
Chapter 5: Terrain Rendering in Frostbite Using Procedural Shader Splatting

38

Chapter 5

Terrain Rendering in Frostbite
Using Procedural Shader

Splatting

Johan Andersson 7

5.1 Introduction

Many modern games take place in outdoor environments. While there has been much
research into geometrical LOD solutions, the texturing and shading solutions used in
real-time applications is usually quite basic and non-flexible, which often result in lack of
detail either up close, in a distance, or at high angles.

One of the more common approaches for terrain texturing is to combine low-resolution
unique color maps (Figure 1) for low-frequency details with multiple tiled detail maps for
high-frequency details that are blended in at certain distance to the camera. This gives
artists good control over the lower frequencies as they can paint or generate the color
maps however they want.

For the detail mapping there are multiple methods
that can be used. In Battlefield 2, a 256 m2 patch of
the terrain could have up to six different tiling detail
maps that were blended together using one or two
three-component unique detail mask textures (Figure
4) that controlled the visibility of the individual detail
maps. Artists would paint or generate the detail
masks just as for the color map.

7 email: johan.andersson@dice.se

Figure 1. Terrain color map from
Battlefield 2

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

39

Figure 3. Close up view of Battlefield: Bad Company landscape

Figure 2. Overhead view of Battlefield: Bad Company landscape

Chapter 5: Terrain Rendering in Frostbite Using Procedural Shader Splatting

40

There are a couple of potential problems with all these traditional terrain texturing and
rendering methods going forward, that we wanted to try to solve or improve on when
developing our Frostbite engine.

Our main problem is that they are static. We have wanted to be able to destroy the
terrain ever since Battlefield 1942, both geometrically and texture-wise, but haven’t had
the performance or memory to support arbitrary geometric destruction of the heightfields.
Extending the texture compositing method for
destruction by dynamically changing the
compressed color maps and detail mask textures
is also not really feasible. Neither is adding even
more simultaneous detail map variations for
destroyed materials such as cracked tarmac or
burnt grass.

At the same time as we wanted to be able to
destroy the terrain, we also wanted to increase
the visual quality of the terrain in general while
reducing the memory usage. Traditional terrain
texture compositing schemes such as the
Battlefield 2 unique color maps and detail mask
textures takes a lot of memory and is a fixed
feature and memory cost. It can be difficult and
computationally prohibitive to vary the shading
and compositing on different areas and materials
on the terrain.

But varying and specializing shading and texturing for different materials is a very good
thing to do and is usually the way shaders for ordinary meshes in games are done to be
as memory and computationally efficient as possible.

For example: if we want to use parallax occlusion mapping ([Tatarchuk06]) on a rocky
surface we do not want to pay the performance cost of computing parallax occlusion
mapping for all other materials that do not need it. Same applies if we have a sea floor
material that covers large parts of the level but the shading and texturing quality is not
that important because it will be partially obscured by the sea surface. In that case we
would like to not have to pay the cost of storing color maps and detail mask textures
when the material could be approximated with a few tinted detail maps.

Specializing terrain shaders to different terrain materials opens up a lot of interesting
possibilities and in this chapter we describe a terrain rendering system and technique
built on that idea for DICE’s Frostbite engine that is used in Battlefield: Bad Company for
the Xbox 360 and PlayStation 3.

5.2 Terrain Texturing and Shading

The basic idea of the terrain texturing in Frostbite is to allow artists to create specialized
shaders with arbitrary dynamic texture compositing for individual terrain materials and

Figure 4. Terrain detail mask texture
from Battlefield 2. RGB channel
intensity represents visibility of 3
separate tiling detail textures.

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

41

Figure6. Terrain per-pixel
parameters: height (top), slope
(middle) and normal (bottom)

distribute them over the terrain using the method most suited depending on the nature of
the material.

5.2.1 Graph-based surface shaders

In order for artists to be able to
easily experiment and create
custom shaders for individual
terrain materials we utilize an
internal high-level shading
framework that allows surface
shaders to be authored trough a
graph representation instead of
code (Figure 5). See [AT07] for
more details.

There are multiple benefits with
this graph-based approach for
authoring terrain shaders:

• Artist-friendly. Very few of our artists
know HLSL and tweaking values and
colors trough standard dialogs instead
of writing text is a big productivity gain.

