
Precomputed
Global Illumination
in Frostbite

Yuriy O’Donnell
Rendering Engineer

1

Agenda

• Introduction

• Part I: Path-traced spherical harmonics lightmaps in Frostbite
• Motivation

• Diffuse lighting

• Efficient encoding

• Approximate specular lighting

• Part II: A bag of tricks
• Hemisphere and texel sampling

• Rendering convergence detection

• Dealing with overlapping geometry

• Ensuring correct bilinear interpolation

• Efficient lightmap atlas packing

2

Introduction

3

Flux: Frostbite path tracer

• High quality static lighting

• Lightmaps and irradiance volumes
• Direct and indirect lighting
• Static ambient occlusion, sky visibility

• Initially created for FIFA and Madden

• Now used in Star Wars Battlefront II

A little bit of history.

We have developed our own lightmap baking solution during FIFA17 Frostbite
transition. Previously, FIFA artists used Maya to bake night-time lightmaps for their
stadiums. We needed a solution that was more integrated with the rest of the
engine. Additionally, we wanted to have something that we can maintain and extend
according to the needs of our projects.

When Star Wars Battlefront II started, we decided that our baker could be used for
the project to achieve better lighting quality than what was possible in Battlefront I.

4

Flux method

• Unidirectional path tracing with next event estimation
• Brute force

• CPU implementation for baking
• Intel Embree

• IncrediBuild XGE

• GPU implementation for real-time artist workflows
• See Interactive Global Illumination in Frostbite [Hillaire18]

Our lightmap baker, Flux, is a brute force (naïve) unidirectional path tracer that uses
basic BRDF importance sampling and next event estimation (explicit light source
sampling).

It is primarily a CPU-based solution, which uses Intel Embree for BVH
construction/traversal and Incredibuild XGE for distributing computations over
machines in our studios.

We have recently also implemented a GPU back-end that’s based on a pre-release
version of RTX. It’s aimed at improving artist workflows by providing a fully interactive
global illumination authoring system that allows full scene editing (geometry,
materials, lights). We have presented some of the implementation details of our GPU
back-end at GDC2018.

5

Lightmap density

Low-poly proxies used for better UV chart efficiency

Let’s look at some of the inputs and outputs of our lightmap renderer.

Frostbite was a very early adopter of Geomerics Enlighten [Martin10] middleware,
which is used in most of our games to provide semi-dynamic GI and interactive
lighting artist workflows. Having full compatibility of the assets and essentially zero
workflow changes was one of the design goals of our custom baker, so that it could
be a trivial drop-in replacement for teams that only need static GI.

We use low-poly proxy geometry during baking. Proxies are created for all mesh
assets that require lightmaps. A low-LOD version of the asset may be sometimes
used, though in general, creating good proxies is still a pretty labor-intensive process
for artists.

Lightmap UVs are created only for proxies (either manually or using Enlighten auto-
UV library). Having low-poly version of geometry is quite desirable when it comes to
lightmap UV efficiency, as low-poly meshes typically have much fewer UV
charts/islands and therefore fewer lightmap texels are wasted.

6

Indirect lighting, low-poly GI scene

This also reduces self-shadowing issues with low-res lightmaps

Ideally, each lightmap texel should be representing as a single plane in the mesh. If
this is not the case (i.e. when geometry is much higher resolution / high frequency),
some artifacts may appear due to self-shadowing.

7

Indirect lighting, final geometry

Lightmap UVs transferred to final meshes (all LODs)

Lightmap UVs are projected from proxies to all LODs of the final display geometry in
the mesh pipeline. Frostbite uses Enlighten SDK to perform lightmap UV projection.

8

Direct + indirect lighting, final geometry

Lightmaps in SWBF2 only contain indirect lighting. All direct contributions (except sky)
are computed dynamically.

9

Final frame

10

Lightmap density

Target lightmap density ~25cm / texel

Target lightmap density for Star Wars Battlefront was ~50cm / texel. Lighting density
for Star Wars Battlefront II was 25cm / texel (~4x more data).

11

Indirect lighting, low-poly GI scene

Baked indirect lighting is fairly coarse

Baked undirect lighting was fairly coarse. It was augmented with a screen-space
technique (Horizon-based Ambient Occlusion).

12

Indirect lighting, final geometry

Combined with screen-space ambient occlusion for greater detail

13

Direct + indirect lighting, final geometry

HBAO adds some short-range, high-frequency lighting detail that’s missing from
lightmaps.

14

Final frame

15

Lightmap density

16

Indirect lighting, low-poly GI scene

17

Indirect lighting, final geometry

18

Direct + indirect lighting, final geometry

19

Final frame

20

Lightmap density

21

Indirect lighting, low-poly GI scene

22

Indirect lighting, final geometry

23

Direct + indirect lighting, final geometry

24

Final frame

25

Lightmap density

26

Indirect lighting, low-poly GI scene

27

Indirect lighting, final geometry

28

Direct + indirect lighting, final geometry

29

Final frame

30

Lightmap density

31

Indirect lighting, low-poly GI scene

The magenta surfaces in this screenshot represent visible back-faces. This is typically
useful for artists to quickly identify errors in proxy geometry.
In this particular case, the surfaces correspond to some cloth that scatters light.

32

Indirect lighting, final geometry

33

Direct + indirect lighting, final geometry

34

Final frame

35

Part I: Path-traced SH lightmaps in Frostbite
• Motivation

• Diffuse lighting

• Efficient encoding

• Approximate specular lighting

36

Why path tracing?

• Elegant and unified approach for all light types (sun, sky, local lights)

• Easy to implement and understand

• Embarrassingly parallel

• Easy to validate against ground truth

• Progressive rendering is possible

We chose path tracing because it was a very simple approach to implement that
could still solve all our intended use case pretty well.

It was trivial to distribute over a cluster of machines in our studios, since
computations for every lightmap texel are completely independent.

It was also easy to validate our implementation against other path tracers, such as
Mitsuba. We used this for testing implementation of our area light source sampling in
particular.

Last but not least, we have aimed from the beginning to use our framework for
progressive / interactive lighting artist workflows. Path tracing was a natural choice,
as it does not require any preprocessing steps (other than building the acceleration
structures).

37

Why not path tracing?

• Expensive
• 8 megapixel lightmap

• 100k rays traced / pixel
primary + secondary + shadow

• 800bn rays in total

• >200 CPU core-hours to bake*

• Some scenes require huge number of rays
• Need BDPT, MLT, photon mapping or other algorithms to solve efficiently

• Radiosity can also work great, with some quality loss

* Assuming performance of 1M rays / second on 1 CPU core

Sounds great, huh!? Well, the reality that people typically don’t talk about is that
brute force path tracing (most commonly used approach) is very computationally
expensive. While getting a noisy [preview quality] image can be almost instant,
getting the final clean result can take hundreds of core-hours. Distributed
computations (XGE / SN-DBS) and GPUs help tremendously, though it is still quite
slow.

