
Department of Science and Technology Institutionen för teknik och naturvetenskap  
Linköping University Linköpings universitet

gnipökrroN 47 106 nedewS ,gnipökrroN 47 106-ES

LiU-ITn-TEK-A--14/039--SE

Per-face parameterization for
Texture Mapping of Geometry in

Real-Time
Johan Beck- Norén

2014-09-12



LiU-ITn-TEK-A--14/039--SE

Per-face parameterization for
Texture Mapping of Geometry in

Real-Time
Examensarbete utfört i Datateknik

vid Tekniska högskolan vid
Linköpings universitet

Johan Beck- Norén

Handledare Stefan Gustavson
Examinator Mark Eric Dieckmann

Norrköping 2014-09-12



Upphovsrätt

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten
vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se
förlagets hemsida http://www.ep.liu.se/

Copyright

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://www.ep.liu.se/

© Johan Beck- Norén



Abstract

We investigate the mesh colors method for per-face parameterization for
texture-mapping of geometry, implemented in the game engine Frostbite 3,
for the purpose of evaluating the method compared to traditional texture-
mapping in a real-time application. Traditional UV-mapping often causes
discontinuities which commonly results in visible seams in the end results. If
any change is done to the vertex positions or the topology a remapping of
the UV-map has to be done. Mesh colors aims to avoid these problems by
skipping the transformation to 2D space as in UV-mapping, and associating
color samples directly with the geometry of a mesh. The implementation
was done in Frostbite 3 in C++ and HLSL shader code, and rendered with
the DirectX graphics API. The results show that mesh colors is a viable al-
ternative in a real-time renderer. Though not as fast as regular UV-mapped
textures due to lack of hardware accelerated filtering operations, mesh col-
ors is a realistic alternative for special cases where regular texture-mapping
would be cumbersome to work with or produce sub-par results. Possible
areas of future research are efficient data structures suitable to handle data
insertion dynamically, compression of mesh colors data, and mesh colors in
the context of mesh LOD generation.



Förord

Jag vill tacka DICE för förslaget om examensarbete, ett speciellt tack till
Torbjörn Söderman som gjorde examensarbetet möjligt till att börja med
och Andreas Tarandi vars arbete lade grunden för det här projektet. Till
Johan Åkesson, Charles de Rousiers, Sebastien Hillaire, och Jan Schmid p̊a
Frostbite för deras hjälp och t̊alamod med mina fr̊agor och funderingar. Till
Mark E. Dieckmann och Stefan Gustavson vid LiU. Tack till alla p̊a Mirror’s
Edge p̊a DICE för att ha tagit med mig som en del av teamet. Det har varit
en otrolig upplevelse och väldigt lärorikt. Ett särskilt tack till min familj och
mina vänner för erat stöd och er uppmuntran.



Preface

I would like to thank DICE for presenting the thesis proposal, a special
thanks to Torbjörn Söderman for making this thesis possible to begin with
and Andreas Tarandi whose work laid the foundation for this project. To
Johan Åkesson, Charles de Rousiers, Sebastien Hillaire, and Jan Schmid at
Frostbite for their help and their patience with all of my questions. To Mark
E. Dieckmann and Stefan Gustavson at LiU. Thanks to everyone on the
Mirror’s Edge team at DICE for making me a part of your team. It has been
a great experience and I learned so much. A special thanks to my family and
friends for their support and encouragement.



Contents

1 Introduction 1
1.1 Texture mapping & UV-coordinates . . . . . . . . . . . . . . . 1
1.2 MIP-mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Tessellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Problem description . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Mesh Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.7 Frostbite 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Texture mapping . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Mesh Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Non-uniform per-face resolutions . . . . . . . . . . . . 8
2.2.3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 MIP-maps . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Implementation 12
3.1 Data structure and data flow . . . . . . . . . . . . . . . . . . . 12
3.2 Index calculation . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 MIP-mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Non-uniform face resolutions . . . . . . . . . . . . . . . . . . . 15

4 Results and Benchmarks 16
4.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 MIP-maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Non-uniform per-face resolutions . . . . . . . . . . . . . . . . 18
4.4 Memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Discussion 24
5.1 Comments & reflections . . . . . . . . . . . . . . . . . . . . . 24
5.2 Limitations in implementation . . . . . . . . . . . . . . . . . . 25

