
Cloth Self Collision with Predictive Contacts

Chris Lewin

Figure 1: A game character with self-colliding cloth, playing a
violent animation. The cloth always returns to an acceptable pose
even if the layers crash through each other momentarily. The total
simulation cost is 0.4ms per 30Hz simulation step, using a single
CPU thread.

1 Introduction

As expectations of realism in games have increased in the last few
years, cloth simulation has become a required feature for any game
that wishes to be graphically competitive. Unlike simulations for
film visual effects, real-time cloth simulations have to operate under
severe resource constraints and look good under all possible user in-
put. Given that cloth is often attached to characters that can move at
superhuman speeds, the robustness requirements on the simulation
can be quite restrictive. This invalidates many techniques used in
high-end work and academia, and means that real-time cloth simu-
lation is a somewhat different beast even when compared to game-
play rigid body simulation.

Typically, game simulations discretise cloth as a set of particles
connected by soft constraints, whose motion is integrated through
time using a combination of Verlet-type integration and a con-
straint solve using nonlinear projected Gauss Seidel (NPGS) iter-
ation [Müller et al. 2007]. This approach can be derived from con-
sidering an implicitly integrated elastic system, and then simplify-
ing the resulting method. Practically, what this approach means for
us as designers of constraints is that to solve a constraint, one needs
to define a constraint functionC(x) that measures how far away
the constraint is from being satisfied, and be able to calculate the
derivative of this function,∂C

∂x
.

Because of the tight resource budget afforded to cloth simulation
and the low resolution at which we are able to simulate, we typ-
ically do not do very many solver iterations or simulate at a high
frequency. This causes issues like artificial compliance (i.e. sag-

ging cloth) that we can work around by introducing additional,
global constraints. We also have various control constraints (dif-
ferent kinds of damping and spring forces, for instance) that the
artist can use to keep the cloth under control. In combination, these
different types of constraints can create an acceptable look for char-
acter clothing. However, one crucial missing piece is the collision
interaction between the cloth and itself (or between one piece of
cloth and another), which we call self collision.

2 Self Collision

Self collision of cloth is one of the trickiest phenomena to simulate
in physics-based animation, for the following reasons:

1. Cloth primitives (particles or triangles) are small and can
move quickly relative to their size.

2. The cloth is thin and two-sided, so in the absence of other
information it’s not possible to tell which side of one cloth
piece another piece should be.

3. Cloth meshes deform during the simulation, unlike rigid bod-
ies.

In high-end (Academic and VFX) work, these issues are usually
dealt with using some kind of continuous collision detection (CCD)
scheme. Efficient simulation of cloth with self collision in this field
is still evolving, but generally relies on:

1. Performing CCD sweeps multiple times per simulation step.

2. Continuous collision queries between deforming primitive
pairs (point-triangle and edge-edge).

Both of these techniques are very expensive and the present work
represents our attempt to avoid doing as many of these calculations
as possible.

3 Collision with Contacts

Before continuing with self collision, let’s discuss an easier prob-
lem: preventing cloth from moving through a static collider like a
sphere, capsule or box. One common way to do this is to simply
use discrete collision detection and resolution: After integrating the
system velocities forward, we check whether any cloth point is in-
side a collider and if it is, we push it out by the shortest route. This
works well if the system time step is small relative to the velocities
of the colliding objects, but this is almost never true in games. The
most obvious artefact of this approach is the well known bullet-
through-paper effect, where fast moving cloth will simply never
intersect with the collider and will instead pass through it.

This is annoying enough, but there is a more pernicious problem
which can even affect cloth that is mostly stationary with respect to
its colliders. This is that other constraints in the system can move
the cloth arbitrarily far in one timestep even if the cloth has no ve-
locity at all, and depending on what order we solve the constraints
in, the cloth might appear one side of a collider or the other. Iterat-
ing the constraint solves within one timestep can help with this, but
cannot eliminate the problem. Furthermore, iterating on a discrete
collision constraint means repeating the collision detection process,
which is extremely expensive. So this method is highly flawed.

a

b

c

Figure 2: Problematic cases for discrete collision detection be-
tween a particle and a capsule collider. Casea: the particle has a
velocity that takes it straight through the collider. Caseb: The par-
ticle has no velocity but is connected to constraints that may pull it
through the collider. Casec: The particle’s velocity places it the
wrong side of the collider, and it is pushed outwards in the wrong
direction.