Some scenes take a completely impractical amount of time to converge and really
require smarter solutions, such as bi-directional path tracing, Metropolis light
transport, photon mapping, irradiance caching, radiosity, etc.

Post-process denoising also helps.

38

Baked

Real-time

Baked Global Illumination (1)

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒(𝑥) + න
Ω

𝐿𝑖 𝑥, 𝜔𝑖 𝑓𝑟 𝑥, 𝜔𝑜 , 𝜔𝑖 𝜔𝑖 ⋅ 𝑛 𝑑𝜔𝑖

• Baked GI is a database/cache, keyed by position 𝑥
• Stores partial solution to the Rendering Equation

Camera

Sky
Light source

When people talk about precomputed global illumination, they invariably mean
splitting the rendering solution into a pre-computed and run-time parts. Partial R.E.
solutions are computed offline and stored in a form that can be indexed using a world
position. Lightmaps, irradiance probes, etc. are all just variations on the idea that
have been used in games since Quake1 (or earlier?). Luckily, it’s possible to split the
R.E. integral more or less arbitrarily and combine various partial solutions that are
computed offline or in real-time to get various degrees of approximation for global
illumination.

39

Baked Global Illumination (2)

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝑒(𝑥) + න
Ω

𝐿𝑖 𝑥, 𝜔𝑖 𝑓𝑟 𝑥, 𝜔𝑜 , 𝜔𝑖 𝜔𝑖 ⋅ 𝑛 𝑑𝜔𝑖

• Eye vector 𝜔𝑜 is not known (no camera during baking)

• Shading normal 𝑛 may be not known at baking time
• Normal maps or geometry LODs may be used at run-time

• Flux bakes spherical irradiance function in lightmaps and probes

• Assuming basic diffuse BRDF (i.e. 𝑓𝑟 =
𝑘

𝜋
) and 𝑛𝑠ℎ𝑎𝑑𝑖𝑛𝑔 = 𝑛𝑓𝑎𝑐𝑒

• Evaluated using per-pixel surface normal 𝑛 and base color 𝑘 at runtime

• Using Spherical Harmonics

There are few problems with this general approach. Eye vector and final shading
surface normal may be not known at baking time. Eye vector will come from dynamic
camera, normal will come from different geometry LODs and normal maps. It is
therefore necessary to store the GI data in a form that can be evaluated later using
the final dynamic parameters.

The common approaches are to bake either radiance or irradiance function. Spherical
harmonics are commonly used. Alternatives include spherical gaussians, H-basis,
radiosity normal mapping, ambient + highlight direction, etc.

We use low-order L1 spherical harmonics to store irradiance data in our lightmaps.

40

Spherical Harmonics
• Baking

• Encoding

• Evaluation

41

Directional Lightmaps in Mirror’s Edge

I want normal maps to look

as good as they did in

Mirror’s Edge

Oscar Carlen

Lighting artist

Mirror’s Edge, Battlefront

Beäst

42

Directional Lightmaps in Battlefront II

Challenge accepted!

Flux

Yuriy O’Donnell

Global Illumination

Enthusiast

43

Why spherical harmonics?

• No tangent frame required
• Unlike RNM [Green07] or ℋ-Basis [Habel10]

• Chroma-separated RGB directional lighting
• Unlike ambient + highlight direction (AHD) [Iwanicki13]

• High contrast diffuse lighting

• Approximate indirect specular lighting

• Good compression options for RGB L1 SH

After evaluating many different schemes for storing precomputed global illumination
data (spherical gaussians, RNM / HL2 basis, ambient cube, H-basis,
ambient+directional, etc.) we have settled on RGB L1 spherical harmonics for our
lightmaps (12 coefficients total per texel).

We found SH to be the best compromise of storage footprint, evaluation cost and
quality for our particular use cases (60Hz ~1080p action games).

44

Baking spherical harmonics (1)

SHL1 shEvaluateL1(vec3 p)
{
float Y0 = 0.282095f; // sqrt(1/fourPi)
float Y1 = 0.488603f; // sqrt(3/fourPi)
SHL1 sh;
sh[0] = Y0;
sh[1] = Y1 * p.y;
sh[2] = Y1 * p.z;
sh[3] = Y1 * p.x;
return sh;

}

For rays on a uniform sphere:

radianceSh += 4pi/N * shEvaluateL1(rayDirection) * rayRadiance;

Radiance environment probe
Image by Bernhard Vogl

Radiance L1 SH

𝐿00 =
1

4𝜋

4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 𝐿1−1 =
3

4𝜋

4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 𝑦𝑖 𝐿10 =
3

4𝜋

4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 𝑧𝑖 𝐿11 =
3

4𝜋

4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 𝑥𝑖

Spherical harmonics are nothing new. The process of baking and evaluating them is
quite well covered in the literature already. I’ve included a sample implementation
here just for completeness / convenience.

The typical process is to first compute SH representation of the radiance at a
particular point using Monte Carlo sampling. We can generate random rays on a
sphere (or hemisphere for lightmaps) and project the radiance in those ray directions
onto SH basis, as shown on the slide.

The result is a set of SH coefficients that represent the spherical radiance function
(i.e. amount of light coming from a particular single direction).

45

Baking spherical harmonics (2)

• Convolve with clamped cosine lobe to get the irradiance
irradianceSh = shApplyDiffuseConvolutionL1(radianceSh);

Radiance L1 SH Irradiance L1 SH

void shApplyDiffuseConvolutionL1(SHL1& sh)
{

float A0 = 0.886227f; // pi/sqrt(fourPi)
float A1 = 1.023326f; // sqrt(pi/3)
sh[0] *= A0;
sh[1] *= A1;
sh[2] *= A1;
sh[3] *= A1;

}

𝐴0 =
𝜋

4𝜋
𝐴1 =

𝜋

3
SH coefficients for Lambertian BRDF

AKA clamped cosine lobe

𝐸𝑙𝑚 = 𝐴𝑙𝐿𝑙𝑚

For rendering, we need to compute the amount of light that falls on a surface with a
particular normal from all directions on a hemisphere around it. In other words, we
need to compute irradiance at a particular point on the geometry surface.

This is achived by convolving the radiance function in SH form with the SH form of our
BRDF (clamped cosine).

SH is a frequency-space representation of a signal and a convolution in this form is
simple per-component multiplcatin of the SH basis factors.

