node.
This means that the corresponding world space area will have four times
the triangles.

The distances covered by each LOD layer is precomputed and stored in a
table. The distance covered by a level should be two times larger than the
previous one. This is since each node has four children and due to the way
perspective projection (which is assumed) works. The last 15-30% of the
areas are used for the mesh morphing and is thus called morph areas. The
range table layout is illustrated in figure 1.1.

When the array of LOD ranges has been calculated it is used to select a
subset of the terrain quadtree that best represents the terrain at a certain
view. To determine this subset, the quadtree is traversed recursively from
the root. If a node falls in the selected range, the children of that node is
traversed to find the highest lod that matches the distance. A node can also
be selected partially over an area. This is to ensure that not all child nodes
has to be rendered if only a few are in LOD range. An example of a selected
quadtree subset is shown in figure 1.2.

Frustum culling can also be performed when traversing the tree to select
nodes for rendering.

After a subset of the quadtree has been selected, it is rendered by iterating
through a list with the selected nodes and their data. The actual rendering
is not very complicated and consists of a single grid mesh of fixed dimen-
sions that is transformed in the vertex shader to cover the desired terrain
area.
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Figure 1.2: Example of LOD quadtree selection. Darker nodes are frustum
culled. Image from [7].

Morph Implementation

In the CDLOD algorithm, each vertex is morphed individually based on a
per-vertex LOD metric. This is not the case in the Chunked LOD approach
by Ulrich [9] where the morph is uniform over a chunk. The morphing
operation is done in the vertex shader and each node can be morphed to
match a node either one level higher or one level lower in the quadtree.
The morph is performed in such a way that every block of 8 triangles are
smoothly morphed into a corresponding block of 2 triangles. This mor-
phing will result in smooth transitions with no seams or T-junctions (T-
vertices).

The first step is to approximate the distance between the observer and the
vertex. The vertex position used in this approximation can be approxi-
mated or sampled from the height map. However, it is important that the
approximation or sampling is consistent on both sides of a LOD edge to
avoid cracks. The vertex is then morphed based on the distance from the
vertex to the viewer.

After this morphing, the height is sampled from the heightmap and the
vertex is displaced vertically.

Streaming

As was the case with the Chunked LOD algorithm, the CDLOD algorithm
also supports streaming of quadtree nodes to lower the memory costs for
rendering large terrains.
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1.2 Detail Displacement Mapping

A heightfield based terrain is essentially a flat mesh that is displaced with
a displacement map, the height map. Displacement mapping can be de-
scribed as

P′(x, y, z) = P(x, z) + D(y) (1.4)

in the heightfield case. It is also possible to displace a 3D mesh by a 3D vec-
tor which is called vector displacement. However, the control mesh sent to
the displacement mapping algorithm is important. Ideally, it has one ver-
tex per displacement map sample. This is for practical reasons not always
possible but with the introduction of hardware tessellation in Direct X 11
consumer graphic cards it is possible to generate sufficiently dense meshes
effectively. This means that it is also possible to combine a CPU LOD with
a GPU LOD scheme where extra detail is added. The CPU LOD can in this
case use a coarser generated control mesh that is then tessellated by hard-
ware to get a higher resolution mesh. This can save CPU time needed for
other parts of the application.

1.2.1 Character Detail Displacement Mapping

Detail displacement mapping is often used in character modeling. Tools
such as ZBrush use subdivision surfaces combined with vector displace-
ment mapping. With the introduction of tessellation hardware in consumer
graphics cards, this technique has become increasingly interesting for real-
time applications. The most popular subdivision scheme is perhaps the
Catmull-Clark scheme. Catmull-Clark subdivision surfaces cannot be used
directly since patches that contains extraordinary vertices consists of an in-
finite set of polynomials. For this reason, Loop et. al. [6] proposes two
schemes to approximate Catmull-Clark subdivision surfaces. There are
also approaches that do not use Catmull-Clark surfaces. One such example
is the PN-Triangles approach suggested by Vlachos and Peters [10].
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Chapter 2

Background

This chapter will first give a mathematical background in the field of differ-
ential geometry on surfaces. The density value described later in the report
will be based on curvature, so a mathematical foundation is needed. It will
then describe the Frostbite

TM
2 terrain system to provide the necessary un-

derstanding for the implementation of the density map algorithm.

2.1 Differential Geometry Background

Since the heightfield is essentially a 2.5D surface, differential geometry for
surfaces is highly relevant to the problem. This section will provide a math-
ematical background to the differential geometry used throughout the re-
port.

2.1.1 Introduction

The field of differential geometry on surfaces is well studied and well de-
scribed in books such as Differential Geometry of Curves and Surfaces by do-
Carmo [4], which can be consulted for a more complete introduction on the
subject.

Consider a continuous surface S ⊂ R3 given in parametric form

x(u, v) =





x(u, v)
y(u, v)
z(u, v)



 (2.1)
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where x, y, z are differentiable functions in u and v. A tangent plane to S is
spanned at x by the two partial derivatives xu and xv. The normal vector at

x is then given by n = (xu×xv)
‖xu×xv‖

.

First fundamental form

The first fundamental form is defined as coefficients of the dot product on
the tangent space of S. The dot product is

I(axu + bxv, cxu + dxv) = Eac + F(ad + bc) + Gbd (2.2)

where E, F and G is the coefficitents of the first fundamental form. If writ-
ten as a metric tensor, the first fundamental form becomes

I =

[

E F
F G

]

=

[

xu · xu xu · xv

xu · xv xv · xv

]

. (2.3)

Second fundamental form

The second fundamental form was introduced by Gauss and considering
the surface defined in 2.1 the second fundamental form can be defined
as

II = edu2 + 2 f dudv + gdv2 (2.4)

and written in matrix form this becomes

II =

[

e f
f g

]

=

[

xuu · n xuv · n

xuv · n xvv · n

]

. (2.5)

With the first and second fundamental form defined, it is possible to mea-
sure length, angles, area and curvatures on the surface.

Normal curvature

Let t = axu + bxv be a unit vector in the tangent plane at p which is rep-
resented as t = (a, b) in some local coordinate system. Then the normal
curvature can be defined as the curvature of the planar curve that is the
result of intersecting the surface S with a plane through p, spanned by n

and t. The normal curvature in a direction t can be written as
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κn(t) =
tT I It

tT It
=

ea2 + 2 f ab + gb2

Ea2 + 2Fab + Gb2
. (2.6)

The maximum and minimum normal curvatures κ1 and κ2 are called princi-
pal curvatures. The corresponding direction vectors t1 and t2 are called the
principal directions. Worth to note is that these two directions are always
perpendicular to each other.