6 Future Work 26



List of Figures

2.1 Head model with UV-coordinates projected onto it’s surface.
Visible seams appear at the ears and at the top of the head
and down along the neck area. . . . . . . . . . . . . . . . . . . 5

2.2 Evenly spaced color samples distributed on the vertices (red),
edges (blue), and faces (green) of the geometry with increasing
resolution from left to right. . . . . . . . . . . . . . . . . . . . 6

2.3 Illustration of an example of how the per-face buffer relates to
the color buffer memory layout for a face. . . . . . . . . . . . . 6

2.4 Triangle coordinates defined by color indices. . . . . . . . . . . 8
2.5 UV-map for the head model. An original resolution of 1024x1024

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Storage of MIP-levels generated for an edge of resolution 8. . . 14

4.1 Triangle illustrating nearest and linear filtering operations re-
spectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Rendering times for different MIP-levels. . . . . . . . . . . . . 17
4.3 From left to right; Native resolution, MIP-level 2 , and MIP-

level 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Non-uniform per-face resolutions rendered with nearest filtering. 18
4.5 Rendering times for different per-face resolutions. . . . . . . . 19
4.6 Skewing of color samples for elongated triangles. . . . . . . . . 21
4.7 Head model rendered with mesh colors. . . . . . . . . . . . . . 22
4.8 House model with a large number of color samples per triangle. 23



List of Tables

4.1 Render times for mesh colors and regular texture map by filter
operation and GPU. . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Memory usage comparison between a regular texture map of
1024x1024 pixels and mesh colors using a resolution resulting
in visual equivalence. . . . . . . . . . . . . . . . . . . . . . . . 19



1 — Introduction

This report starts with an introduction going over some basic concepts and
techniques relevant to this report. A problem description is presented as well
as a short introduction to the mesh colors approach, and finally we review
related work. In the background section we go into more detail in describing
the problems with the current common method for texturing geometry and
provide some more detail concerning mesh colors. The implementation sec-
tion details the implementation done in the game engine Frostbite 3. Finally
results are presented, and we discuss our findings and possible future work.

This report assumes that the reader has a basic understanding of 3D
computer graphics and is familiar with the graphics pipeline.

All models and textures in this report are courtesy of DICE.

1.1 Texture mapping & UV-coordinates

Texturing of meshes has been the industry standard to explicitly add the
illusion of geometric detail where there is none. The currently most widely
used method in the games industry for mapping a texture onto a mesh is
to explicitly parameterize the 3D geometry to 2D space and then paint the
texture onto this 2D representation. The painted texture is then projected
back onto the mesh. This 2D representation of the mesh is commonly re-
ferred to as a UV-map, where U and V represent the two axes of the 2D
representation, and the technique as UV-mapping. UV-coordinates are as-
signed per-vertex and are usually interpolated in the pixel shader to obtain
per-pixel UV-coordinates. When creating a UV-map decisions have to be
made concerning texture resolution distribution on the mesh, since the tex-
ture resolution for a given triangle on the mesh corresponds to that triangle’s
allotted area coverage in the UV-map. This allows for the artist to priori-
tize and e.g. assign important faces a higher resolution. Since UV-mapping
has been around for so long there is established support for compressing the
texture data, as well as hardware accelerated filtering on modern graphics
hardware. MIP-maps [9] can be generated automatically by the commonly
used graphics API:s such as DirectX and uses hardware filtering since the
MIP-map resides in video memory [1].

1.2 MIP-mapping

MIP-mapping is a technique used to lessen the filtering operations needed
if a textured mesh occupies a smaller screen-space area than that of the
texture’s resolution. For a mesh with a given texture resolution copies of

1



CHAPTER 1. INTRODUCTION

that texture is created filtered to lower resolutions. Since common practice
dictates that a texture’s original resolution is a power of 2 it follows that the
MIP-maps are filtered to resolutions of decreasing powers of 2. An original
texture of resolution 512x512 pixels might have corresponding MIP-maps of
resolutions 256x256, 128x128, and so on all the way down to a single pixel.
By convention we refer to the original texture as being of MIP-level 0 and
the following MIP-maps of decreasing resolution are of increasing MIP-level.