This process is quite well known and previously described in detail [Ramamoorthi01].
http://cseweb.ucsd.edu/~ravir/papers/envmap/envmap.pdf
http://graphics.stanford.edu/papers/invlamb/josa.pdf

46

Simplifying irradiance SH (1)

• shEvaluateL1 can be merged with shApplyDiffuseConvolutionL1

SHL1 shEvaluateDiffuseL1(vec3 p)
{

float AY0 = 0.25f;
float AY1 = 0.50f;
SHL1 sh;
sh[0] = AY0;
sh[1] = AY1 * p.y;
sh[2] = AY1 * p.z;
sh[3] = AY1 * p.x;
return sh;

}

SHL1 shEvaluateL1(vec3 p)
{

float Y0 = 0.282095f; // sqrt(1/fourPi)
float Y1 = 0.488603f; // sqrt(3/fourPi)
SHL1 sh;
sh[0] = Y0;
sh[1] = Y1 * p.y;
sh[2] = Y1 * p.z;
sh[3] = Y1 * p.x;
return sh;

}

void shApplyDiffuseConvolutionL1(SHL1& sh)
{

float A0 = 0.886227f; // pi/sqrt(fourPi)
float A1 = 1.023326f; // sqrt(pi/3)
sh[0] *= A0;
sh[1] *= A1;
sh[2] *= A1;
sh[3] *= A1;

}

What is interesting is that we can just merge the SH coefficients of our BRDF and the
SH basis normalization factors. Of course this is most certainly not a crazy
coincidence, just algebra. I’ve included some more detailed walk-through of the
simplification as bonus slides.

47

Radiance derivation

𝐿 𝜃, 𝜑 =

𝑙,𝑚

𝐿𝑙𝑚𝑌𝑙𝑚 𝜃, 𝜑 𝑌00 =
1

4𝜋
𝑌1𝑚 =

3

4𝜋
(𝑥; 𝑦; 𝑧)

𝐿𝑙𝑚 = න
𝜃=0

𝜋

න
𝜑=0

2𝜋

𝐿 𝜃, 𝜑 𝑌𝑙𝑚 𝜃, 𝜑 𝑠𝑖𝑛𝜃, 𝑑𝜃, 𝑑𝜑

Solve using Monte Carlo

𝐿𝑙𝑚 =
4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝜃𝑖 , 𝜑𝑖 𝑌𝑙𝑚 𝜃𝑖 , 𝜑𝑖

𝐿00 =
4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖
1

4𝜋

𝐿1𝑚 =
4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖
3

4𝜋
(𝑥𝑖 ; 𝑦𝑖; 𝑧𝑖)

Bonus slide for viewing at home!

SH basis functions

Assuming SH truncated to L1 and integration over a sphere

Let’s just step through all the simplification steps for fun :)

Based on:
http://cseweb.ucsd.edu/~ravir/papers/envmap/envmap.pdf
http://graphics.stanford.edu/papers/invlamb/josa.pdf

48

Irradiance derivation

𝐸 𝜃, 𝜑 =

𝑙,𝑚

4𝜋

2𝑙 + 1
𝐴𝑙𝐿𝑙𝑚𝑌𝑙𝑚 𝜃, 𝜑 𝐴0 =

𝜋

4𝜋
𝐴1 =

𝜋

3

𝐸 𝜃, 𝜑 =
4𝜋

2×0+1
𝐴0𝐿00𝑌00 +

4𝜋

2×1+1
𝐴1𝐿1−1𝑌1−1 𝜃, 𝜑 +

4𝜋

2×1+1
𝐴1𝐿10𝑌10 𝜃, 𝜑 +

4𝜋

2×1+1
𝐴1𝐿11𝑌11 𝜃, 𝜑

𝑌00 =
1

4𝜋
𝑌1𝑚 =

3

4𝜋
(𝑥; 𝑦; 𝑧)

𝐸 𝑥, 𝑦, 𝑧 =
4𝜋

1

1

4𝜋

𝜋

4𝜋
𝐿00 +

4𝜋

3

3

4𝜋

𝜋

3
𝐿1−1y +

4𝜋

3

3

4𝜋

𝜋

3
𝐿10z +

4𝜋

3

3

4𝜋

𝜋

3
𝐿11x

𝐸 𝑥, 𝑦, 𝑧 = 0.25 4𝜋𝐿00 + 0.5
4𝜋

3
𝐿1−1y + 0.5

4𝜋

3
𝐿10z + 0.5

4𝜋

3
𝐿11x

𝐸 𝑥, 𝑦, 𝑧 = 0.886227𝐿00 + 1.0233𝐿1−1y + 1.0233𝐿10z + 1.0233𝐿11x

𝐴 𝜃 = max[𝑐𝑜𝑠𝜃, 0] 𝐴 𝜃 =

𝑙

𝐴𝑙 𝑌𝑙0 𝜃

Bonus slide for viewing at home!

SH coefficients for Lambertian BRDF

AKA clamped cosine lobe

SH basis functions

Assuming SH truncated to L1 and integration over a sphere

Let’s just step through all the simplification steps for fun :)

Based on:
http://cseweb.ucsd.edu/~ravir/papers/envmap/envmap.pdf
http://graphics.stanford.edu/papers/invlamb/josa.pdf

49

Combining radiance & irradiance

Radiance

𝐸 𝑥, 𝑦, 𝑧 = 0.25 4𝜋𝐿00 + 0.5
4𝜋

3
𝐿1−1𝑦 + 0.5

4𝜋

3
𝐿10𝑧 + 0.5

4𝜋

3
𝐿11𝑥

Irradiance

Combined formulation

𝐿00 =
1

4𝜋

4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖

𝐿1−1 =
3

4𝜋

4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 𝑦𝑖

𝐿10 =
3

4𝜋

4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 𝑧𝑖

𝐿11 =
3

4𝜋

4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 𝑥𝑖

𝐸00 = 0.25
1

4𝜋
4𝜋

4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖

𝐸1−1 = 0.5
3

4𝜋

4𝜋

3

4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 𝑦𝑖

𝐸10 = 0.5
3

4𝜋

4𝜋

3

4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 𝑧𝑖

𝐸11 = 0.5
3

4𝜋

4𝜋

3

4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 𝑥𝑖

𝐸 𝑥, 𝑦, 𝑧 = 𝐸00 + 𝐸1−1𝑦 + 𝐸10𝑧 + 𝐸11𝑥

Bonus slide for viewing at home!