• Flexibility. Both programmers and
artists can easily expose and
encapsulate new nodes and shading
functionality.

• Data-centric. It is easy to automatically
process or transform the data in the
shading graph which can be very
powerful and is difficult to do with
code-based shaders.

The shading framework generates resulting
shading solutions and the actual pixel and
vertex shaders to use in-game via a complex
but powerful offline processing pipeline. The
framework generates the shaders based on
the high-level rendering state combinations. A
number of states are available to the system,
such as the number and type of light sources,
geometry processing methods, effects and
surface shaders.

The pipeline-generated shading solutions are
used by the game runtime which is
implemented on multiple platforms through

Figure5. Example of graph-based surface shader

Chapter 5: Terrain Rendering in Frostbite Using Procedural Shader Splatting

42

rendering backends for DirectX9, Xbox 360, PlayStation 3 and Direct3D10. It handles
dispatching commands to the GPU and can be quite thin by following the shading
solutions that contain instructions on exactly how to setup the rendering.

Along with enabling graph-based shader development, we realized the need to support
flexible and powerful code-based shader block development in our framework. Often,
both artists and programmers may want to take advantage of custom complex functions
and reuse them throughout the shader network. As a solution to this problem, we
introduce instance shaders - shader graphs with explicit inputs and outputs that can be
instanced and reused inside other shaders. Through this concept, we can hierarchically
encapsulate parts of shaders and create very complex shader graph networks while still
being manageable and efficient. This functionality allows the shader networks to be
easily extensible.

Much of the terrain shading and texturing functionality is implemented with instance
shaders. General data transformation and optimization capabilities in the pipeline that
operate (mostly) on the graph-level are utilized to combine multiple techniques to create
long single-pass shaders.

5.2.2 Procedural parameters

Over the last decade, the computational power of consumer GPUs has been exceeding
the Moore’s law, graphics chips becoming faster and faster with every generation. At the
same time, memory size and bandwidth increases do not match the jumps in GPU
compute. Realizing this trend, it makes sense to try to calculate much of the terrain
shading and texture compositing in the shaders instead of storing it all in textures.

There are many interesting procedural techniques for terrain texturing and generation,
but most would require multi-pass rendering into cached textures for real-time usage or
can be expensive and difficult to mipmap correctly (such as GPU Wang Tiles in [Wei
03]).

We have chosen to start with a very simple concept of calculating and exposing three
procedural parameters to the graph-based terrain shaders (Figure 6) for performance
reasons:

• Height (meters)
• Slope (0.0 = 0 degrees, 1.0 = 90°)
• Normal (world-space)

Since the terrain is heightfield-based the parameters are simple and fast to compute for
every pixel on the terrain.

The height is a bilinear sample of a normalized 16-bit heightfield texture and then scaled
by the maximum height of the terrain.

The normal can be computed in multiple ways, we found that a simple four-sample cross
filter works well enough for us (Listing 1).

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

43

The slope is one minus the y-component of the normal.

5.2.3 Masking

The terrain shaders determine how a material looks, but also, if wanted, where it
appears.

For example, let’s say we have a mountain material shader that we would like to be
visible on the slopes of the terrain. This can be accomplished in two ways. One method
is to use a grayscale mask texture can be manually painted (or generated in some other
program) over the terrain giving full control where the material appears. Note that we
would have to pay the price on memory cost for this mask’s texture (since all the texture
compositing is done at runtime).

The other method we support is to let the shader itself compute where it should appear.
In this case for a mountain, a simple ramp function can be computed with the procedural
slope parameter available in the shader to mask in the mountain between a specified
min and max slopes together with a linear transition (Figure 7 and 8). This method is
also the base of many offline terrain rendering and generation programs such as
[Terragen*].

The resolution of the mask computed from the procedural slope in the shader is limited
by the resolution of the heightfields. Therefore at extreme close-ups the masks can
become blurry due to bilinear texture magnification of the heightfields. This can create
dull and typically unnaturally smooth transitions between materials. The same problem
arises when using low-resolution image-based painted masks.