1.3 Tessellation

The hardware tessellator is a relatively new addition to the programmable
shader stages in the graphics pipeline. Hardware tessellation allows for geo-
metric detail to be modified dynamically in runtime, allowing for algorithms
to be run on a coarse mesh with geometric detail added later by the tessella-
tor, thus reducing the load on the memory bus to the GPU. A few applica-
tions of tessellation is displacement mapping and subdivision surfaces. The
tessellation pipeline consists of three stages, two of which are programmable.
The three stages are the hull shader stage (programmable), the tessellation
stage (fixed), and the domain shader stage (programmable). The patch con-
stant function in the hull shader provides a per-primitive context, which
allows us to access e.g. primitive index of the primitive currently being pro-
cessed by the hull shader.

For the implementation of mesh colors in this report the tessellation stage
is used because the hull shader gives this per-primitive context in its patch
constant function, no actual tessellation needs to be performed for mesh
colors. For more detailed information about the tessellation stage we refer
the reader to [6].

1.4 Problem description

The process of creating a UV-map is tedious, even if there exists automatic
mapping tools they often require some form of manual input from the artist
and it takes quite an effort and a skilled artist to produce a “good” UV-map.
The transformation from 3D space to 2D space often introduces disconti-
nuities since an arbitrary mesh can rarely be flattened while keeping the
topology intact. This can result in visible seams in the final texture which
results in a poor visual result. If we want to change the resolution distribu-
tion at a later time the UV-map would have to be modified, causing already
painted textures to need modification as well. Also, if any change is done to

2



CHAPTER 1. INTRODUCTION

the mesh’s vertex positions or the topology the UV-mapping would have to
be redone in the same fashion. These issues often cause considerable time
delays in production projects since a given mesh typically passes through dif-
ferent departments on it’s way to becoming a finished asset (e.g. concept →
modeling → UV-mapping → texturing → animation). Because of the issues
mentioned above there has been a lot of research in alternatives to explicit
UV-mapping. One of these alternative methods is mesh colors.

1.5 Mesh Colors

The method investigated for this thesis is mesh colors and was presented
by C. Yuksel et al. [12] in 2010. The idea with mesh colors is to remove the
transformation from 3D space to 2D space and back to 3D used in traditional
UV mapping, and instead associate color values directly with the geometry
of the mesh. This would remove many of the disadvantages of UV mapping
mentioned above since no transformation to 2D is needed and no explicit
mapping takes place, as well as allowing artists to paint models directly in
3D if implemented as a paint tool.

A one-to-one correspondence is achieved, meaning that color samples do
not have to be duplicated to achieve color continuity across edges or vertices.
Since we store color indices per-triangle the color resolution can be adjusted
locally for arbitrary triangles without any global effect or re-mapping needed.
This also means that mesh editing operations (e.g. face deletion or creation,
subdivision, changing of vertex positions etc.) does not require re-sampling
as it would with UV mapping, but is handled inherently with mesh colors.

For this thesis mesh colors has been implemented in the game engine
Frostbite 3. The primary focus for this report has been in comparing mesh
colors to traditional UV-mapping in terms of performance in real-time ren-
dering, and also to highlight possible optimizations and improvements for
the method to be a realistic alternative to texture-mapping. For this thesis
we only consider triangular meshes of type two manifold, although a possible
extension to support quadrilateral primitives are briefly covered by Yuksel
in [12].

1.6 Related work

Ptex presented by B. Burley et al. [7] in 2008 is a method for per-face texture-
mapping. It was developed for use on Catmull-Clark subdivision surfaces [8]
for use in animated feature films. It is similar to mesh colors in that the

3



CHAPTER 1. INTRODUCTION

method does not require explicit UV mapping and it guarantees color conti-
nuity across edges by using adjacency data for filtering. Due to the somewhat
wasteful storage of texture data along with only supporting quadrilateral
primitives makes Ptex, in it’s original form, not very well suited for real-time
rendering.

There are applications in use that allow for the user to paint directly on
3D geometry, like MARI [5] and Deep Paint 3D [3]. Both applications still
require explicit UV mapping of the geometry and essentially only give the
illusion that no 2D mapping takes place when painting.

A previous thesis work by A. Tarandi [11] implements mesh colors in a
stand-alone project in the context of surface data on dynamic topologies.
Tarandi provides details of the implementation that were lacking in the orig-
inal paper by Yuksel. We expand further on this work by adding support for
1-manifold edges concerning adjacency sampling when generating MIP-map
data for these boundary edges, as well as implementing the method in a game
engine.