Assuming SH truncated to L1 and integration over a sphere

Let’s just step through all the simplification steps for fun :)

Based on:
http://cseweb.ucsd.edu/~ravir/papers/envmap/envmap.pdf
http://graphics.stanford.edu/papers/invlamb/josa.pdf

50

Simplifying irradiance integral

Combined formulation

𝐸00 = 0.25
1

4𝜋
4𝜋

4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖

𝐸1−1 = 0.5
3

4𝜋

4𝜋

3

4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖, 𝑧𝑖 𝑦𝑖

𝐸10 = 0.5
3

4𝜋

4𝜋

3

4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 𝑧𝑖

𝐸11 = 0.5
3

4𝜋

4𝜋

3

4𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 𝑥𝑖

over full sphere

𝐸00 =
𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖, 𝑧𝑖

𝐸1−1 =
2𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖, 𝑧𝑖 𝑦𝑖

𝐸10 =
2𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖, 𝑧𝑖 𝑧𝑖

𝐸11 =
2𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖, 𝑧𝑖 𝑥𝑖

Bonus slide for viewing at home!

over hemisphere

𝐸00 =
𝜋

2𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖, 𝑧𝑖

𝐸1−1 =
𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 𝑦𝑖

𝐸10 =
𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖, 𝑦𝑖 , 𝑧𝑖 𝑧𝑖

𝐸11 =
𝜋

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖, 𝑦𝑖 , 𝑧𝑖 𝑥𝑖

Final simplified form for Monte Carlo integration

over full sphere

Let’s just step through all the simplification steps for fun :)

Based on:
http://cseweb.ucsd.edu/~ravir/papers/envmap/envmap.pdf
http://graphics.stanford.edu/papers/invlamb/josa.pdf

51

Simplifying irradiance SH (2)

• More opportunities for cancelation:
• 𝟏/𝝅 in the BRDF

• 𝟒𝝅 in spherical Monte Carlo integration (2𝜋 for hemispherical)

• Final simplified L1 SH irradiance Monte Carlo integration

For rays on a uniform sphere:
irradianceSH += SHL1rgb(rayRadiance, 2 * rayRadiance * rayDirection) / N;

𝐸00 =
1

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖, 𝑧𝑖 𝐸1−1 =
2

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 𝑦𝑖 𝐸10 =
2

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖, 𝑦𝑖 , 𝑧𝑖 𝑧𝑖 𝐸11 =
2

𝑁

𝑖=1

𝑁

𝐿 𝑥𝑖, 𝑦𝑖 , 𝑧𝑖 𝑥𝑖

The cool thing that comes out of all this is that our L0 coefficients simply contain the
average radiance, while L1 contains weighted-average radiance direction.

Graham Hazel describes a simplification process that arrives to the same result:
https://grahamhazel.com/blog/2017/12/22/converting-sh-radiance-to-irradiance

52

Simplifying irradiance SH (3)

• Factor out 2 and 𝐿0 from 𝐿1 to bring its magnitude into 0..1 range

irradianceSH += SHL1rgb(rayRadiance, rayRadiance * rayDirection) / N;

For rays on a uniform sphere:

Then irradianceSH.L1 /= irradianceSH.L0;

Evaluation shader:

result = (0.5 + dot(irradianceSH.L1, normal)) * irradianceSH.L0 * 2.0;

Might be negative and already includes
1

𝜋
BRDF term

For storage efficiency, we can further take out the 2 and L0 factors from our L1
coefficients. This is good for storage / encoding, as it brings the magnitude of our L1
data into 0..1 range.

Reconstruction shader is then also simplified, as shown on the slide. The pseudocode
evaluates the irradiance function using the surface normal and outputs the outgoing
radiance (i.e. reflected light) that’s only missing the albedo factor.

Note that result of SH evaluation may be negative, since magnitude of L1 vector is
potentially twice that of L0. This artifact is known as “ringing”.

53

Irradiance SH lightmap encoding

• Use 4 RGB textures to store 12 SH coefficients
• 𝐿0 coefficients in HDR (BC6H texture)

• 𝐿1 coefficients in LDR (3x BC7 or BC1 textures)

• Total footprint for RGB SH lightmaps:
• 32 bits (4 bytes) / texel for BC6+BC7, high quality mode

• 20 bits (2.5 bytes) / texel for BC6+BC1, low quality mode

• Example:
• 4096 x 4096 lightmap

• 64MB at 32 bits / texel, 40MB at 20 bits/texel

Now that our data is in a nice and convenient range, we can encode it using standard
block compression formats.

L0 coefficients represent the average radiance and have high dynamic range. BC6HU
was a naturally good fit for them.
We use a single BC6HU texture to store 3xL0 coefficients (RGB).

L1 coefficients represent a weighted average light direction. Since we’ve factored out
2*L0, the data is now in a convenient 0..1 range.
We can use an LDR texture format to store L1 coefficients. We need 3 textures to
store 9 L1 coefficients.
BC7 is a great choice from quality point of view, but BC1 also works pretty well.

54

Non-linear SH lightmap evaluation

• Proposed by Geomerics [Hazel15]

• Improves contrast

• Guarantees only positive results (no ringing)

• Guarantees correct total energy

Diffuse irradiance L1 SH Diffuse irradiance non-linear L1 SH
[Hazel15]

Diffuse irradiance
Ground truth Monte Carlo

Radiance environment probe
Image by Bernhard Vogl

https://grahamhazel.com/blog/2017/12/22/converting-sh-radiance-to-irradiance

While simple L1 SH lighting is quite fast and intuitive, we can do a lot better. Frostbite
uses a technique proposed by Graham Hazel & Chris Doran from Geomerics:
https://web.archive.org/web/20160313132301/http://www.geomerics.com/wp-
content/uploads/2015/08/CEDEC_Geomerics_ReconstructingDiffuseLighting1.pdf
https://grahamhazel.com/blog/2017/12/22/converting-sh-radiance-to-irradiance

It was originally described as a solution to the ringing artifacts (unnaturally dark /
negative values of the function) for L1 SH probe-based lighting. Artifacts appear on
the side of the sphere opposite of the highly directional signal with high magnitude
(i.e. on the side opposite the window in the example on the slide).

Geomerics non-linear irradiance reconstruction produces only positive results, while
preserving the total energy of the function.

Ringing is not a big issue for lightmaps, since we typically don’t see the geometry
from “below” of the hemisphere around lightmap texel. However, non-linear
reconstruction also happens to improve lighting contrast (as long as light mostly
comes from one direction).