We can improve the bland transitions by adding detail on a per-material basis to the
computed masks. We can add detail when necessary on a per-material basis to the
computed masks by blending in tiled detail masks or procedural noise such as fractional
Brownian motion.

sampler bilinearSampler;
Texture2D heightmap;

float3 filterNormal(float2 uv, float texelSize, float texelAspect)
{
 float4 h;
 h[0] = heightmap.Sample(bilinearSampler, uv + texelSize*float2(0,-1)).r * texelAspect;
 h[1] = heightmap.Sample(bilinearSampler, uv + texelSize*float2(-1, 0)).r * texelAspect;
 h[2] = heightmap.Sample(bilinearSampler, uv + texelSize*float2(1, 0)).r * texelAspect;
 h[3] = heightmap.Sample(bilinearSampler, uv + texelSize*float2(0, 1)).r * texelAspect;

 float3 n;
 n.z = h[0] - h[3];
 n.x = h[1] - h[2];
 n.y = 2;

 return normalize(n);
}

Listing 1. Heightmap normal cross filter shader (Direct3D 10 HLSL)

Chapter 5: Terrain Rendering in Frostbite Using Procedural Shader Splatting

44

Computing noise in pixel shaders can yield high quality and can be reasonably fast on
modern GPUs ([Tatarchuk 07]) but for our purpose where we would like to compute
multiple octaves for multiple materials it is still computationally prohibitive.

fBm can also be “computed” in shaders by pre-generating a noise texture for a specific
period offline and sample it for every octave instead of computing the noise function
arithmetically. This is not as flexible and limits the range but can be faster and is still
useful.

In our case, we increase mask detail for most of our materials with a more efficient and
easy approach. We author or (in the shader) reuse tiled grayscale textures as detail
mask textures and combine them with the lower resolution mask with various functions
(Figure 9). This has the benefit of requiring few texture fetches (in contrast to the texture-
based fBm method) and is flexible in ALU operation complexity (in contrast to ALU-
based noise), and is therefore a good compromise. It also gives artists good control over
the detail transitions by creating the detail mask textures and selecting how to combine
the masks.

The Adobe® Photoshop® blend mode Overlay (Listing 2) is very useful for combining
two mask textures and adding detail. It does not affect areas where the base procedural
mask is 0.0 or 1.0 so the base shape of the mask is kept. We use it almost exclusively
together with simple multiplies and linear blends, but any blend mode can of course be
used.

Figure7. Terrain slope parameter (left). Mountain mask calculated in shader (right).

Figure8. Terrain without (left) and with (right) mountain material that uses computed mask

from the slope parameter

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

45

Figure9. Close up of terrain with procedural slope mask (top). Procedural
mask blended with tiled detail mask texture using overlay blend mode
(middle). Tiled detail mask texture (bottom)

Chapter 5: Terrain Rendering in Frostbite Using Procedural Shader Splatting

46

Having multiple detail mask textures together with all other textures quickly eat
performance and texture samplers (only 16 are available in Shader Model 3). To
improve on this, we have had some good results with reusing channels of ordinary color
textures, or even normal maps, already used in the shader, potentially with different tiling
of the texture coordinates, and remapping the range or changing the contrast (Listing 2)
to get a normalized mask value and use that instead of an extra texture.

Listing 2. Overlay blend and contrast HLSL functions. Works with values in normalized
[0, 1] range and can be easily extended for arbitrary dimensions (colors for example).

5.2.4 Static Sparse Mask Textures

There are many terrain materials that can not be generated in a purely procedural
manner, especially when using only basic parameters, such as height, slope and normal.
A good example are the open fields in a distance in Figure 1, they are artificially created
and level designers and artists wanted full control of their shape and location.

To facilitate this, we support painting arbitrary grayscale masks over the terrain for
individual terrain materials in our Editor tool or manually in Photoshop.

To save memory, all painted mask textures are stored in a sparse quad-tree texture
representation that only stores unique 32×32 pixel tiles. This can be a big win since
usually no terrain material mask covers the entire terrain (Figure 10) and those empty
areas then do not take up any memory1. The quad-tree representation also allows areas
in the mask texture that always will be viewed from a distance to be reduced in
resolution.

For the best texture resource utilization and performance, four quad-tree mask textures
are packed together into the R, G, B and A channels of one 64-bit indirection texture,
one 32-bit quad-tree level texture and one DXT5A/BC4 atlas texture (Figure 11).