1.7 Frostbite 3

The thesis is implemented in the game engine Frostbite 3. The engine uses
deferred rendering which is a rendering technique that separates the shading
into several passes [4]. The first pass renders screen-space geometry data
(positions, normals, materials etc.) into a geometry buffer. The subsequent
passes then perform the actual shading operations such as lighting compu-
tations on the stored geometry buffer from the first pass. This decoupling
between the scene geometry and shading allows for rendering many light
sources without any significant decrease in performance. The engine is used
by studios within Electronic Arts. Some notable titles using Frostbite 3 in-
clude Battlefield 4 developed by Digital Illusions CE and Need for Speed,
Rivals developed by Ghost Games and Criterion Games.

4



2 — Background

2.1 Texture mapping

As mentioned in the problem description the mapping of 3D geometry onto
a 2D surface comes with some inherent problems. For complex geometry as
is often the case in games these problems become even more apparent, espe-
cially when discontinuities causes visible seams which disrupts the immersion
for the user. In figure 2.1 the UV-coordinates, detailed in the introduction
section, are visualized as color values on the mesh surface with the U and
V coordinates represented by the red and green color channels respectively.
Discontinuities in the UV map are visible around the ears and from the top
of the head down along the neck area.

Figure 2.1: Head model with UV-coordinates projected onto it’s surface. Visible
seams appear at the ears and at the top of the head and down along the neck area.

In this instance it would be up to the artist painting the texture to match
color values across the discontinuities to avoid visible seams in the end result.
This is both time consuming, unintuitive and not guaranteed to produce good
results.

5



CHAPTER 2. BACKGROUND

2.2 Mesh Colors

Mesh colors is for the most part described well in [12] and [11] and for sim-
plicity’s sake we provide a summary of the method here.

2.2.1 Overview

Mesh colors does not require any explicit mapping. Evenly spaced color
values are distributed on the vertices, edges, and faces of the mesh using the
barycentric coordinates for each face, as seen in figure 2.2.

Figure 2.2: Evenly spaced color samples distributed on the vertices (red), edges
(blue), and faces (green) of the geometry with increasing resolution from left to
right.

Figure 2.3: Illustration of an example of how the per-face buffer relates to the color
buffer memory layout for a face.

6



CHAPTER 2. BACKGROUND

Given a per-face resolution R for a face the number of samples distributed
for that face are given in eq. 2.1a-c.

V ertex = 1 (2.1a)

Edge = R− 1 (2.1b)

Face =
(R− 1)(R− 2)

2
(2.1c)

Eq. 2.1c is defined in [12] but a derivation is lacking and will be provided
here. The equation is derived from the formula for calculating the area of a
triangle, bh/2, where bh is the area of a parallelogram with a base of length
b and a height of h. For the discreet sample distribution used in mesh colors
we have b = h = (R−1) resulting in (R−1)2/2 number of face samples. But
the samples along the line dividing the parallelogram in question would be on
the edge of the triangle and must therefore be subtracted when calculating
the number of face samples. We adjust the formula accordingly as follows

(R− 1)2 − (R− 1)

2
=

(R− 1)(R− 2)

2

to arrive at eq. 2.1c.
Using color indices we define a coordinate system for a face as described

in [12]. The coordinate system is illustrated in figure 2.4. A color sample C at
position ij on the triangle is denoted Cij where 0 < i < R and 0 < j < R− i.
In figure 2.4 we see that color samples C00, C0R, and CR0 correspond to
vertex color samples. Furthermore, color samples Ck0, C0k, and Ck(R−k) for
0 < k < R are edge samples. All other samples are on the face itself.

C00, C0R, CR0: Vertex

Ck0, C0k, Ck(R−k): Edge

other: Face

(2.2)

7



CHAPTER 2. BACKGROUND

Figure 2.4: Triangle coordinates defined by color indices.

We can retrieve the 3D surface position of any color sample Cij by using
the barycentric coordinates and the index of the color sample. The barycen-
tric coordinate ~Pij for the color sample Cij is computed as in eq. 2.3 where
0 < i < R and 0 < j < R− i.