55

Vanilla L1 SH

56

Non-linear L1 SH

57

Lightmap resolution

58

Irradiance, applied to geometry used for baking

59

GBuffer normals

60

SH Lightmap diffuse light evaluation

float3 shLightingNonLinearL1(float3 n, float L0, float3 L1)
{

float lenL1 = length(L1);
float k = lenL1 / L0;
float q = 0.5f * (1.0f + dot(L1 / lenL1, n));
float p = 1.0f + 2.0f * k;
float a = (1.0f - k) / (1.0f + k);
return L0 * (a + (1.0f - a) * (p + 1.0f) * pow(q, p));

}

TODO: show optimized version

float3 sampleLightmapDiffuse(float3 normal, float2 uv)
{

float3 L0 = irradianceTexture.Sample(linearSampler, uv);
float3 L1r = directionTextureR.Sample(linearSampler, uv);
float3 L1g = directionTextureG.Sample(linearSampler, uv);
float3 L1b = directionTextureB.Sample(linearSampler, uv);
float3 result;
result.r = shLightingNonLinearL1(n, 0.5f, L1r) * L0.r;
result.g = shLightingNonLinearL1(n, 0.5f, L1g) * L0.g;
result.b = shLightingNonLinearL1(n, 0.5f, L1b) * L0.b;
return result;

}

TODO: Triple-check the maths!

Irradiance using GBuffer normals

61

Lightmap resolution

62

Irradiance, applied to geometry used for baking

63

GBuffer normals

64

Irradiance using GBuffer normals

65

Approximate specular lighting

66

Doing things properly

• Lighting and Material of Halo 3 [Chen08] describes specular lighting

• Lightmaps contain radiance L2 SH data

• Uses lookup textures of SH coefficients keyed by BRDF parameters
• Baked offline from roughness, view angle in XZ plane

• Uses the fact that isotropic specular BRDFs are symmetrical

• Uses SH rotation to transform BRDF SH from local to world space

• SH dot product between BRDF and Radiance SH to get final specular

• Fundamentally solid, but quite a lot of ALU and texture lookups

http://developer.amd.com/wordpress/media/2013/01/Chapter01-Chen-
Lighting_and_Material_of_Halo3.pdf

Implementation using lookup textures is available in BakingLab [Pettineo16].

67

General idea for approximate specular

• Use L1 Spherical Harmonics data in lightmaps

• Derive principal light direction from SH (just normalize L1 data)

• Estimate the “spread” or “focus” based on length of L1 band
• float focus = length(lightmap.L1); // [0..1]

• Create an imaginary light source using estimated parameters

• Plug the numbers into our standard GGX specular formula

Since we know that L1 data contains weighted average light direction, we can just
normalize it to get a representative light source direction for the purposes of specular
lighting approximation.

68

Approximate specular lightmap shader

• Use L1 magnitude to estimate how focused the lighting is
• Similar principle to non-linear diffuse SH lighting [Hazel2015]
• Close to 0.0 means that light comes from many directions
• Close to 1.0 means that light mostly comes from one direction

• Adjust surface roughness as a fast area light approximation
• Make highlight softer when heuristic suggests omni-directional lighting
• Arbitrary empirical approximation based purely on visually pleasing and plausible result

// Approximate an area light by adjusting smoothness/roughness

float lightmapDirectionLength = length(lightmapDirection); // value in range [0..1]
float3 L = lightmapDirection / lightmapDirectionLength;
float adjustedSmoothness = linearSmoothness * sqrt(lightmapDirectionLength);

// Proceed with standard GGX specular maths

Our approach is based purely on empirical fitting (AKA randomly tweaking stuff based
on a gut feeling and keeping results that look good).

We adjust the roughness of the surface based on a heuristic tries to guess how
focused or spread the lighting data is.

Our heuristic looks at the magnitude of our encoded L1 vector (average of 3 vectors
stored in our lightmaps for RGB).
Magnitude close to 0 means that light contributions from many different directions
cancel each other out, so the highlight should be softer.
Magnitude close to 1 means that lighting is unidirectional, so the highlight should be
sharper.

We can use the magnitude heuristic to adjust the surface roughness that we plug into
our standard GGX specular formula.

Of course, this is nothing new and other games have used similar approaches in the
past, though it is not often publicized.

69

Specular OFF

70

Specular ON

71

Specular OFF

72

Specular ON
Cost on PS4 (base): ~0.35ms at ~900p

73

Diffuse only

74

Diffuse + screen-space reflections

75

Diffuse + approximate SH specular

When compared to SSR, approx. specular lightmaps look different. This is to be
expected, since we only have a single specular highlight direction. Results are still
quite plausible. Since lightmaps are evaluated per-pixel, the overall image looks
sharper compared to SSR which is rendered at half-resolution.

76

Some issues require art workarounds

• Single light direction isn’t enough

• Turn off specular lightmaps per asset

• Only use specular within certain
roughness range

• Use other reflection tech instead
• Local reflection cubemaps

• Screen-space reflections

• Planar reflections

Since lightmaps only contain a single average light direction per texel, artifacts are
noticeable on smooth surfaces in areas where dominant light direction changes
smoothly.

There’s not much that can be done about it, since we simply don’t have the necessary
data in L1 SH to accurately reconstruct specular lighting. The only option is to mitigate
the issue by fading out specular lightmaps on surfaces with high smoothness. Other
reflection techniques (SSR, reflection probes, planar reflections) are typically used for
such surfaces any way.

We also gave artists some explicit control that allows them to turn off specular
contribution per material. This happens to be helpful for GPU performance
optimization.

77

Part II: A bag of tricks
• Hemisphere and texel sampling
• Rendering convergence detection
• Dealing with overlapping geometry
• Ensuring correct bilinear interpolation
• Efficient lightmap atlas packing

78

Baking lightmaps with path tracing (recap)

• Generate sample points on texels

• Trace paths in a hemisphere from texel sample points

Scene geometry

Texels

Sky
Light source

Quick recap: to bake lightmaps with path tracing, we need to trace some rays and
accumulate their contribution in texels.
In this section we’ll cover a few techniques related to texel and hemisphere sampling.

79

Texel sampling
Generating ray origins

80

Texel sampling (1)

• Sample per texel center is an obvious choice
… which does not work too well

• Aliasing is a big problem, since lightmaps are
usually quite low resolution

• Large parts of the texel may overlap polygons,
but texel center may not

• Could fill in such pixels through dilation
• May not always be possible

• May lead to visual artifacts

Triangle in lightmap UV space

Single samples per texel

Sampling texel centers to pick ray origins is an obvious choice. It may work well
enough for high-resolution lightmaps, however at our texel density this is a pretty
poor strategy.

Aliasing is a big problem. A texel may have significant contribution to the final lighting
of a surface, but we may be actually missing data for it due to under-sampling.