In our solver, the way we avoid these issues is by using a predictive
contact approximation. At the beginning of the simulation time-
step, we have a configuration of the cloth and colliders that we
assume is ‘known good’, i.e., the cloth is the correct side of the
colliders. Then, we do a single semi-continuous collision detection
step that finds points that satisfy any of the following conditions:

1. Points that are inside colliders.

2. Points that are near to colliders (within some user-defined ep-
silon that we call thestatic collision radius, or SCR).

3. Points that have mutual velocity with a collider that will cause
them to be within the SCR of it.

For combinations of point and collider that satisfy these conditions,
we create a contact constraint. This is simply an infinite plane, with
a plane normal equal to the separating direction between the point
and collider at the start of the frame. Solving the collision constraint
then involves simply pushing the point out of the half-space behind
the plane, which is an extremely cheap operation.

Using contacts thus fixes two problems: First, they are cheap to
solve, which means we can do more solver iterations without mak-
ing the simulation expensive. This helps to resolve situations where
collisions are in opposition to other constraints (such as a cape be-
ing dragged over the body). Second, it doesn’t matter how far
through the contact plane the point is pushed; as long as the sys-
tem of constraints is feasible and enough solver iterations are done,
it will always end up the samesideof the collider as it was at the
beginning of the frame. This can cause some simulation artifacts if
the point travels very far tangentially to the plane, but it does solve
completely the tunnelling issues with discrete collision.

The dedicated reader may have noticed above that we used the term
‘semi-continuous collision detection’ above. This is what we call
an approach to collision detection that seeks to answer the third
point above - finding whether points have mutual velocity with a
collider that will put them within a certain radius of it - without
doing extremely expensive calculations. For instance, working out
the closest separation between a point and a capsule collider that has
both linear and angular velocity is actually very expensive. What
we do in this case, and for every kind of primitive we support in

Figure 3: Collision resolution with predictive contacts, for the
problematic cases enumerated above. In each case we create an
infinite half-space contact constraint which keeps the particles the
correct side of the collider.

cloth collision, is to take the discrete separating direction at the
beginning of the time step and ignore changes to it over the interval.
We simply look at the mutual velocity of the cloth point and the
closest point on the colliderat the beginning of the timestep, and
decide based on their mutual velocity along the discrete separating
direction whether they are likely to come close enough to generate
a contact. This approach is no more expensive than the discrete
collision detection calculations, but is much more robust. Spurious
contacts will be generated by this approach, but they are much less
noticeable than the cloth being pulled through colliders and thus we
tolerate them.

The purpose of this long aside was to introduce the ideas of contact
approximation and semi-continuous collision detection, which we
apply to cloth self collision in the following sections.

4 Cloth Self Collision with Contacts

Since discrete collision detection between cloth and colliders gives
acceptable behaviour and is easily implemented, it can be tempting
to try this approach when doing self collision. This will work when
the time step is small enough, but one crucial issue is lack of radius
in the cloth. If the cloth has to be very thin for the clothing to look
good when simulated, then the timesteps required for all collisions
to be captured will be infeasibly small. It’s for this reason that CCD
is frequently used. Instead, we will construct an algorithm based on
predictive contact detection and resolution.

As in the case of cloth versus colliders, we will find situations where
individual cloth primitives arelikely to come into contact with each
other during the time step, and create constraints to keep them the
correct side of one another. In this way we will hope to keep the
cloth globally free of intersections. We support two kinds of cloth
self collision: Point-point and full mesh (point-triangle and edge-
edge). Point-point collision is relatively cheap and the continuous
collision detection problem is easy to solve exactly. However, there
is an obvious problem when the density of points in the cloth is
low. Since this is almost always true in game cloth simulation, we
have primarily invested our efforts into full-mesh collision. We will
present all three types of constraints here.

4.1 Point-Point Contact

Consider two particles with positionspa,pb, displacements1

da,db and radiusr. We want to know whether the particles will
pass within the static collision radiusrsc of one another, and if so
we will create a constraint to keep them on the same side of each
other as they began the frame. We can easily solve this problem ex-
actly by finding the distance of closest approach between the lines
(pa, pa + da) and(pb, pb + db), and then creating a contact if
that distance is less thanrsc + 2r. If required, we could work out
the time of impact (ToI) between the two particles but this is not
useful for our algorithm.