Weingarten equations

With the first and second fundamental form given, the derivative of the
unit normal n can be described in terms of the first derivatives of the po-
sition vector r = r(u, v). With the coefficients of the first and fundamental
forms E, F, G, e, f , g respectively.

nu =
F f − Ge

EG − F2
ru +

Fe − E f

EG − F2
rv (2.7)

nv =
Fg − G f

EG − F2
ru +

F f − Eg

EG − F2
rv (2.8)

The shape operator

If the Weingarten equations are written in matrix form, the Weingarten cur-
vature matrix (alt. second fundamental tensor) is obtained

W =
1

EG − F2

[

eG − f F f G − gF
f E − eF gE − f F

]

. (2.9)

As described above, the Weingarten equations describe the directional deriva-
tive of the unit normal. This means that the normal curvature can be de-
scribed as

κn(t) = tTWt. (2.10)

If t1 and t2 defines a local coordinate system, W becomes a diagonal ma-
trix

W =
[

t1 t2

]

[

κ1 0
0 κ2

]

[

t1 t2

]−1
(2.11)
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which in turn means that the normal curvature can be written as

κn(t) = κn(φ) = κ1 cos φ2 + κ2 sin φ2 (2.12)

where φ is the angle between t1 and t2.

Curvatures

From the above definitions it is possible to express two curvature measures.
The mean and Gaussian curvature.

The mean curvature is defined as the mean value of the principal curva-
tures

K =
κ1 + κ2

2
=

1

2
trace(W) (2.13)

and the Gaussian curvature is the product of the principal curvatures

H = κ1κ2 = det(W). (2.14)

Laplace operator

The Laplace operator ∆ is defined as the divergence of the gradient ∆ =
∇2 = ∇ · ∇. In Euclidian space this is the sum of second order partial
derivatives.

∆ f = div∆ f = ∑
i

δ2 f

δx2
i

(2.15)

This concept however does not work for functions defined on surfaces. For
that, the Laplace-Beltrami-operator is used. This operator is defined as

∆S f = divS∆S f (2.16)

where S is a manifold surface and f is the function defined on the sur-
face.

If this operator is applied to the coordinate function x it evaluates to

∆Sx = −2Hn (2.17)
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pi

Figure 2.1: An osculating circle.

which is the mean curvature normal. This means that the mean curva-
ture can be calculated by applying the Laplace-Beltrami operator to a sur-
face.

Discretization

Polygonal meshes are not smooth surfaces, but rather piecewise linear ap-
proximations. The definition of the curvature tensors also require the exis-
tence of second order derivatives. To be able to calculate differential prop-
erties on a polygonal surface, discretization has to be done. A common
approach for computing discrete differentials is to consider spatial aver-
ages over a local neighborhood N(x) for a point x on the surface. The size
of this neighborhood affects the stability of the calculations. A larger neigh-
borhood will smooth the calculations, making them less sensitive to noise.
The neighborhood size is often measured in ring size. A one-ring neighbor-
hood means the ring of directly connected neighbor vertices and a two-ring
neighborhood means vertices that are directly connected and vertices that
are in turn connected to these vertices.

A common approach to estimate the curvature tensor at a vertex is to first
discretize the normal curvature. Given vertex positions pi, pj and the nor-
mal ni, the normal curvature in the direction along the edge between pi

and pj is

κij = 2
(pj − pi)ni

‖pj − pi‖2
(2.18)

Geometrically this can be interpreted as fitting the osculating circle interpo-
lating pi and pj with normal ni at pi. This is illustrated in figure 2.1.
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2.1.2 Heightfield Differentials

Laplacian

The Laplacian of a heightfield function is the sum of the second order par-
tial derivatives of the surface. With a heightfield described by z = h(u, v),
the discrete Laplace filter becomes

∇h =
δ2h

δu2
+

δ2h

δv2
. (2.19)

Curvatures

For a heightfield function z = h(u, v), the discretization of curvature mea-
sures can be derived by considering the surface S again but this time with
a heightfield function.

x(u, v) =





u
v

h(u, v)



 (2.20)

With this definition, the derivatives for the heightfield function becomes

xu = (1, 0, hu), xv = (0, 1, hv)

xuu = (0, 0, huu), xvv = (0, 0, hvv)

xuv = xvu = (0, 0, huv) (2.21)

and the unit normal

n =
(−hu,−hv, 1)
√

1 + h2
u + h2

v

(2.22)

The coefficients of the first fundamental form is given by (equation 2.3)

I =

[

xu · xu xu · xv

xu · xv xv · xv

]

=

[

1 + h2
u huhv

huhv 1 + h2
v

]

(2.23)

and the coefficients of the second fundamental form becomes
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II =

[

xuu · n xuv · n

xuv · n xvv · n

]

=
1

√

1 + h2
u + h2

v

[

huu huv

huv hvv

]

(2.24)

With the coefficients for the first and second fundamental form in place,
recall that the mean curvature is given by the mean value of the principal
curvatures or by the trace of the Weingarten matrix. With the above coeffi-
cients, the Weingarten matrix is

W =
1

EG − F2

[

eG − f F f G − gF
f E − eF gE − f F

]

(2.25)

which gives the mean curvature

H =
1

2
trace(W)

=
1

2

eG − f F + gE − f F

EG − F2

=
1

2

1
√

1 + h2
u + h2

v

huu(1 + h2
v) + hvv(1 + h2

u)− 2huvhuhv

1 + h2
u + h2

v

=
huu(1 + h2

v)− 2huvhuhv + hvv(1 + h2
u)

2(1 + h2
u + h2

v)
3/2

. (2.26)

With the help of finite differences, this mean curvature equation can be
used to retrieve curvature information from a heightfield function. The
formula for Gaussian curvature is obtained in a similar fashion but instead
from the determinant of W.

K =
1

2
det(W)

=
huuhvv − h2

uv

(1 + h2
u + h2

v)
2

(2.27)

The Laplace-Beltrami Operator

The Laplace-Beltrami operator is, as mentioned above, an extension to the
Laplace operator for use on surfaces. The Laplace-Beltrami operator eval-
uates to the mean curvature normal since

−
∇sx

2
= ˇn =

∆A

2A
. (2.28)
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This means that the mean curvature can be calculated by evaluating the
Laplace-Beltrami operator on the surface.

Taubin [8] proposed a uniform discretization to this operator by consider-
ing a surface signal to be a function x = (x1, . . . , xn)t defined on the vertices
of a polyhedral surface. The Laplacian of the surface can then be discretized
as the weighted averages of the neighborhood.

∆xi = ∑
j∈N1(i)

wij(xj − xi) (2.29)

where wij are positive weights defined for each vertex pair that sum up to
one, ∑ j ∈ N1(i)wij = 1. There are many ways to choose these weights and
a very simple choice is to set wij to the inverse of the number of vertices in
the chosen neighborhood. This can in some cases produce sufficiently good
results. However, these weights do not take the local geometry around xi

into consideration which means that the approximation will be bad for ir-
regularly tessellated meshes. It will consider vertices that are moved from
the barycenter of the region as curvatures, even though the area is com-
pletely flat. This will produce good tessellation patterns but a bad approx-
imation of the Laplace-Beltrami operator.

A better approximation of the operator is obtained if the area of the neigh-
borhood is considered.