Dilation helps to fill any holes, but there are pathological cases that are basically
impossible to solve through it. For example, a small triangle that occupies a 2x2 texel
block may actually not overlap any texel centers. In this case there is no sensible way
to produce lighting for it, other than sampling neighbors in world space.

81

Texel sampling (2)

• Use super-sampling to get many points per texel

• Flux uses up to 64 points per texel
• We use Hammersley sequence

• Regular grid also works just fine for this purpose

• Points that overlap triangles added to valid list

• Rays traced from all valid points per texel
• Uniform-randomly selected per hemisphere ray

• Helps with aliasing in direct lightmaps too
Triangle in lightmap UV space

64 regular grid samples per texel

An obvious solution to aliasing is super-sampling.

We generate 64 sample points on the texel using Hammersley sequence. Every texel
sample that overlaps with geometry in lightmap space is added to a per-texel list. For
every hemisphere ray, we uniformly-randomly pick a ray origin from the list of valid
samples for the texel that we render.

Using super-sampling also helps with aliasing in direct lightmaps, where some
shadows may end up too sharp and unnatural.

While this is not a particularly sound strategy from signal reconstruction point of view
(we treat texels as little squares, rather than splatting sample contributions into
neighbors using some filter, such as gaussian), it has the advantage of keeping
calculations for all texels completely independent.

82

Hemisphere sampling
Generating ray directions

83

Hemisphere sampling

• Use Halton sequence, as it allows progressive rendering
• Don’t need to specify number of rays up-front
• Keep tracing until we have traced “enough”

• Apply per-texel randomization to avoid correlation artifacts

16 samples per texel

(no randomization)

16 samples per texel

(with randomization)

Halton samples on a quad

By default, we use Halton sequence to generate hemisphere rays. This is a very
commonly used low discrepancy, quazi Monte Carlo / pseudo-random sequence. We
chose it due to being progressive. I.e. we do not need to pre-specify the number of
samples that we intend to take, unlike other QMC approaches such as stratified
sampling, Hammersley sequence, etc.

Since the sequence is deterministic, we need to apply some randomization per texel
to trade correlation artifacts for noise. Correlation artifacts happen because
neighboring texels happen to use exactly the same set of ray directions and hit the
same features, resulting in very similar lighting data. The artifacts due to correlation
look like bands of similar lighting values, which are much more difficult to get rid of
with a post-process filter compared to high-frequency noise that we get with per-
texel randomization.

Progressive sampling allows us to keep tracing rays for a texel until we have traced
“enough”, i.e. until our Monte Carlo estimate has converged.

84

Hemisphere sampling code

vec3 sampleHaltonHemisphere(int sampleIndex, vec2 offset)
{

// Generate 2 uniformly-distributed values in range 0 to 1
float u, v;
sampleHalton(sampleIndex, &u, &v);

// Apply per-texel randomization
u = fract(u + offset.x);
v = fract(v + offset.y);

// Transform unit square sample to uniform hemisphere direction
float cosTheta = u;
float sinTheta = sqrtf(1.0f - cosTheta * cosTheta);
float sinPhi, cosPhi;
sinCos(v * twoPi, &sinPhi, &cosPhi);
return vec3(cosPhi * sinTheta, sinPhi * sinTheta, cosTheta);

}

Sample pseudocode, just for convenience.

85

How many rays is “enough”?

• Required number of samples can be vastly different per texel

Indoor scenes require more rays Outdoor scenes require fewer

The required ray count may be vastly different between different areas of the same
level. Indoor scenes require more hemisphere samples, as radiance variance is
generally much higher. This happens because the probability of a light path bouncing
several times and then hitting a window is quite low, while the lighting contribution
of such low probability path may be extremely high. Environments with high variance
require many more hemisphere samples to get noise-free result. Conversely, areas
that are mostly outdoors will likely produce paths that are very short. Rays traced
from outdoor surfaces generally will immediately hit the sky and terminate. Of
course, sky itself may be a source of high variance. We mitigate this by not including
the sun in our environment maps and using pre-filtering (i.e. blurring and down-
sampling the envmaps).

What we want is a generally low level of noise in the final lightmaps, while tracing as
few rays as we can get away with. This requires some sort of automatic convergence
detection and a progressive renderer.

86

Path tracing convergence detection

• Use confidence intervals and standard error
• Similar to adaptive sampling meta-integrator in Mitsuba [Jakob10]

• Commonly used in statistics to measure uncertainty
• Confidence interval for a Monte Carlo estimator gives us error bounds*!

* With certain probability, assuming normal distribution of the data

• ҧ𝑥 ± 𝑆𝐸𝑀 × 𝑧𝑆𝑐𝑜𝑟𝑒 (z-score for 95% confidence interval = 1.96)

• 𝑆𝐸𝑀 = 𝜎 ҧ𝑥 = Τ𝑉𝑎𝑟 𝑥 𝑛

• Define stopping condition in terms of standard error
• 𝜎 ҧ𝑥 × 𝑧 < ҧ𝑥 × 𝐸
• 𝑡 = Τ𝐸 𝑧

• 𝝈ഥ𝒙 < ഥ𝒙𝒕

// Accept 5% error using 95% confidence interval

double threshold = 0.05 / 1.96;

double standardError = sqrt(variance / sampleCount);

bool shouldStop = standardError < mean * threshold;

(not stderr)

Our approach is based on similar principles to adaptive sampling meta-integrator in
Mitsuba: confidence intervals and standard error of the mean (SEM).

Monte Carlo estimate of a function (such as our rendering equation) gives us the
expected value of that function, AKA the mean. We can compute a N% confidence
interval from our Monte Carlo samples, which will give us a value range which will
contain the true mean with N% probability. Confidence interval is computed using
the sample mean, standard error [of the mean] and critical value (somewhat
incorrectly called ”zScore” on the slides). Critical value represents the number of
standard deviations from the mean of the normal distribution that creates a range
containing N% of the values. For example, 95% of the values in a normal distribution
are contained within 1.96 standard deviations from the mean. 99% of the values are
within 2.58 standard deviations.

Error bounds computed in this way can be used as a stopping condition for path
tracing. We stop taking further samples when relative error falls below a chosen
threshold. We combine the critical value and the error percentage threshold into a
single threshold parameter that we expose to the user.

87

Running variance calculation

int count = 0;
float mean = 0;
float meanDistSquared = 0;

while(keepSampling)
{

float sample = getSample();

// Update mean and mean^2
count++;
float delta = sample - mean;
mean += delta / count;
meanDistSquared += delta * (sample - mean);

// Calculate current running variance
float variance = meanDistSquared / (count-1);

}

https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance

Welford’s algorithm

Just given for convenience.

88

Are radiance samples normally distributed?