The indirection texture stores a normalized XZ index to the tile in the atlas to use.

The quad-tree level texture stores which level in the quad-tree the tile is on which is
used when calculating the texture coordinates from world space positions.

In Listing 3 the 4x sparse quad-tree mask texture sampling shader is included.

1 Not entirely true, the indirection textures still take memory

float overlayBlend(float value1, float value2, float opacity)
{
 float blend = value1 < 0.5 ? 2*value1*value2 : 1 - 2*(1-value1)*(1-value2);
 return lerp(value1, blend, opacity);
}

float scaleContrast(float value, float contrast)
{
 return saturate((value-0.5)*contrast+0.5);
}

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

47

When creating and sampling from the mask texture atlas, care must be taken to pad the
borders of the tiles to prevent filtering artifacts in the edges when bilinear filtering is
used. Otherwise parts of the bordering tile in the atlas will leak over in the edges
resulting in ugly line artifacts in the borders of the tiles.

In Direct3D10 and on Xbox 360, a texture array can be used instead of an atlas and then
bilinear filtering automatically works correctly without any extra padding. Unfortunately
texture arrays have a limit of 512 slices (tiles) in Direct3D10 and 64 slices on Xbox 360
which limits their usefulness in this case unless the tiles are split up over multiple texture
arrays.

Figure11. 2048x2048 grayscale mask
texture atlas with 32x32 tiles

Figure10. Source mask texture for leaf
terrain material

Chapter 5: Terrain Rendering in Frostbite Using Procedural Shader Splatting

48

 Listing 3. Quad-tree texture sampling shader (Direct3D 10 HLSL), output is 4 individual
mask values. Note: padding between tiles is not included.

5.2.5 Destruction Mask

When an area of the terrain is affected by ground destruction, the pixels around that
area in the heightfields are updated. We would like to, at the same time, be able to
change the texture compositing and make other terrain materials visible for that specific
area to show for example burnt dirt (Figure 12).

sampler pointSampler;
sampler bilinearSampler;
Texture2D levelsTexture;
Texture2D indicesTexture;
Texture2D atlasTexture;

void sampleQuadTreeMasks(
 in float2 posXZ, in float2 heightmapUV,
 in float2 atlasSize, in float2 invAtlasSize,
 in float maskIndirectionResolution,
 out float4 outMasks)
{
 float4 indices = indicesTexture.Sample(pointSampler, posXZ);
 float4 levels = levelsTexture.Sample(pointSampler, posXZ);

 levels *= 255.0f; // unpack [0,1] -> [0,255] 8-bit

 [unroll]
 for (int i=0; i<4; i++)
 {
 float2 uv = frac(heightmapUV*maskIndirectionResolution/levels[i]);
 uv *= invAtlasSize;

 float2 index;
 index.x = floor(fmod(indices[i], atlasSize.x));
 index.y = floor(indices[i] * invAtlasSize.x);

 uv += index*invAtlasSize;

 outMasks[i] = atlasTexture.Sample(bilinearSampler, uv);
 }
}

Figure12. Ground destruction masking
in burnt dirt material on road

Figure13. Destruction mask (with point-
filtering for clarity)

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

49

We do this by dynamically rendering textured mask decals into a unique destruction
mask texture that covers the entire terrain that can be destructed (Figure 13). The
destruction mask is very low resolution, 4 pixels per meter, because the mask only
needs to contain rough circular gradients in the areas affected by ground destruction.
More detail can be added in the shaders in a similar manner of adding detail to the
procedural masks and the painted mask textures we described earlier in this chapter.

Nonetheless, even with a reasonably low resolution, texture memory footprint becomes
a problem. In a 2048×2048 m destructible terrain area, a 4 pixel per meter
uncompressed 8-bit mask texture takes (2048 * 4)2 bytes = 64 MB. That is hardly
desirable on any platform.

In our case, the worst case scenario for ground destruction is not really that 100% of the
terrain area can be fully destroyed and need to be masked at the same time. The
percentage we can get away with is much lower, perhaps 10%. But we do not want to
restrict where on the terrain the destruction can happen, so the 10% destroyed area can
be arbitrarily scattered over the entire terrain.