∇S f (v) =
1

A ∑
vi∈Ni(v)

(cot αj + cot β j)( f (vi)− f (v)). (2.30)

This means that the final sum is divided by the sum of the polygon areas
in the chosen neighborhood. cot αj and cot β j are the angles between the
current vertex vi and the next and previous vertices in the ring, vj+1 and
vj−1 respectively.

The measure can however be improved further, by instead considering the
Voronoi area of the neighborhood. This gives the discretization

∇s f (v) =
1

Av
∑

vi∈Ni(v)

( f (vi)− f (v)). (2.31)

where Av is the Voronoi area of the neighborhood

Av =
1

8 ∑
j∈N1(i)

(cot αj + cot β j)|vi − vj|
2. (2.32)
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The mean curvature is then H(v) = 1
2‖∆s f (v)‖.

The same approach can also be used to get a more accurate discrete estimate
for the Gaussian curvature

K(vi) =
1

Av



2π − ∑
vj∈N1(vi)

θj



 , (2.33)

where θj is the angle of the incident triangle at vj. Geometrically, the Gaus-
sian curvature can be interpreted as the deviation from 2π in the one-ring
neighborhood and the formula is a direct consequence of the Gauss-Bonnet
theorem. If both the mean and Gaussian curvatures are known, it is possi-
ble to calculate the principal curvatures from the two

κ1,2(v) = H(v)±
√

H(v)2 − K(v). (2.34)

2.2 The Frostbite
TM

2 Terrain System

This section will describe the terrain system in Frostbite
TM

2. For a more
in-depth view of this system, consult the presentation by Widmark from
Game Developers Conference 2012 [11].

The terrain system in Frostbite
TM

2 is a highly scalable terrain system and
has support for level-of-detail in many different parts of the system. The
terrain system is height-map based and generates terrain procedurally at
runtime. To be able to handle very large terrains, the heightfield raster is
divided into tiles that can have different resolutions. Typically, the tiles
residing in the playable area of a level has a higher spatial resolution than
tiles at the outer edges of the level.

The scalability in Frostbite
TM

2 is defined in terms of arbitrary view dis-
tance, LOD and speed. Arbitrary view distance means that it must be pos-
sible to vary view distance from 0.06m up to 30 000m. Furthermore, the
level of detail must be arbitrary and handle 0.0001m and lower. The ter-
rain must also be viewable at different speeds ranging from walking to jet
planes.

2.2.1 Data Layout

All data in the terrain system is laid out in a quadtree structure. This layout
is similar to the layouts proposed by Ulrich [9] and Strugar [7] and is also
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Figure 2.2: A T-vertex (marked in black) at a LOD edge (red).

similar to many flight simulators. Nodes that are closer to the root of the
tree describe data with a lower level of detail.

All nodes in the quadtree structure has binary data associated with it but
not all nodes have their binary data loaded. In runtime, heightfield tiles for
example, are stored in a virtual texture atlas and streamed from disk as they
are needed. This makes it possible to support very large terrains whose
memory and processing requirements scale well. However, a fraction of
the nodes has their binary data in memory all the time. These nodes are
needed for multiplayer server simulations.

T-Vertices

A T-vertex is a vertex that is at the border between two differing levels of
detail. The tile with the higher level of detail has a vertex in between two
vertices in the tile with the lower level of detail. This vertex will create a
T-shape, that can result in a crack when the heightfield mesh is displaced.
The case is shown in figure 2.2.

To remedy this situation in the Frostbite
TM

2 terrain engine, a stitching al-
gorithm is applied to fix LOD switch edges. This is done with index per-
mutations and the original vertices in the mesh are not changed.

2.2.2 Level of Detail

The terrain system has two mechanisms for supporting different level of
detail on the procedurally generated heightfield mesh. One is the CPU
LOD scheme and the other scheme is implemented on top of the CPU
scheme and uses hardware GPU tessellation. This scheme is naturally only
active on hardware that supports it. Currently, this means only Direct X 11
graphics hardware.
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CPU-Level of Detail

The CPU approach to level of detail is based on the quadtree structure de-
scribed in section 2.2.1. The terrain mesh is, as mentioned, generated pro-
cedurally in runtime and the level of detail is based on the distance to the
camera.

The quadtree structure ensures that the step between two neighboring patches
is at most one level of detail. This makes removing T-vertices (avoiding
cracks) simpler since it is always possible to know that the neighboring tri-
angle patch is only half or double the size of the current one. This means
that all possible index permutations needed to stitch the edges as described
above, can be stored in advance. Andersson [1] calls this a restricted quadtree.

2.2.3 Virtual Texturing

Virtual texturing (sometimes mega-texturing) was proposed by John Car-
mack [3] and is used where one large texture would simply not provide
enough detail for a reasonable size of the texture. Virtual texturing makes
it possible to have a very large texture by placing smaller parts of the big
texture in an atlas which is a large texture that can fit a fixed number of tiles
from the original texture.

The Frostbite
TM

2 terrain engine uses something that is called Procedural
Shader Splatting [1]. This means that shaders are applied based on masks
that can be painted by artists. However, this makes rendering of the ter-
rain slow (10-20ms) [11] and the solution for this is to render the results
into a virtual texture. The frame-to-frame coherency can thus be used and
the rendering can be split into multiple passes. With this optimization,

a full screen rendering of the terrain takes 2.5-3ms on the Playstation
TM

3
[11].

2.3 DirectX 11 Hardware Tessellation

The DirectX 11 API introduces two new shader types into the pipeline; the
hull shader and the domain shader. The hull shader is run once per in-
put primitive and the primitive can be a triangle or a quad. From the hull
shader, the API expects a tessellation factor per edge and one for the inside
of the primitive. These factors decide how many new vertices the tessella-
tion stage should create along each of the edges and the center area. The
calculations are performed in a patch-constant function since tessellation
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hull shader

tessellation stage

domain shader

Figure 2.3: Direct X 11 tessellation flow.

factors are constant over the whole patch and the patch-constant function
only runs one time per patch.

It is also possible to do surface calculations in the hull shader. This can
be done, for example, to approximate subdivision surfaces as described by
Loop et. al. [6].

To obtain a view-dependent level of detail for the hardware tessellation in

the Frostbite
TM

2 terrain engine, the clip space length of an edge is consid-
ered. To get this length, a sphere is placed around the mid-point of the
edge, covering the edge. This sphere is then projected into clip space and
the tessellation factor is calculated to fit a desired number of triangles to
this edge. The desired number of triangles is specified in pixel size of the
resulting triangles. This maintains a constant screen space size of the trian-
gles meaning that triangles that are far from the viewer and thus small in
clip space, are not tessellated as much as closer ones.

After this stage, the triangle size is clamped to a minimum specified hor-
izontal size. The reason for using horizontal size is that the heightfield is
horizontal, meaning that there will be only a single heightfield sample for a
completely vertical triangle, leaving no need for a high tessellation. There
is furthermore no need to tessellate down to smaller triangles than the res-
olution of the height map.