All this assumes that the data follows the normal distribution, which is a pretty
generous assumption. In reality, radiance samples aren’t normally distributed.
Though it’s close enough for the stopping heuristic to still work.

The confidence interval that we calculate just becomes less accurate. This means that
rendering may stop earlier than it would if samples were actually normally
distributed.

89

Radiance

environment probe
Image by Bernhard Vogl

Luminance0 5

Radiance histogram

Radiance samples typically have a long tail.

90

Radiance

environment probe
Image by Bernhard Vogl

Luminance0 >0.5

Mean

Radiance histogram (truncated)

The long positive tail and lack of negative values to compensate for it shifts the mean
value to the right.

91

Convergence example

0

0.005

0.01

0.015

0.02

1

13
3

2
6
5

3
9
7

5
2
9

6
6
1

7
9
3

9
2
5

10
5
7

11
8
9

13
2
1

14
5
3

15
8
5

17
17

18
4
9

19
8
1

2
11

3

2
2
4
5

2
3
7
7

2
5
0
9

2
6
4
1

2
7
7
3

2
9
0
5

3
0
3
7

3
16

9

3
3
0
1

3
4
3
3

3
5
6
5

3
6
9
7

3
8
2
9

3
9
6
1

4
0
9
3

4
2
2
5

4
3
5
7

4
4
8
9

4
6
2
1

4
7
5
3

4
8
8
5

5
0
17

5
14

9

5
2
8
1

5
4
13

5
5
4
5

5
6
7
7

5
8
0
9

5
9
4
1

6
0
7
3

6
2
0
5

6
3
3
7

6
4
6
9

6
6
0
1

6
7
3
3

6
8
6
5

6
9
9
7

7
12

9

7
2
6
1

7
3
9
3

7
5
2
5

7
6
5
7

7
7
8
9

7
9
2
1

8
0
5
3

8
18

5

8
3
17

8
4
4
9

8
5
8
1

8
7
13

8
8
4
5

8
9
7
7

9
10

9

9
2
4
1

9
3
7
3

9
5
0
5

9
6
3
7

9
7
6
9

9
9
0
1

𝝈ഥ𝒙

If we plot the standard error of our samples and our sample mean scaled by the error
threshold, we’ll see that the graphs will intersect at some point.

Setting a larger error threshold will shift the orange graph up and the rendering will
stop earlier. On the other hand, a higher sample variance will make the standard error
higher and shift the blue graph up, so rendering will stop later.

We always initially trace 10% of the total ray budget to get a good estimate of the
variance and then evaluate stopping condition after tracing every subsequent 10%.

92

Does it work?

Lightmap rendered with up to 25k samples per texel Heat map showing actual rendered sample count

as fraction of total sample budget

This works quite well in practice. We get exactly what we were after: fewer rays
traced in the open areas and more rays near geometry.

More on standard error and confidence intervals:
http://www.stat.yale.edu/Courses/1997-98/101/confint.htm
http://www.ucl.ac.uk/ich/short-courses-events/about-stats-courses/stats-
rm/Chapter_6_Content/relationship_confintervals_pvalues

93

Lightmap atlas packing

94

Ensuring correct bilinear interpolation

• Generate chart masks for groups of triangles that share texels

• Each texel affects a 2x2 area around its center due to bilinear filtering

Triangle lightmap chart mask

not considering bilinear filtering
Triangle lightmap chart mask

taking bilinear filtering into account

Before we can pack our lightmap, we need to detect UV charts/islands and mark all
texels that belong to all the charts.

Chart masks are computed by intersecting a 2x2 bounding box around each texel
center with lightmap-space geometry. If the box overlaps a triangle, the texel gets
assigned a chart ID of that triangle. If multiple triangles are overlapped with different
IDs, then those triangles actually belong to the same chart (they will use some of the
same texels through bilinear interpolation).

To minimize the footprint of each chart, we can scale and offset UVs of each chart
such that the UV-space bounding box of each chart is aligned to texel centers. Doing
this allows us to tightly pack small charts without introducing any extra padding.

95

Chart mask example

Different colors represent independent charts. Smallest chart is 2x2 (or 4x4 when
block compression is used for final textures).

We do not collapse charts to Nx1 or 1x1 footprint, as we typically want to have some
lighting gradient over surfaces. However, it is possible that some charts can be safely
collapsed after baking (i.e. after all values are known). Similar technique (and more) is
described by Richard Mitton in his blog: www.codersnotes.com/notes/lightmap-tricks

96

Lightmap packing efficiency issues (1)

• Lightmap UVs are typically created and packed per mesh

82% efficiency
(18% pixels unused)

Once we have the chart masks, we can pack them. The typical lightmap packing
process first packs UVs for each mesh independently. Some efficiency is lost here, due
to irregularly shaped charts.

97

Lightmap packing efficiency issues (2)

• Meshes are instanced in the scene many times

• Per-mesh lightmaps are packed into an atlas
• Final atlas packing itself is not perfect

• All inefficiencies add up

72% efficiency
(28% pixels unused)

All lightmaps for mesh instances in the scene are typically packed into one or more
atlases, for efficiency and batching purposes.
Atlas packing leads to some additional inefficiency that adds to the per-mesh packing
waste. Typical lightmap utilization that we see in final production levels is ~50-75%,
which is quite bad.

98

Lightmap packing goal

• Pack lightmap UV charts for entire level into single atlas

• Avoid waste due to per-mesh / instance packing

• Avoid adding unique lightmap UV stream to all meshes

• Deal with >8 megapixel lightmaps and >200k UV charts

Ideally, what we want to do is pack all charts of all mesh instances in the entire scene
into a single atlas. The aim is to perform a global optimization that will avoid the
inefficiencies of local optimizations.

We wanted to implement a scheme that would be fast (our lightmaps are quite large)
and would not require adding a secondary unique UV stream to all geometry.

99

Global packing algorithm

• Generate bit masks for every chart
• Accounting for bilinear filtering

• Sort charts by their bounding box perimeters
• Large to small

• Create an empty bit mask for the output atlas

• Insert each chart into the output atlas one by one

• Brute force iterate through all atlas pixels

• Intersect chart bit mask with atlas bit mask

• Splat chart into the atlas mask if there is no intersection

• Static Lighting Tricks in Halo 4 [Boulton13]

• This works, but is obviously very slow

Final atlas

The global packing algorithm that we’ve implemented is similar to one described in
Static Lighting Tricks in Halo 4 GDC 2013 talk.