This is a similar scenario to static sparse mask textures that we encountered before,
however with dynamic textures in this case. So what we chose to do to save memory is
to create and incrementally update a dynamic sparse mask texture on the GPU for the
ground destruction (Figure 14).

We do not need to vary the resolution of the destruction mask, in contrast to the static
mask textures, so we can use a fixed grid structure for the indirection texture and no
quad-tree level texture making the texture sampling shader faster.

Figure14. Dynamic sparse mask texture atlas render target (left). Dynamic mask
indirection texture top-projected over terrain (right), B and G channels are
normalized XY index into tile in atlas. Three independent areas on the terrain
have been affected by ground destruction.

Chapter 5: Terrain Rendering in Frostbite Using Procedural Shader Splatting

50

When a ground destruction event is triggered and the heightfield is updated, we check if
the area the crater cover is allocated in the sparse texture. If it isn’t, we allocate one or
multiple new tiles in the atlas and store the XY index to the atlas tiles in a CPU-copy of
the indirection texture. The indirection texture is then copied over to the GPU.

Each crater is represented as a small 2D texture-mapped decal that is rendered into the
destruction mask texture atlas tiles by setting the viewport to match the tile and then
rendering all decals within that tile. Since very few tiles are allocated or updated every
frame, but the total amount of craters and allocated tiles can be high, this incremental
update can be a big win.

5.3 Terrain Shader Compositing

Any area on the terrain can have multiple overlapping terrain materials that need to be
composited together. The materials are specified in a strict order that determines which
material lies on top of which.

A simple implementation to render the
materials would be to do the compositing of
the terrain materials in the frame buffer
using alpha-blending a la [Bloom00]. Such
an implementation would go through each
terrain material in back-to-front order and
render all terrain geometry associated with
that material and blending its output on top
of the previous material’s output.

However there are quite a few drawbacks
with such a multi-pass approach:

• Frame buffer bandwidth. The terrain
covers much of the screen and the
more materials we add the more
times every pixel has to be read and
written back to the frame buffer
costing memory bandwidth.

• Geometry overdraw. As with any
multi-pass technique, the geometry
is rendered multiple times. Since we
want to render the terrain with lots of
triangles for good detail and GPU vertex throughput isn’t increasing as fast as
pixel throughput, this can become a big bottleneck.

• Duplicated shader computation. Many of the computations in the terrain material
shaders such as the terrain normal would be recomputed for every pass which is
costly.

Figure14. 2 terrain materials (red and
green) creating 3 terrain material
combinations due to overlap (yellow)

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

51

• Fixed function blend modes. The built-in blend modes aren’t very flexible,
especially compared to shaders. There are lots of interesting methods to non-
linearly combine natural textures for terrain

Instead, we combine all the terrain material shaders automatically into big single-pass
shaders and do the compositing inside the shaders. This allows for optimal performance
by sharing shader computations between materials while only rendering the geometry
and pixels once.

To implement the compositing we have a pre-processing step which analyzes the terrain
and gathers all terrain material combinations that are used on every patch of the terrain.
This process takes into consideration the terrain material distribution masks and when
multiple materials overlap on the same patch (Figure 14) all will be included.

The information is then used to create composite shaders for every terrain material
combination found and a grid referencing the composite shaders is saved out so the
runtime will know which shader to use for which patch and area on the terrain.

The composite shaders are surprisingly simple to create automatically given the graph-
representation of the shaders. The outputs of the terrain material shaders are re-routed
to the inputs of a pre-created compositing shader that combines all the materials and
outputs the final color.

Duplicate resources (textures, samplers and constants) and identical graph sub-trees or
code in the composite shaders are automatically removed by the general shader graph
compiler.

Chapter 5: Terrain Rendering in Frostbite Using Procedural Shader Splatting

52

To improve performance further, dynamic flow control is used rigorously in the
composite shaders to skip computations and texture fetches in areas that materials are
fully covered by other materials. This is a big win on all platforms.

We call this method of terrain texturing and shading procedural shader splatting, from
that we are arbitrarily “splatting” procedural shaders on various areas of the terrain and
on top of each other and then combining them all for efficient rendering (Figure 15).

5.4 Terrain Rendering

The terrain culling and LOD is done via a frame-to-frame coherent quad-tree structure
where every node knows the maximum and minimum height of the heightfield area
within the node. The minimum height of a node may change when the heightfield is
altered by ground destruction.