~Pij = (
i

R
,
j

R
, 1− i + j

R
) (2.3)

When generating the data two buffers are stored. One buffer contains the
actual color values and one buffer contains data for each face. The per-face
data buffer stores the resolution, the MIP-level, and indices into the color
buffer for the face’s edges, vertices, and the color samples on the face itself.
A vertex color index points to a single color value in the color buffer since
a vertex can only have one color regardless of the resolution, but for edges
and faces it is a bit more complicated. Since an edge or a face typically
have more than one color sample we store all color values for a given edge
or face sequentially in memory. A color index for a given edge or face then
points to the first color sample for that edge or face in the color buffer. The
relationship between the per-face data buffer structure and the color buffer
is illustrated in figure 2.3.

2.2.2 Non-uniform per-face resolutions

Non-uniform per-face resolutions is one of the main advantages of mesh col-
ors. Since a vertex only has one color value regardless of resolution, and since
face color samples are not shared between faces, these cases do not need to be
handled explicitly. Edges however can be shared between faces. In this case
we choose a resolution so that, from the face’s point of view, no discontinu-
ity appears between the edges of different resolutions. To ensure consistent

8



CHAPTER 2. BACKGROUND

mapping between edges of different resolutions we constrict ourselves to only
allow resolutions that are of a power of 2. This will also simplify the process
of generating MIP-maps. More details about non-uniform resolutions are
given in the implementation section.

2.2.3 Filtering

For 2D filtering we use the barycentric coordinate ~P computed as in eq. 2.3
multiplied by the resolution R. This gives us the indices for the color sample
nearest to ~P . For linear filtering we need to find the indices of the three
nearest color samples and weights to linearly combine them. We do this
by extracting, from the multiplication above, the fractional part ~w and the
integer part ~B defined as in eq. 2.4 where the brackets is an integer floor
operator.

Consider the three sought color samples as a sub-triangle on the face. The
fractional part ~w is considered as the barycentric coordinate with respect to
the sub-triangle defined by samples at position ((i + 1)j, i(j + 1), ij). The
sum of the barycentric coordinates wx, wy, and wz will provide information
about where the point ~w is located with respect to the sub-triangle [2]. A
sum of 1 means the point is on the triangle, a sum of 0 means the point is
on an edge or a vertex of the triangle, and lastly any other sum means that
the point lies outside of the triangle.

~B =
⌊
R~P
⌋

~w = R~P − ~B
(2.4)

As described in [12] there are three cases. If ~w = 0 we are on a sample

at point ~B and thus that is the color. If wx + wy + wz = 1 the point is on
the sub-triangle and the nearest color values are C(i+1)j, Ci(j+1), and Cij and
they can be linearly combined using ~w as weight. Lastly if wx +wy +wz = 2
the nearest color values are Ci(j+1), C(i+1)j, and C(i+1)(j+1). These can be
linearly combined by (1, 1, 1)− ~w.

For nearest filtering we simply pick the color sample with the highest
weight.

2.2.4 MIP-maps

Separate MIP-maps are generated for each face as detailed in [12]. These are
created by a weighted sum of color samples from a lower MIP-level. Note
that a MIP-level of 0 corresponds to the finest resolution.

9



CHAPTER 2. BACKGROUND

The vertex color for MIP-level n is computed using samples from MIP-
level n − 1 from all incident edges to the vertex. In eq. 2.5 v is the valence
of the vertex and Cei is the edge color sample from MIP-level n − 1 closest
to the vertex, and C ′v is the resulting vertex color for MIP-level n. Cv is the
vertex color sample from MIP-level n− 1.

C ′v =
2

2 + v

(
Cv +

1

2

(
v∑

i=1

Cei

))
(2.5)

A sample for MIP-level n on an edge or a face is computed by weighting
samples from MIP level n− 1 in the immediate surrounding area. For a face
sample of level n a total of six values from level n− 1 are used as in eq. 2.6.

C ′ij =
1

4


C(2i)(2j) +

1

2



C(2i)(2j−1) +

C(2i)(2j+1) +

C(2i−1)(2j) +

C(2i−1)(2j+1) +

C(2i+1)(2j−1) +

C(2i+1)(2j)




(2.6)

For an edge sample of MIP-level n an equation similar to eq. 2.6 is used,
though we have to take into account the case of a boundary edge. This is
done by adjusting the weighting of the of color samples used from MIP-level
n by the number of samples taken.