We generate bit masks for every chart and then sort them by bounds perimeter
(actually just width+height, since that’s equivalent). We then insert chart bit masks
into an output atlas bitmask one at a time, from largest to smallest. The aim is to fill
any holes produced during packing of large charts using smaller charts. The perimeter
sorting heuristic is design to pack more “difficult” charts before “easy” ones. For
example, 1024x1 chart is considered harder to pack compared to 32x32.

Packing is quite brute force / naïve. We intersect bitmasks of all charts with every
possible location in the final atlas bitmask by sweeping the chart though all rows. The
only optimization that we use here is testing up to 64 bits of the chart at a time
against the bits in the atlas.

This is pretty slow and isn’t really practical for typical Frostbite levels.

https://archive.org/details/GDC2013Boulton

100

Packing algorithm optimization

• Don’t test every location!

• Start packing from the last successful row

• Reset start row when chart size decreases

• Packing time drops from ∞ to <10s
for production scale levels

int startRow = 0;
int sortKey = INT_MAX;
while (!packingQueue.empty())
{

LightmapPackingNode node = packingQueue.pop();
if (node.sortKey < sortKey)
{

startRow = 0;
sortKey = node.sortKey;

}
startRow = bruteForcePack(atlas, node, startRow);

}
Final atlas

We have added a very simple heuristic that allows us to skip brute force tests for
large portions of the atlas, dramatically improving performance.

The idea is to simply start packing each chart from the row where we previously
managed to fit a similarly-sized chart. When we move on to smaller chart size, we
reset the packing start row to the beginning of the atlas, since smaller charts have a
higher possibility to fit in some hole produced by larger charts.

101

Lightmap packing example

SWBF2 Naboo

3316 x 4040 lightmap

263k charts ~10M used pixels

Small charts

4-16 texel perimeter

Large charts

> 64 texel perimeter

Example lightmap chart visualization from SWBF2. The chart size distribution
histogram shows that there are vastly more tiny charts compared to large charts.

It also shows that there aren’t too many different chart size buckets, which means
that we don’t end up resetting the packing row too often.

102

Before: ~75% efficiency After: ~96% efficiency

Lightmap for Naboo. Input: 3316 x 4040 (13MP), 10.1MP used, ~75% efficiency.
Output: 3316 x 3168, ~96% efficiency. 263k charts. 10sec packing time on 1 core @
2.6Ghz.

103

World’s most difficult “Where’s Waldo” puzzle.

104

No, there wasn’t actually a Waldo on the last slide.

105

Unpacking transforms in the shader (1)

• Packing algorithm generates an array of 2d transforms

• Scale & offset per chart (not per instance)

• Need to access correct final packed UVs somehow
• Don’t want to have a unique secondary UV stream

• Don’t want to break instancing

// Apply per-instance lightmap transform
float2 getLightmapUV(Vertex vertex, InstanceData instance)
{

return vertex.uv * instance.lightmapScale
+ instance.lightmapOffset;

}

// Apply per-chart lightmap transform
float2 getLightmapUV(Vertex vertex, InstanceData instance)
{

????????????
????????????

}

Using the globally-packed lightmap requires jumping through a few hoops. While
previously we could just provide a per-instance scale and offset for lightmap UVs, we
can no longer do that.
Each mesh will have a few charts. Each chart now requires a unique transform.
Moreover, each instance of each mesh will potentially have charts scattered through
the atlas in a completely unique way.

106

Unpacking transforms in the shader (2)

• Store the chart index for each mesh vertex

• Write all lightmap chart transforms for the scene into a single buffer
• Sorted by mesh instance index and chart index

• Store an offset into this buffer for each mesh instance

• Fetch correct final UV transform by combining two indices

• Extra indirection in the VS, but no measurable performance impact!

float2 getLightmapUV(Vertex vertex, InstanceData instance)
{

float4 uvTransform = uvTransformBuffer[vertex.chartId + instance.chartOffset];
return vertex.uv * uvTransform.xy + uvTransform.zw;

}

Our solution to this problem is to put all chart transforms into a single buffer, that’s
sorted by instance index and per-mesh chart index. We can then send the offset into
the transform buffer as instance data. Per-instance offset is then added to the per-
vertex chart index to get the final chart transform index.

107

Wrapping up

108

Takeaways

• Spherical harmonics lightmaps are great

• Path tracing is great

• One simple lightmap packing trick

109

Thanks

Diede Apers

Oscar Carlen

Sébastien Hillaire

Charles de Rousiers

Tomasz Stachowiak

Alban Wood

Christina Coffin

Chris Doran

Graham Hazel

Intel Embree team

110

References

[Boulton13] Static Lighting Tricks in Halo 4, GDC 2013

[Chen08] Lighting and Material of Halo 3, SIGGRAPH 2008

[Green07] Efficient Self-Shadowed Radiosity Normal Mapping, SIGGRAPH 2007

[Habel10] Efficient Irradiance Normal Mapping, SI3D 2010

[Hazel15] Reconstructing Diffuse Lighting from Spherical Harmonic Data, CEDEC2015

[Hillaire18] Interactive Global Illumination in Frostbite, GDC 2018

[Iwanicki13] Lighting Technology of “The Last Of Us”, SIGGRAPH 2013

[Jakob10] Mitsuba Renderer

[Martin10] A Real Time Radiosity Architecture for Video Games, SIGGRAPH 2019

[Ramamoorthi01] An Efficient Representation for Irradiance Environment Maps, SIGGRAPH 2001

111

Questions?
@YuriyODonnell

112

Bonus slides

113

Improving BC6H block compression (1a)

BC6H basic BC6H lightmap optimizedUncompressed

114

Improving BC6H block compression (1b)

• Unused pixels in the lightmap cause
BC6H compression artifacts

• Zeros expand the 4x4 color block
bounding box, reducing precision

• Replace invalid pixels with average
valid value within each 4x4 block

• Keeps min, max and mean values
of the color block intact

BC6H basic BC6H lightmap optimizedUncompressed

115

Dealing with overlapping geometry (1)

• Texels may be inside scene geometry

• Rays from those texels will hit back faces

• Ignore contribution from back face rays

• Discard texel if >50% of rays hit back faces

Single sample location per texel

used for illustration

116

Ensuring correct bilinear interpolation (1)

• Lightmap may contain some invalid texels after baking
• Texels that were discarded due to visible back faces (being inside geometry)

• Texels that are part of the chart, but don’t overlap UV space triangles

• Fill in any invalid texels with data from valid 8 neighbors (3x3 filter)

117

Ensuring correct bilinear interpolation (2a)

Point-sampled lightmap Point-sampled lightmap

with dilation

118

Ensuring correct bilinear interpolation (2b)

Bilinear-sampled lightmap Bilinear-sampled lightmap

with dilation

119