All visible leaf nodes in the quad-tree are rendered as fixed 33 x 33 vertex grids. The
vertex grid is stored in a single shared vertex buffer and the grid vertices only contain a
4-byte UV coordinate that gives a [0,1] parameterization over the grid. This
parameterization is transformed into both heightfield- and world-space in the vertex
shader and used for fetching the terrain height for the vertex trough the heightfield
texture. Because the vertex grid is aligned with the heightfield, point-filtering can be used

Figure15. Overhead view of terrain with about 15 terrain material
shaders masked & combined using Procedural Shader Splatting

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

53

which is a benefit on GPUs that does not natively support bilinear filtering of textures in
vertex shaders (GeForce 6 and 7).

On platforms and graphics cards that do not efficiently support vertex texture fetch we
have a pool of 33×33 vertices vertex buffers that are allocated on-demand on a LRU-
basis to visible quad tree nodes and filled by CPU/SPU threads by sampling the
heightfield.

The fixed vertex grid resolution is important to be able to support the worst case
scenario with arbitrary ground destruction at a fixed cost and quality. This “wastes”
triangles in non-altered flat areas but we found the cost to be worthwhile because of the
simplicity and generality of this approach.

5.4.1 Geometry LOD

As illustrated in Figure 16, neighboring quad tree patches of different LOD will create t-
junctions in the more detailed patches when using a fixed grid resolution for the quad
tree leaves.

If the terrain heightfield varies near the t-junction, the triangles of the t-junction in the
detailed patch (high LOD) will not sample the same height in the heightfield as the
triangle next to them in the lower LOD. This creates holes in the terrain that can be quite
apparent, esp. if a bright color such as the sky is rendered below the terrain. To get rid of
potential holes in the terrain we need to get rid of the t-junctions.
We can do this by first requiring that all quad tree nodes have a maximum of 1 level
difference to its neighbors. Then replace the two triangles that make up every t-junction
in the detailed patch with a single triangle that only uses vertices also available in the
neighboring lower LOD (Figure 17). These vertices are guaranteed to exist by the max
level difference we required.

Chapter 5: Terrain Rendering in Frostbite Using Procedural Shader Splatting

54

To support all possible combinations of quad tree nodes with the max level difference
restriction, all we need are 9 different index buffer permutations (Figure 18):

• One permutation that has all triangles in the vertex grid intact and is used when
the neighbor patches are of the same level. This is the most common case.

• Four permutations with the t-junction triangles removed on one of the four sides
of the patch

• Four permutations with the t-junction triangles removed on two sides next to each
other

The reason why we do not need all possible sixteen permutations (t-junctions from all
sides individually removed or kept) is that we chose to remove geometry from the
detailed patches instead of adding geometry to the lower LOD patches (which also
works). Two sides of a quad tree leaf node always shares the parent, and thus LOD,
which means that we do not need to remove t-junctions from more than two sides next to
each other of a patch.

This technique with multiple index buffer permutations is a bit similar to [Dallaire06], but
working with quad-trees instead of same size patches.

Figure17. Triangles creating t-
junctions removed in highest LOD
patch

Figure16. Quad tree patches with
different LOD creating t-junctions and
holes in the terrain at the red stars

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

55

5.5 Undergrowth

No matter how advanced shading, texturing and lighting we have on the terrain, it will
still not look natural up close due to the inherent limitations of heightfields as geometry
(Figure 19).

What we want is detail geometry and meshes to fill up the terrain with undergrowth,
grass, plants, stones and debris to create a much richer environment (Figure 20). And
since the heightfield geometry and terrain materials and texturing can change due to
ground destruction, this detail geometry needs to be able to be updated too.

Figure19. Landscape without
undergrowth

Figure20. Landscape with undergrowth

Manually placing individual stones or plants over the whole terrain is not a feasible
approach neither from time management nor data management point of view. But in
practice, the level designers do not even need or prefer this amount of control.

Figure18. The 9 geometry permutations needed for t-junction free LOD
transitions

Chapter 5: Terrain Rendering in Frostbite Using Procedural Shader Splatting

56

The undergrowth geometry is also rather small in scale, about 1 m max, and we want it
to be very dense with up to a couple of instances per m2. This makes just storing and
loading the instance data (transform) problematic on a large 2 x 2 or 4 x 4 km terrain.