After the hull shader, the information is fed to the fixed-function tessellator.
This is implemented in hardware which makes it significantly faster than a
software tessellation approach. As mentioned, it uses the tessellation fac-
tors together with a selected type of partitioning. The partitioning types are
fractional odd, fractional even, integer and pow2. fractional odd

and fractional even means that the tessellator allows floating point num-
bers. If fractional even is used, 2.1 is topologically the same as 4, the
next even number. However, the two extra vertices will be placed closer
and closer to their final positions as the tessellation factor approaches 4.
When the tessellation factor goes above four, the topology matches that of

26



fractional odd integer

1.0

2.0

2.5

3.0

Figure 2.4: Tessellation patterns for fractional odd (left) and integer (right)
partitioning.

tessellation factor 6. This is illustrated in figure 2.4.

It can be noted from figure 2.4 that for odd numbers such as 1.0 and 3.0
the fractional odd partitioning is equivalent to integer partitioning. If
fractional even would have been used, the fractional partitioning would
have matched the integer partitioning at even integers. In all cases in figure
2.4, the inside tessellation factor is 1.0.

2.3.1 Inside Tessellation Factor

The tessellation factors for triangle edges are quite self-explanatory. The
factor for the inside of the triangle on the other hand could use some more
explanation. If the inside tessellation factor is odd, the inside will consist
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1.0

2.0

3.0

Figure 2.5: Tessellation patterns for the inside of a triangle.

of N+1
2 concentric rings for a tessellation factor of N. The innermost ring

will in this case be a single triangle. If the tessellation factor for the inside
of the triangle is even, the inside will consist of N

2 concentric rings for a
tessellation factor of N. The inner ring in this case will be a single vertex.
The inside tessellation factor for quads are a bit different and perhaps easier
to understand. It has two tessellation factors for the inside, one along u and
one along v. This will give a regular grid of the size specified by the two
tessellation factors. The triangle case is illustrated in figure 2.5.

integer partitioning means that the tessellator uses floor to determine the
number and the placing of the new vertices. This means that transitions
between tessellation levels will not be smooth to the eye. pow2 tessella-
tion means that the tessellation factor is floored to the closest power of two
number, leaving the tessellator with even fewer levels than integer parti-
tioning. In the density map algorithm, fractional odd partitioning is used
to ensure smooth transitions.

After the tessellation stage, the new vertices are passed to the domain shader
which is run once for each newly generated vertex. In the domain shader
the vertex is displaced according to heightfield information. To be able to
displace vertices in a good way, the heightfield resolution has to be suffi-
cient. This means that an input patch has to correspond to more than one
heightfield sample. Otherwise, all newly generated vertices will have the
same height, making the tessellation unnecessary. This is the reason for the
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Figure 2.6: Two triangles with different tessellation factors and integer
partitioning. The left triangle has all edges set to 3 and inside set to 1. The
right triangle has all edges set to 1 and inside set to 1. Vertices added by

tessellation are illustrated in blue.

triangle size clamping described above.

2.3.2 Crack-Free Tessellation

The CPU LOD scheme in Frostbite
TM

2 guarantees that the input mesh that
is fed to the tessellation stage is always crack-free. The next possible source
of cracks is if the tessellation factors for an edge does not match up. This
will result in a broken edge since the number of new vertices on the edge
are different depending on which side of the edge is considered. The solu-
tion to this problem is simple: make sure tessellation factors on both sides
of an edge match up.

Consider the two (tessellated) triangles in figure 2.6. If these triangles
shared an edge and the vertices was then displaced, there would be a crack
in the edge. This is since each patch is treated separately by the tessella-
tion pipeline, meaning that the vertices on the left side triangle will have
different heights than the vertices on the right side triangle resulting in the
case in figure 2.7 where the edges marked with green (although any edge
would give the same result) in figure 2.6 has been displaced.

It is possible to see that figure 2.7 describes the problem with T-vertices.
The important conclusion from this is that it is absolutely essential for the
tessellation factors on both sides of an edge to match up.

When tessellation is combined with tiling, this means that LOD switches
in the input mesh that coincide with tile borders will create cracks if the
tiled data is not continuous at the borders. This continuity is achieved in
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Figure 2.7: The two triangles in figure 2.6 sharing an edge. The resulting
crack is illustrated in gray.

the heightfield by using an odd sample border. This odd sample is a one-
sample border on the tile, placed on the right and lower edge. This border
is not considered in rendering, thus resulting in the border lying “under”
the first pixel in the adjacent tile and having the same value. This gives
continuous and crack-free data since both the heightfield and the density
map are sampled with point sampling.

2.3.3 The Terrain Pipeline

Game data is not used in raw format by Frostbite
TM

2. This would work
but would be way too slow. To address this, all data is pre-processed into a
format that is efficiently readable by the engine and this pre-processing of
data is handled by the pipeline stage of the engine. The terrain pipeline is
responsible for building terrain assets into an efficient runtime format and
has components for building the height field, terrain decals, terrain mesh
scattering, etc.

The heightfield part of the terrain pipeline reads raw data, that has been
sculpted by artists in the terrain editor, and generates run-time data. The
runtime layout of data is discussed above in section 2.2.1.
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Chapter 3

Method

This chapter will describe how the density map algorithm was implemented

in the Frostbite
TM

2 engine. More specifically, it will describe the resources
created by the new algorithm and in detail how the algorithm works.

3.1 The Density Map

Already in the beginning of the project, the decision was made to create a
new type of asset, the density map. This map would describe the curvature
of the terrain mesh and thus how high the triangle density should be in a
specific world space region of the final terrain mesh. The density map is
stored in a texture atlas like the heightfield which means that it is, as the
heightfield, also divided into smaller streamable tiles.

This density map is bound as a shader resource to the hull shader in the
tessellation stage which then can read density information from it and use
in a suitable way. This follows the ideas presented by Ian Cantlay in 2008
[2].

3.1.1 Resolution

A heightfield tile consists of 133 samples per side. Out of these, two sam-
ples on each side are explicit borders. One extra sample on the lower and
right edges of the tiles are also present for continuity. This means that the
non overlapping data area is 128 samples. If the density map would have
the same resolution as the height field, it would have four samples per in-
put primitive edge. This would be a waste of resources since there should
essentially only be one density map value per input primitive edge. This
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means that the non-overlapping data area of a density map tile only has to
contain 128/4 = 32 samples. With one sample border (on all sides) plus the
always needed odd pixel (on the right and lower tile edge) this will result
in density map tiles with 35 samples per side.

3.1.2 Bit Depth

The heightfield data is 16 bit unsigned integer. However, the density map
does not need that amount of bit resolution. 8 bit unsigned integers are
enough to represent the density. This is since the tessellation factors only
has 64 distinct levels, and since the density value is only used as a scaling
factor, 16 bit resolution is not needed. 256 distinct scaling values are enough
for scaling 64 values.

3.2 A First Runtime Implementation

At the first stage, an implementation that was run in the engine itself, was
made. The algorithm was run on a tile in the heightfield as it was uploaded
to the GPU which means that the algorithm was run on isolated heightfield
tiles. In this implementation, the filter consisted of a discrete Laplace filter.
The reason that this was implemented was that it was necessary to test the
performance impact and also the possibility of a runtime algorithm.