Once we know a collision or near-miss is likely to take place, we
must create a constraint to prevent penetration. A natural choice for
this constraint is to simply ape the point-collider contact and store
a plane with normal̂n along which the particles may not penetrate.
The constraint condition is then:

C(pa,pb) = n̂ ∙ (pa − pb) − 2r ≥ 0

∂C

∂pa
= n̂

∂C

∂pb
= −n̂

(1)

As long as the constraint is solved sufficiently, this ensures the par-
ticles will stay the correct side of one another. We can make an
arbitrary choice about how this normal plane is defined; we sim-
ply choose the offset between the two particles at the beginning of
the frame (i.e.n̂ = normalize(pb − pa)). This can cause some
artifacts with friction, but we find them tolerable.

4.2 Point-Triangle Contact

Consider a pointp with displacementd and a triangle(p0,p1,p2)
with displacements(d0,d1,d2). We wish to know whether the
point is likely to come close enough to the triangle that we need
to generate a contact. If we try to solve this problem exactly, we
quickly discover that we have to compute the roots of a nasty sixth-
order polynomial in order to find the time of closest approach be-
tween the two primitives. Even if we treat the triangle as having
zero radius, we still have to solve a cubic polynomial to find out
whether the point and triangle will pass through each other during
the time interval. These approaches are both too expensive for real-
time simulation. Instead, we use an approximation based on dis-
crete distance between the primitives at the beginning of the frame:

1. Find the closest point on the trianglepc, and the displacement
of that pointdc using barycentric interpolation.

2. Project the displacementsd anddc along the discrete separat-
ing directionn̂ = normalize(pc−p), and compare the closest
approach distance with the radii and SCR to decide whether
to create a contact.

This approximation is conceptually like a linearisation of the sex-
tic polynomial representing distance between the objects over time,
and by increasing the SCR we can make it more and more conser-
vative.

Once we know a collision or near-miss is likely to take place, we
must create a constraint to prevent penetration. An obvious can-
didate in this case is to simply constrain the point to lie the same
side of the triangle as at the start of the frame. This can be encoded

1Here we use the term ‘displacement’ to mean the velocity multiplied by
the timestep, i.e, the total movement over the timestep if the particle were
not constrained.

using only a single bit, and thus a point-triangle contact contains
no floating-point data: only indices of the point & triangle, and the
sidedness of the contact. The constraint condition is:

C(p,p0,p1,p2) = n̂ ∙ (p − p0) − 2r ≥ 0 (2)

wheren̂ = ±normalize(cross(p1 − p0, p2 − p0)) depending on
the sidedness of the triangle. The constraint derivatives are:

∂C

∂p
= n̂

∂C

∂p1
= (p2 − p0) × Nn̂

∂C

∂p2
= (p1 − p0) × Nn̂

∂C

∂p0
= (p1 − p2) × Nn̂ − n̂

(3)

whereN = dn̂
dn

= (I − n̂n̂T)/|n| is the geometric stiffness matrix.

4.3 Edge-Edge Contact

True continuous collision for deforming fat lines is essentially
equivalent to the point-triangle case, and it is similarly expensive
to solve the problem exactly. So we take a similar approach to the
point-triangle case. Consider two lines(pa,pb) and(pc,pd), with
displacements(da,db) and (dc,dd). We find the closest points
on the two lines and their parameters(α, β) on those lines, i.e.,
pα = lerp(pa,pb, α) andpβ = lerp(pc,pd, β). Then we find
the displacement of these points at the beginning of the frame:
dα = lerp(da,db, α) anddβ = lerp(dc,dd, β). Then, as be-
fore, we project these displacements onto the discrete separation
vectorn̂ = normalize(pβ − pα) and compare the separation and
displacement speeds with the radii and SCR to work out whether
the edges may come into close proximity.

Assuming we want to generate a contact, we have to decide what
quantities to actually constrain. Unlike triangles, edges have no
natural orientation2. We must therefore, like in the point-point case,
commit to having some quantities in the contact description that are
frozen at the beginning of the frame. We choose a simple model for
the edge-edge contact where it is exactly equivalent to the point-
point contact, except the points being constrained are the virtual
pointspα andpβ some distance along each line. We must therefore
store n̂, α and β along with the topology in order to be able to
solve the contact. There is only one extra layer of indirection in this
contact compared to the point-point case, so the projection is quite
simple:

C(pa,pb,pc,pd) = (pα − pβ) ∙ n̂ − 2r ≥ 0

∂C

∂pa
= −(1 − s)n̂

∂C

∂pb
= −sn̂

∂C

∂pc
= (1 − t)n̂

∂C

∂pd
= tn̂

(4)

4.4 Broadphase

We now understand the detection and resolution of contacts for
point-point and full mesh self collision. However, testing every pair

2Although one may be able to derive an orientation from the local mesh
neighbourhood, we have not yet explored this possibility.

of points or triangles against one another would be prohibitively
expensive, so we must use an acceleration structure to reduce the
number of primitive comparisons. We use a simple Axis Aligned
Bounding Box (AABB) tree where each leaf node bounds a prim-
itive (point or triangle) extruded along its displacement, and ex-
panded by the Static Collision Radius. We can then find all inter-
sections between the leaf nodes and perform contact generation on
the resulting pairs of primitives.