Automatic procedural generation of the placement (procedural instancing) can solve
both the content workflow and the memory storage problem.

Procedural generation of instance data can either take place as a pre-process offline or
as an on-demand step in the runtime. We choose the latter since it has significantly
lower memory and disk storage requirements as well allows us easy regeneration of
areas affected by ground destruction dynamically.

5.5.1 Method

In previous games, such as RalliSport Challenge 2 and Battlefield 2, we procedurally
generated undergrowth instance data based on separate material index CPU textures
top-projected on the terrain. These maps indexed artist-defined undergrowth materials
that contained distribution settings such as which meshes to distribute, density (amount
per m2), random scale range, animation settings, etc.

The system worked well but there were three main limitations with the material index
maps that we wanted to resolve in Frostbite:

• Undergrowth materials can not overlap. Painting an area with a different type of
undergrowth is cumbersome and limited since you need to clone the material that
was already there, and in the material add the new types of geometry to
distribute.

• Undergrowth materials are fully separate from the underlying terrain materials. If
the terrain textures were repainted to be dirt instead of grass in an area, the
undergrowth material index map would have to be repainted manually as well.

• Resolution and destruction. With dynamic ground destruction we need to have a
much higher resolution of these textures costing memory.

As we now texture, shade and distribute terrain materials and textures through shaders it
felt natural to use the same system of procedural shader splatting for the undergrowth
generation. Then all the already existing terrain materials could automatically have
undergrowth distributed in their specific areas with minimal work on content.

Ground destruction and overlapping materials are also already a part of the general
terrain material masking so it is a very good fit.

5.5.2 Generation

Due to the small scale and high density of the undergrowth, we generate and keep only
the areas close to the player (and other important viewports) in memory. This is done

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

57

through a basic grid structure where 16 x 16m undergrowth grid cells are allocated and
de-allocated dynamically from a fixed pool of cells when moving around the landscape.

To prevent performance drops when rotating the views quickly with a gamepad or
(worse) mouse; the allocation of cells is done on a 2d xz distance-basis from the
viewport origins instead of when cells are visible in the viewport frustums. A cell viewport
frustum check can still be used to separate which cells need to be generated as soon as
possible, and which should be generated to further balance out generation cost over
multiple frames.

Each cell contains a list of the undergrowth mesh types in the area and a vertex buffer
with the instance data of all instances. The instance data is usually just a 4 x 3 world
transformation compressed as fp16 values to save memory and increase GPU
performance.

As a cell become visible or is affected by ground destruction, we render out 4-12
material mask values as well as the terrain normal with a top-down projection over the
cell area to 2-4 ARGB8888 64x64 simultaneous render targets using MRT (Figure 21).
The shader used is automatically generated offline in a similar manner to the terrain
shader compositing shaders.

When the textures have been
rendered by the GPU, we lock
them (or in Direct3D10 copy
them to a staging texture) for
processing by a CPU thread or
an SPU.

The CPU processing scans
through the texture for every
undergrowth material in a
randomly jittered grid pattern
over the cell space where the
grid size is dependent on the
material density setting. At every
sample point the material mask

texture is read and Russian roulette is played to determine if an undergrowth instance
should be placed at that point.

If it passes, the terrain normal map is then used to either rotate or skew the instance to
fit the ground.

The randomly jittered grid pattern works by generating uniform points on a grid and
randomly offsetting the points with a maximum of a half cell length, giving a uniform but
varied distribution. This reduces overlap of instances compared to ordinary pseudo-
random distribution which is important both visually and for performance for materials
such as grass.

To get deterministic results when generating pseudo-random numbers within a cell, the
cell position in the grid structure is hashed and used as a seed. This is important both on

Figure21. 4-channel undergrowth mask texture
where black is no undergrowth (left). Undergrowth
cell normal map from terrain (right)

Chapter 5: Terrain Rendering in Frostbite Using Procedural Shader Splatting

58

the local client when regenerating cells but also when running multiple clients of the
network so that everybody sees the same geometry.

In Direct3D10, the whole generation step can be moved to the GPU using Stream
Output ([Blythe06]) to offload the CPU and to reduce latency in the generation.