3.2.1 Limitations

The obvious limitation of a runtime implementation is the lack of local in-
formation. Each heightfield tile is processed without knowledge of neigh-
bors. This means that it is impossible to enforce continuity and still pre-
serve the correctness of the filter. However, since there is an overlap be-
tween heightfield tiles, it is possible to generate continuous and crack-free
density map tiles. As long as the filter is consistent the result of the filtering
will be the same on both sides of an edge.

The real problem appears when tiles from differing LOD are neighbors.
This means that the border of a tile at one level of detail has to match the
border of a tile at another level of detail. This can simply not be solved
in a good way without neighborhood information. It would certainly be
possible to have neighborhood information in runtime but it would proba-
bly be slow and would also introduce extra requirements on the streaming
system.
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... b b b b b

... b a b b b

... b b b b b

... b b b b b

Table 3.1: Data for a region of the heightfield.

3.3 Pipeline Implementation

Due to the limitations described above, the decision was made to move
the implementation to the pipeline stage of the engine. This would allow
for more neighborhood information than the runtime implementation and
the real-time requirements would be gone, allowing for more sophisticated
filtering.

The first step in the pipeline implementation is to obtain the needed amount
of height field data to be able to create a density map tile. This is achieved
by using the world space coverage of the source heightfield tile and then
creating a density map tile with the same coverage. This tile is then ex-
panded in world space to have the necessary neighborhood information
(in this case it is 16 samples per side) for creating a continuous density map
tile. All heightfield samples are sampled by world space positions, to make
sure that the world space alignment is correct. It is also done without taking
borders into consideration, only considering non-overlapping data.

3.3.1 Filters

The implementation comes with five different filters that represent different
combinations of speed and accuracy. The filters are run once per pixel in
the source data and the result is max resampled to currently a fourth of the
resolution. That is, each density map sample is the maximum of the filtered
value for four heightfield samples. However, the heightfield is sampled
at texel centers, which means that the smallest spatial unit in the density
map has to be four samples. To accomplish this, one extra pixel overlap is
needed for the filters. This is since many of the filters are derivative based
and will not catch changes in the heightfield that is only in one dimension.
Consider a heightfield sample with a non-zero value a and all others with
a significantly smaller value b << a, laid out as table 3.1.

This means that the derivatives of the sample labeled with b becomes (ap-
proximated with central differences and the assumption that distance be-
tween samples is 1 meter)
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hx =
hi+1,j − hi−1,j

2∆
=

a − b

2
(3.1)

hy =
hi,j+1 − hi,j−1

2∆
=

b − b

2
= 0 (3.2)

hxx =
hi+1,j − 2hi,j + hi−1,j

∆2
=

a − 2b + b

1
= a − b (3.3)

hyy =
hi,j+1 − 2hi,j + hi,j−1

∆2
=

b − 2b + b

1
= 0 (3.4)

hxy = hyx =
hi+1,j+1 − hi+1,j−1 − hi−1,j+1 + hi−1,j−1

4∆
=

b − b − b + b

4
= 0

(3.5)

where ∆ is the distance in meters between the two samples, h is the height-
field function and hi,j is the value for h at position i, j. With these derivatives
in place, the expression for the mean curvature becomes

H =
hxx(1 + h2

y)− 2hxyhxhy + hyy(1 + h2
x)

2(1 + h2
x + h2

y)
3/2

.

=
(a − b)(1 + 0)− 2 · 0 · a−b

2 · 0 + 0 · (1 + ( a−b
2 )2)

2(1 + ( a−b
2 )2 + 02)3/2

=
a − b

2(1 + ( a−b
2 )2)3/2

. (3.6)

With the above expression for mean curvature it can be seen that if b << a
the denominator of equation 3.6 will become much larger than the numer-
ator, resulting in a very low curvature where there essentially should be a
very high curvature. Say for example that a = 100 meters and that b = 50
meters. This will give a numerator of 50 and a denominator of 44300, re-
sulting in a curvature of approximately 0.0011 even though the curvature
should be much larger.

Since the density map is downsampled with respect to the heightfield, this
is generally not a problem, due to the fact that the density map is max
filtered. However, a problem occurs when this case coincide with an edge
in the downsampled 4x4 region of the heightfield. The solution for this is
to let the filter run 1 sample into the neighboring 4x4 region.
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Laplace Filter

The simplest usable filter is the Laplace filter which is essentially a sum
of the second order partial derivatives of the heightfield function as de-
scribed by equation 2.19. The filter is implemented using discrete central
differences and the real strength of it is speed and the major downside is
that it is not accurate.

Gaussian Curvature Filter

The Gaussian curvature filter is implemented by estimating first and sec-
ond order derivatives by central difference schemes. The equation for this
filter is described by equation 2.27. The filter is fast and also more accurate
than the Laplace filter. However, it is not as accurate as the mean curvature
filter.

Mean Curvature Filter

The mean curvature filter is like the Gaussian curvature filter implemented
by first estimating the first and second order derivatives with central differ-
ences. The equation for calculating the mean curvature is given by equation
2.26. The mean curvature filter has the same speed but better accuracy than
the Gaussian curvature filter.

Laplace-Beltrami Filter

All three of the above filters are only applicable to height fields due to the
fact that height fields only has one height value for each world space posi-
tion. This is not true in general for polygonal surfaces.

To provide a more general filtering alternative, the Laplace-Beltrami op-
erator was implemented (see section 2.1.2). This filter has two alternative
implementations. One implementation uses the area of the triangles in the
one-ring neighborhood and the other implementation uses the Voronoi area
of the neighborhood. The benefit of using the Voronoi area is that it gives a
better approximation of curvature.

As can be seen in section 2.1.2, the calculation of the Laplace-Beltrami op-
erator involves cotangent computations. This is implemented by dividing
the dot product with the length of the cross product of two vectors
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cot(a, b) =
a · b

|a × b|
. (3.7)

The calculation of Voronoi area contains more cotangent calculations since
it is defined as a sum of cotangents over the one-ring neighborhood. The
large amount of cotangent calculations necessary is what makes this filter
the slowest of the implemented filters.

Normalization

Since heightfield tiles have different resolution, tiles with lower resolution
have a larger spatial distance between sample points. This will result in a
kind of artificial smoothness on the terrain. This is not desirable as high
curvature terrain in the distance has a high impact on the perceived ap-
pearance of the terrain. To compensate for this, the height is normalized by
the spatial resolution of the tile so that height differences are scaled down
less on tiles with a lower resolution.

The final curvature value of the different filters is also scaled to lie approxi-
mately in the range [0, 1]. The scaling constants for this step was generated
through a series of experiments where a suitable curvature level was se-
lected for a specific heightfield tile.