4.5 Rep-Tri

One issue encountered when using full-mesh self collision is that
the triangles are the base primitive used by the broadphase, but
the actual contacts are between shared features (points, faces and
edges) of the triangles. This means that without special treatment,
we will potentially generate many identical contacts and waste pro-
cessing power. Representative Triangles (Rep-Tri) is a simple way
to filter out all these duplicate contacts. In this scheme, we greedily
assign shared features (vertices and edges) to one of the triangles
between which they are shared. For each triangle, we can encode
which of its vertices and edges it owns using just six bits. Then, we
can test these bits when looping over the feature pairs and use them
to cull duplicate contacts. This provides a substantial speed boost
for a very modest memory cost.

4.6 Regions

So far we have discussed self collision in purely local terms - as
pairs of intersecting primitives. However, in a typical production
cloth mesh there will be many parts of the mesh for which self
collision is not relevant, and many parts for which the inter-collision
between bits of cloth may be relevant while the collisions inside
one part may not. It is thus a waste to simulate self collision on the
entire cloth mesh. We provide a system for setting up regions of the
cloth and determining what kind of self collision interaction they
have with themselves and other regions.

Figure 4: Classic self collision tests using our algorithm. Left:
A collider twists a tape into a knot (20ms per 30Hz frame) Right:
Cloth falls onto a rotating sphere (1s per 30Hz frame).

4.7 Results of Basic Algorithm

Using this basic algorithm, we can simulate cloth undergoing fairly
sedate deformations as long as the thickness and static collision ra-
dius are generous. This can allow us to simulate most situations
with reasonable quality. However, due to the fact that we are not
using fully continuous collision detection, this method has diffi-
culy dealing with quick movement and thin clothing. Increasing
the static collision radius can compensate somewhat for this, but
the number of spurious contacts generated can become very large
and this can negatively affect behaviour and efficiency. So this basic

algorithm is not actually terribly suited for videogame simulations,
where inputs to the simulation can be very badly behaved.

5 Situational Tricks and Hacks

To remedy this situation, we turn to the traditional games-industry
medicine of situational tricks and hacks.

5.1 Layered Clothing

Many clothing configurations that can benefit from self collision
simulation are composed of layers. In this case, we may have global
information that, for instance, one layer of a flamenco skirt should
always rest on top of another layer. In this case, we can simply
hardcode the sidedness of the point-triangle contacts between these
layers using this pre-authored information. This means that even
if a contact is missed one frame, and the meshes become entan-
gled, they will be able to disentangle themselves on subsequent
frames. This eliminates the main issue that plagues self collision:
that failures in collision detection cannot be corrected in subsequent
frames.

5.2 Contact Caching

Do we actually have to detect any collisions at runtime? For certain
kinds of clothing, the answer is actuallyno. In clothing consisting
of layers, the contact set will not change very much from frame to
frame. In this case, we can simply compute a set of contacts once
and then solve them every frame. We can do this at load time or
in the pipeline, and thus avoid doing any collision detection at all
at runtime. The drawback to this approach is that we will end up
solving some constraints that would not have been generated if we
had run collision detection, which can cause changes in behaviour
when the layers move away from their starting pose. However, for
some commonly used situations in game cloth simulation, this is
not much of a drawback.

5.3 Results with tricks and hacks

With a combination of layered clothing and contact caching, we
are able to simulate self-colliding cloth in a large subset of realistic
situations at a cost that remains reasonable.

Figure 5: Game-like self collision situations using layered clothing
hacks and contact caching. Left: Two simple flaps rest against a leg
collider (0.1ms per 30Hz frame). Right: Layered skirt (0.2ms per
30Hz frame).

References

MÜLLER, M., HEIDELBERGER, B., HENNIX, M., AND RAT-
CLIFF, J. 2007. Position based dynamics.J. Vis. Comun. Image
Represent. 18, 2 (Apr.), 109–118.