5.5.3 Rendering

After the undergrowth cells have been generated, rendering them is easy.

The undergrowth meshes are low-poly meshes with arbitrary surface shaders (Figure
22) that are rendered using stream instancing. They use alpha-testing or alpha-to-
coverage and are rendered in front-to-back order on a per-cell basis to improve
hierarchical Z-cull, though the amount of small detail in the textures makes hierarchical
Z-cull not very effective.

Through the use of the surface shader framework and runtime the undergrowth will
receive the same per-pixel lighting and shadowing as any other surfaces in the engine
which looks good makes it easier for it to blend in with the rest of the environment.

5.6 Conclusions

We have presented a flexible framework and technique for terrain rendering called
Procedural Shader Splatting where graph-based surface shaders control terrain texture

Figure22. Undergrowth surface shader for a grass mesh. Blends in with the terrain by
compositing its color map with the diffuse color from the actual terrain grass shader.
Lighting uses the normal of the heightfield to look the same as the terrain.

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007

59

compositing and distribution to allow terrain materials to be individually specialized to
balance performance, memory, visual quality and workflow.

The technique allows us to support dynamic heightfield modification for ground
destruction while keeping visual quality high both in a distance and close up and
memory usage low.

Procedural instancing of undergrowth is integrated into the system and using the terrain
material distribution and shaders is a very powerful tool and easy way to add visual
detail for a low cost in both memory and content creation.

There are however a few inherent drawbacks with the technique:

• Performance. Since almost all of the texture compositing is done in the shaders

in runtime instead of stored in offline created color maps, this approach is in
general more costly(due to shader instruction count and number of texture
fetches) than for a traditional fixed scheme such as in Battlefield 2.

• Complex workflow. While the artists still can choose to paint mask textures and
color maps, to really utilize the system they need to combine that with procedural
shading which is unfamiliar and not fixed cost as textures. On the other hand,
procedural elements can be more easily shared and reused across multiple
terrains.

The flexibility built into the technique and framework makes it a great scaleable platform
to integrate interesting shading techniques and texturing schemes in the future.

5.7 References

[AT07] ANDERSSON, J., TATARCHUK, N. 2007. Frostbite Rendering Architecture and Real-

time Procedural Shading and Texturing Techniques. AMD Sponsored Session. GDC
2007. March 5-9, 2007, San Francisco, CA.
http://ati.amd.com/developer/gdc/2007/Andersson-Tatarchuk-
FrostbiteRenderingArchitecture(GDC07_AMD_Session).pdf

[BLOOM00] BLOOM, C. 2000. Terrain Texture Compositing by Blending in the Frame-Buffer

(a.k.a. "Splatting" Textures). Nov 2, 2000. Website:
http://www.cbloom.com/3d/techdocs/splatting.txt

[BLYTHE06] BLYTHE, D. 2006. The Direct3D 10 system. In proceedings of ACM

Transactions on Graphics (SIGGRAPH’06 Conference Proceedings), pp. 724-234,
Boston, Massachusetts.

[DALLAIRE06] DALLAIRE, C. 2006. Binary Triangle Trees for Terrain Tile Index Buffer

Generation. Gamasutra article.
http://www.gamasutra.com/features/20061221/dallaire_01.shtml

Chapter 5: Terrain Rendering in Frostbite Using Procedural Shader Splatting

60

[TATARCHUK06] TATARCHUK, N. 2006. Dynamic parallax occlusion mapping with
approximate soft shadows. In proceedings of AMD SIGGRAPH Symposium on
Interactive 3D Graphics and Games, pp. 63-69, Redwood City, CA.

[TATARCHUK07] TATARCHUK, N. 2007. The Importance of Being Noisy: Fast, High Quality

Noise. Conference Session. GDC 2007. March 5-9, 2007, San Francisco, CA.
http://ati.amd.com/developer/gdc/2007/Tatarchuk-Noise(GDC07-D3D_Day).pdf

[TERRAGEN*] TERRAGEN by Planetside Software. http://www.planetside.co.uk/terragen/

[WEi04] WEI, L. 2004. Tile-Based Texture Mapping on Graphics Hardware. In

proceedings of ACM SIGGRAPH/Eurographics conference on Graphics Hardware,
pp. 55-63. Grenoble, France.