3.3.2 Preprocessing

The filtering stage of the algorithm is the stage that uses the most of the
total execution time of the algorithm. Therefore, the main max filtering
is done in a “preprocessing” step. The reason it is called preprocessing
step is that it runs before the inner nodes are generated, compensating for
artifacts that would otherwise appear in the later stages of the algorithm.
The max filter size in this step is controllable by artists and the algorithm
also preprocesses borders to avoid aliasing artifacts that come from the fact
that borders has to be point-sampled (see below).

The border preprocessing filter is also a max filter and the size of it is con-
trolled by the number of LOD levels to skip and the size of the max filter.
Since the resolution of a parent tile is half of the resolution for the children
of it, the size for the border preprocessing filter becomes

sb = s f ∗ 2lskip (3.8)
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where sb is the size of the border filter, s f is the size of the original filter
and lskip is the number of LOD levels to skip. For example if lskip is set to 1,
it means that the borders will approximately match borders as they would
look at one LOD lower than the highest LOD.

3.3.3 Border Generation

The inner nodes of the quadtree structure are generated by resampling
from child nodes. The resampling filter is a max filter, resulting in larger
parts with a high curvature as the triangle size increases. This means that
aliasing artifacts are avoided. However, the problem with resampling child
nodes is that continuity constraints are violated. It would be possible to fix
continuity for tiles on the same level of detail but it would be impossible to
have continuous switches between LOD levels. This practically means that
when the tiles at the highest LOD level has been resampled for continuity,
the borders of that tile can not be changed. It furthermore has to be point
sampled to generate border data for the inner nodes. The preprocessing
of borders described above makes sure that the resulting aliasing artifacts
are reduced. So the resulting implementation uses point sampling for the
borders and then runs a max filter on the inner area of the nodes.

3.3.4 Parameters

There are five parameters that can be used to customize the behavior of the
density map generation algorithm.

Preprocess Density Map

This is a toggle parameter to enable or disable the preprocessing of the den-
sity map. This parameter is not meant to be changed apart for debugging
purposes. It can be helpful to turn preprocessing of the density map off to
see what the algorithm actually picks up in terms of curvature.

Curvature Gain

The parameter called curvature gain controls the overall gain of the curva-
ture values. If this value is set to 2 all curvature values will be doubled.
This parameter is implemented by simply scaling the final curvature value
by the value of this parameter.
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Curvature Exponent

This parameter controls the shape of the distribution curve for density map
values. The curve is fitted so that incoming density map values with a
value of 1 is mapped to outgoing values of 1. This means that a higher
curvature exponent will give a larger difference between high and low cur-
vature values. This parameter can be set to a higher value if the level has
a few distinct crests and is otherwise flat. This will result in the flat areas
being considered low curvature areas and the higher curvature areas will
have an even higher curvature value.

Density Map Filter

This parameter controls the filter type to use. The available filter types are
described in section 3.3.1.

Density Map Filter Size

This parameter controls the size of the preprocessing filter. The size of the
downsampling filter used to create the initial density map is fixed and not
affected by this parameter. A larger filter size will result in the curvature
“bleeding” out to larger areas. This parameter can be used if the filtering is
too exact.

3.4 Hull and Domain Shader

The hull shader is where the created assets are used. The density map atlas
is bound as a shader resource and for each control primitive edge fed to the
hull shader, the texture is sampled.

To determine the density for an edge, the density map atlas is sampled.
The value at that world space point is interpreted as a scale factor for the
edge tessellation factor of that edge. A value of 1 means that the calculated
tessellation factor should remain unchanged. This, in turn, means that the
density map algorithm is a simplification algorithm.

After the density map value has been sampled, a tessellation factor for the
edge is calculated by considering the size of the edge in clip space. That is,
the edge projected onto the screen. This length is then used to fit a desired
number of new vertices to the edge.

Pseudo-code for the algorithm is presented in algorithm 3.1.
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Algorithm 3.1 Pseudocode for the shader density map algorithm.

density[1] = getEdgeDensity(p2.worldPos, p3.worldPos)
density[2] = getEdgeDensity(p3.worldPos, p1.worldPos)
density[3] = getEdgeDensity(p1.worldPos, p2.worldPos)

screenspaceTessFactor[1] = calcTessellationFactor(p2.worldPos,
p3.worldPos)
screenspaceTessFactor[2] = calcTessellationFactor(p3.worldPos,
p1.worldPos)
screenspaceTessFactor[3] = calcTessellationFactor(p1.worldPos,
p2.worldPos)

edgeTessFactor[1] = max(1.f, screenspaceTessFactor[1] ∗ density[1])
edgeTessFactor[2] = max(1.f, screenspaceTessFactor[2] ∗ density[2])
edgeTessFactor[3] = max(1.f, screenspaceTessFactor[3] ∗ density[3])

insideTessFactor = max(edgeTessFactor[1], edgeTessFactor[2], edgeTess-
Factor[3])

The result of this algorithm is the tessellation factors for each of the triangle
edges and an additional tessellation factor for the inside of the triangle.
These factors are then passed to the tessellation stage of the tessellation
pipeline as described in section 2.3.

3.5 Destruction

The terrain in Frostbite
TM

2 also supports terrain destruction, meaning that
the shape of the terrain mesh can be affected by different events. Since a
crater (or other displacement) in the height field during runtime changes
the curvature value for the affected area, the corresponding density map
is invalid. To account for this, a corresponding world space rectangle is
calculated for the density map and a density is applied based on the size of
the terrain displacement.

A scaling factor that is based on experimental results is also applied to the
density value to match the range of existing density values. However this
value is not in any sense correct but is based on observations that craters
need to be tessellated harder than they actually would if they were tessel-
lated based on curvature since the craters are visually important for game-
play.
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Chapter 4

Result

The result of the implementation is a stable, reasonably fast and accurate
algorithm for estimating curvatures from a heightfield and applying the
estimate as a simplification measure for an existing hardware tessellation
algorithm.

4.1 Runtime Results

The runtime implementation consisted of a second order derivative fil-
ter. This implementation hooked into the terrain heightfield streaming and
could run in real time. The result was an algorithm that worked well for
isolated LOD levels. Borders between LOD levels could not be accounted
for since the necessary neighbor information was not available.

4.2 Pipeline Results

The pipeline implementation is what is currently used in Frostbite
TM

2. This
implementation can be more sophisticated than the runtime counterpart
since it does not have to run in real-time. The algorithm is however reason-
ably fast for large terrains and the speed of the algorithm is largely depen-
dent on the choice of filter. Usage of the Laplace-Beltrami filters will cause
the algorithm execution time to increase by orders of magnitude.

The algorithm accuracy is good and it can be tweaked by artists to achieve
desirable results. For example, if a level is relatively flat and only has a few
important crest lines, these crest lines can be boosted by either modifying
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Num Samples
Second Or-
der Differ-
ence

Gaussian
Curvature

Mean Cur-
vature

Laplace
Beltrami

Laplace
Beltrami
(No
Voronoi
Area

1M 0.14s 0.18s 0.31s 1.35s 1.14s
2M 0.27s 0.35s 0.63s 2.69s 2.25s
3M 0.41s 0.54s 0.94s 4.36s 3.57s
4M 0.56s 0.74s 1.28s 5.98s 4.89s
8M 1.13s 1.46s 2.56s 11.04s 9.30s

Table 4.1: Filter speed comparison

the profile shape of the density map values or by applying a total curvature
gain over the whole level.

4.2.1 Filter Performance

A comparison between filter speeds using different number of heightfield
samples is shown in table 4.1

All performance figures was generated on an Intel Xeon X5650 2.67 GHz
with 24 Gb of RAM.

4.2.2 Visual Quality

The visual quality of the filter was evaluated by comparing the resulting
image from the density map algorithm with the image generated by the
previous non-adaptive tessellation algorithm. The comparison was done
by considering difference images where one image is subtracted from the
other one. All kinds of decimation and simplification algorithms introduce
an error and the visual difference is a good measure for this kind of error.
The results for the visual quality comparisons can be seen in figure 4.1 - 4.3
where two settings for the terrain rendering was varied.

Triangle width

The first setting varied was the setting for triangle width of tessellated tri-
angles. This setting controls how wide (in pixels) the generated tessellated
triangles should be. The expectation was that the density map algorithm
would be significantly faster, allowing for lower triangle widths with equal
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(a) With Density Map (b) Without Density Map

(c) Difference

Figure 4.1: Difference image for a triangle size of 12 pixels and 4 patch
faces per side.

performance. This would arguably give better visual performance with
maintained execution time for the tessellation algorithm.

Patch Faces Per Side

This setting controls how high the resolution in the CPU controlled terrain
mesh should be. Each patch consists of a number of triangles and this pa-
rameter controls how many faces there should be on each side of the patch.
A higher number will give a better looking terrain but will also leave less
work for the tessellation algorithm since the triangles that are fed to the
tessellation shaders are already small.

4.2.3 Visual Stability

In many cases, when moving farther away or closer to the terrain, pop-
ping artifacts occur. However, these popping artifacts can be reduced by
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(a) With Density Map (b) Without Density Map

(c) Difference

Figure 4.2: Difference image for a triangle size of 6 pixels and 4 patch faces
per side.
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(a) With Density Map (b) Without Density Map

(c) Difference

Figure 4.3: Difference image for a triangle size of 6 pixels and 8 patch faces
per side. This is the recommended setting for using the density map

algorithm.
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(a) With Density Map (b) Without Density Map

Figure 4.4: Static mesh inserted into the terrain. Left side shows the result
with density map and right side without the density map. The terrain is

colored with density map colors to make artifacts easier to see.

decreasing the triangle width either for the tessellation or for the CPU LOD
algorithm. With the density map, the triangle width for the hardware tes-
sellation can be lowered without losing performance. Also considering that
the density map is max filtered on lower LOD, the terrain appearance from
a distance will be even more stable.

The need for stable terrain appearance under varying view distance is large
in places where static meshes like buildings are placed in the terrain. Pop-
ping in these areas can create visually disturbing artifacts like walls being
intersected by the terrain mesh. An example of this case can be seen in
figure 4.4.

It can be seen that the fact that the density map approach can use smaller
triangles in tessellation, will give a better appearance.

4.2.4 Runtime Performance

The runtime performance of the density map algorithm was evaluated by
a series of experiments where different parameters for the terrain render-
ing were varied and compared against the results for the earlier brute-force
tessellation algorithm. The experiments was also performed to find a set of
parameters that produced the best visuals combined with the best perfor-
mance (the so called “sweet spot”).

The runtime performance was then measured in terms of the time spent for
filling the G-Buffer used in the deferred rendering algorithm. This number
is more reliable than for example measuring the frame rate. The G-Buffer
measure is also an averaged measure over a number of frames and not an
instantaneous number.

A series of experiments were carried out, first varying the triangle width
to see the effect that the number of patch faces per side would have on the
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Figure 4.5: Patch faces per side varied for a triangle width of 12 pixels.

performance.

From figures 4.5 - 4.8, it can be seen that once the number of patch faces per
side goes over 8, the performance drastically decreases. This is especially
true for larger triangle sizes. It should be added that a triangle size of 4
pixels is not very likely to be usable and is included for completeness.

In the next series of experiments, the triangle width was varied for different
number of patch faces per side (see figures 4.9 - 4.11).

From this series of experiments it can be seen that 6 is the lowest practical
triangle width that can be used and it can also be seen that the density map
algorithm manages to keep the times down longer than the original non-
adaptive algorithm. This is the expected results for the algorithm.

The impact that the density map algorithm has on the number of generated
triangles is illustrated in figure 4.12.

It should be noted that figure 4.12a is wireframe and figure 4.12 shows that
the number of triangles is reduced significantly when considering the over-
all frame.

4.2.5 Vertex Count

The number of vertices processed by the domain shader was measured

with AMD
TM

GPU Perf Studio. This was done for two different views (fig-
ures 4.13a and 4.13b) and the results are presented in table 4.2.
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Figure 4.6: Patch faces per side varied for a triangle width of 8 pixels.
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Figure 4.7: Patch faces per side varied for a triangle width of 6 pixels.
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Figure 4.9: Triangle width varied with the number of patch faces per side
fixed at 4.
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Figure 4.10: Triangle width varied with the number of patch faces per side
fixed at 8.
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(a) Wireframe terrain mesh without the use of a density map.

(b) The density map for the region.

(c) Wireframe terrain mesh with the use of a density map.

Figure 4.12: Comparison between the wireframe terrain mesh without the
density map and with the density map. The density map for the region is

also shown. A red density map color means high curvature and green
means low curvature.
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(a) Scene 1. (b) Scene 2.

Figure 4.13: The two scenes used for measuring vertex count. Scene 1
represents a common scene for action and scene 2 represents a terrain

view.

Scene With Density Map Without Density Map

figure 4.13a 249 222 667 060

figure 4.13b 209 485 511 723

Table 4.2: Number of vertices processed by the domain shader for the
views in figure 4.13a and 4.13b.

4.2.6 Border Preprocessing

As described in section 3.3.3, borders are preprocessed to match borders at
a given LOD. This means that the borders will be correct for this LOD level
and aliasing artifacts will be visible on all other levels. If this LOD level
is chosen carefully, the border aliasing will be minimized. An example of
borders at different LOD are presented in figure 4.14

It can be seen from figure 4.14 that the border for the second highest LOD
(figure 4.14b) does not have aliasing artifacts. The other two levels has
aliasing artifacts due to the point sampling used when generating inner
nodes in the density map quadtree. Aliasing artifacts are annotated with a
blue ellipsis.

4.2.7 Workflow Results

The density map algorithm introduces no new workflows that has to be
considered. However, there are a few parts where manual tweaking of the
density map can be done. The algorithm adds a few parameters to the
terrain heightfield asset as described in section 3.3.4 but the workflow is
otherwise automatic and no special care has to be taken to use the algo-
rithm.

51



(a) Highest LOD.

(b) Second highest LOD.

(c) Two levels from highest LOD.

Figure 4.14: Example results from the border generation algorithm. Figure
4.14b shows the second highest LOD which is selected to be correct.

Smaller aliasing artifacts can be seen on other levels.
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Chapter 5

Discussion

The implementation works satisfactory even though the algorithm nature
is simple. This is essentially good since a simple implementation is easier
to maintain and understand.

A large part of the actual implementation work was devoted to the five im-
plemented filters that are the heart of the density map algorithm. The range
of complexity for the filters is quite large, mathematically. The simplest fil-
ter is the Laplacian filter that produces acceptable results and is very fast.
However, the mean curvature filter is almost as fast and produces much
more accurate results. On the other end, the Laplace-Beltrami filters are
very slow but also has very good precision. The default filter in the imple-
mentation is the mean curvature filter.

Much of the implementation work was also spent in figuring out suitable
schemes for borders between different LOD levels. The conclusion was
made early that these cases needed special consideration. The problem is
described earlier and I will not go into detail here but the problem is that the
borders must be point-sampled when creating inner nodes in the quadtree.
This is due to the fact that the borders on each level has to match the world
space borders for neighboring tiles on all other levels. Different approaches
was discussed to solve this but most of them would suffer from aliasing
artifacts. A compromise scheme was selected since it would give the most
accurate results for as many levels as possible. This scheme preprocesses
the borders to match a certain LOD level, leaving aliasing artifacts in other
levels. However, if care is taken, choosing a LOD level that the border
should match, the aliasing artifacts will be minimized.

There are more sophisticated schemes for solving these type of problems,
but the simplicity of the implemented solution wins in this case since it
works in practice and is easy to understand.
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5.1 Runtime Implementation

The intention was never that the runtime implementation would be usable

and it was made to get familiar with the terrain system in Frostbite
TM

2. This
was partly due to the performance penalties that this kind of implementa-
tion would introduce and partly due to the lack of spatial neighborhood
information. The latter issue was the issue that manifested itself first and
also the runtime performance of the algorithm was not very bad since a
simple filter was used. However, when trying to make borders match up,
it soon became apparent that this was a problem that could not be solved
in runtime. The streaming nature of the terrain engine made it hard to
access the needed information without imposing new constraints on the
system.

5.2 Pipeline Implementation

The decision to move the implementation to the engine pipeline was made
quite early due to the limitations described. It was also the initial idea that
this would be the case and that a pipeline implementation would be the
most scalable and a better solution in the long term.

The whole solution to the problem also became more obvious when all
information was available in a structured way. The extra execution time
allowed for a pipeline implementation also made the use of more sophisti-
cated techniques possible.

Interesting to note is also that the more sophisticated filters like the Laplace-
Beltrami operator is much slower than the finite difference Gaussian and
mean curvature filters. However, the lack of speed is not quite matched by
the accuracy of the Laplace-Beltrami filters. The advantage of these filters
is of course that they are usable even for general surfaces and not only for
heightfield based surfaces.

5.3 Future Improvements

This section will list a couple of future improvements identified during
the implementation. Note that these suggestions are my own suggestions

and does not in any way reflect any implementation plans for Frostbite
TM

2.
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5.3.1 CPU Implementation for Consoles

Playstation
TM

3 and Xbox 360
TM

does not have hardware tessellation1 like
Direct X 11 so instead they use only the CPU algorithm but with a more
detailed mesh. This algorithm essentially suffers from the same overtessel-
lation issues as the hardware tessellation algorithm since it is only based
on view distance. The same density map resource as for the hardware
tessellation algorithm can be used as input to the mesh generation algo-
rithm. Possibly, the terrain mesh generation algorithm could be adapted
into something similar to CDLOD described in section 1.1.4.

5.3.2 Terrain Improvements

To achieve maximum visual stability, it would be desirable that the height-
field triangulation would use some kind of vertex morphing to ensure smooth
transitions between LOD levels. This would reduce popping artifacts due
to LOD switches in the input terrain mesh. An approach similar to the CD-
LOD algorithm described in section 1.1.4 could possibly be implemented
to morph vertices between different LOD levels.

5.3.3 GPGPU

Since the filtering of the heightfield data contains parts that are data-parallel,
the mapping to SIMD architectures would certainly be possible. This means
that CUDA/OpenCL/Direct Compute can be used to utilize the parallell
nature of GPU:s. This could result in large speedups which in turn means
that more sophisticated filtering methods like the Laplace-Beltrami oper-
ators could be used. There are benefits however of a strictly CPU based
approach since it does not impose any hardware requirements.

5.3.4 Other Uses

As described in section 1.2.1, terrain rendering with height fields is a case
of displacement mapping. Displacement mapping for characters is often
used as an efficient way to achieve highly detailed characters.

Displacement mapping is often used together with subdivision surfaces
and hardware tessellation. There are different approaches for subdividing

1Xbox 360 actually has a simpler form of hardware tessellation but it is not used in the

Frostbite
TM

2 terrain engine.
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the surface. It is for example possible to approximate Catmull-Clark sub-
division surfaces [6] in different ways. This allows for smooth surfaces cre-
ated from coarser, more storage efficient, control meshes. The subdivided
mesh is then hardware tessellated and displaced. A density map based ap-
proach would certainly be plausible to use in this case. The displacement
map (most commonly a vector displacement map) can be preprocessed to
create an accompanying density map. This density map would make sure
that the parts that had little or no displacement described in the displace-
ment map, would not be overtessellated. The problem with this approach
however is that a simplification algorithm could break the appearance of
the subdivision surface.

5.4 Other Reflections

The first thing I realized rather early in the project, is that adaptive hard-
ware terrain tessellation is something that has not been done to great extent
before. There is a lot of methods for the CPU side of terrain systems. How-
ever, the introduction of hardware tessellation in consumer graphics cards
has to be seen as a rather new concept and that might be the reason for the
lack of research in this field.

What is striking though, is that a simple algorithm like this implementation
can have a rather large impact on performance and thus using the GPU
where it is actually needed instead of wasting precious GPU cycles on flat,
uninteresting parts of the terrain. As mentioned above it is also possible
to use the density map as an input parameter to the CPU based LOD algo-
rithm, allowing for better optimization of the input mesh that is fed to the
tessellation shaders. This would result in two stages using the density map
as input.

I feel that the implementation turned out good since it is actually usable
without any intervention from artists. This means that the process is more
or less automatic but can still be controlled if desirable. The performance
results is also satisfying since it is possible to use much higher detail for
the parts that needs it. It is possible to argue that the introduction of the
density map has made the runtime performance less predictable since it
will depend on how much high-density areas that are in view, but since it
is a simplification algorithm, the performance can never be worse than the
non-adaptive algorithm.

One thing that I think turned out well is the generation of inner (lower
LOD level) nodes. The compromise between the aliasing on the borders
and the correct maximum filtering for the inner area of the node turned out
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to works well in practice. The scheme is also simple which means that it is
easy to maintain and test.

To sum things up, I am very happy with the way the algorithm turned out.
It is reasonably fast and produces good results without tweaking. I also
think that the algorithm is easy to understand and should therefore be easy
to maintain and modify.
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