2.3 Memory usage

A UV-mapped texture seldom uses all available space on the UV-map. This
is most often due to the UV-mapping space being square shaped, and the
geometry being mapped does not have the topology to allow for fitting and
covering the entire mapping space in a usable way. An example of this can
be seen in fig. 2.5 where the black areas of the map are not used for holding
any color data. Mesh colors does not waste space in this manner since all
color samples are directly associated with the geometry. We can therefore
achieve visual equivalence with mesh colors even though fewer color samples
are used. Since UV-mapping has been the industry standard for some time
there has been lots of research done on algorithms for compressing the color
data. Lossless compression methods such as PNG and lossy compression
methods like JPG are widely used and allow for the textures to be stored on

10



CHAPTER 2. BACKGROUND

disk in a compressed format. Although there is some ongoing research in the
area, no such standard compression methods exist for mesh colors.

Figure 2.5: UV-map for the head model. An original resolution of 1024x1024
samples.

11



3 — Implementation

For this thesis mesh colors has been implemented in Frostbite 3. For the sake
of showcasing visual results we have used models with existing UV-maps and
texture maps to sample when populating the mesh colors buffers [10].

3.1 Data structure and data flow

For storing the face data buffer we define a struct on the CPU (listing 3.1)
and a matching struct in the HLSL shaders (listing 3.2) containing resolution,
MIP-level, and indices into the color buffer for the face’s vertices, edges, and
face color samples.

Listing 3.1: CPU data structure

typedef Vec4<f loat> ColorData
struct FaceDataMeshColor
{

u32 r e s o l u t i o n ;
u32 faceCo lor Index ;
in t32 edgeCo lo r Ind i c e s [ 3 ] ;
u32 ve r t exCo l o r Ind i c e s [ 3 ] ;
u32 mip ;

} ;

Listing 3.2: GPU data structure

typedef f l o a t 4 c o l o r d a t a t
struct f a c e d a t a t
{

uint f a c e c o l o r r e s o l u t i o n ;
u int f a c e c o l o r i n d e x ;
i n t3 edg e c o l o r i nd ex ;
u int3 v e r t e x c o l o r i nd e x ;
u int mip ;

} ;

Color data is simply a linear array of floating points defining RGB colors.
We use structured buffers when sending the buffers to the GPU. Because of
this the memory layout of the structures must be the same on both the CPU
and the GPU.

The implementation is written in C++ and HLSL shader code, and uses
the DirectX graphics API for rendering in Frostbite 3. The vertex shader is
a pass-through stage and no transformation or projection takes place. In the
hull shader we do culling of backward facing patches relative to the camera
view direction, and in the patch constant function of the hull shader we fetch
the unique patch id by the system semantic SV PrimitiveID and pass to
the domain shader [13]. In the domain shader we use the received patch id to
do a lookup in the face data buffer and pass the face resolution, MIP-level,
and the color indices for the patch vertices, edges, and face color samples as
integers using the nointerpolation modifier to the pixel shader. Even though
we deal with per-face data we have to send the data per vertex to the pixel
shader. We also perform transformation and projection in the domain shader
and pass the resulting values needed to the pixel shader.

12



CHAPTER 3. IMPLEMENTATION

3.2 Index calculation

Given the coordinate ~Bij from eq. 2.4 on a face we use eq. 2.2 to determine
if we are on a vertex, edge or face. For the first case we need to determine
which of the face’s three vertices to sample with eq. 3.1a. In the second
case we need to determine which of the edges we should sample and with
what offset. This is determined by eq. 3.1bc. Eq. 3.1ab does not determine
indices in a global context, but rather the indices defined locally within the
face currently being processed.

For a face sample we need to compute the offset into the face’s color buffer
for the sample, as in eq. 3.2.

Vindex =


0 if ~Bj = R

1 if ~Bi = 0 and Bj = 0

2 if ~Bi = R

(3.1a)

Eindex =


0 if ~Bi = 0

1 if ~Bj = 0

2 if ~Bi 6= 0 and Bj 6= 0

(3.1b)

Eoffset =


R−Bj if Eindex = 0

Bi if Eindex = 1

Bj if Eindex = 2

(3.1c)

The offset for face samples is the sum of all previous indices ij. The sum
has initial condition of k = 1 and terminating condition of i − 1 since the
first and last indices belong to the edges of the face.

Foffset =
i−1∑
k=1

(R− (k + 1)) + (j − 1) =
(2R− 2− i)(i− 1)

2
+ (j − 1) (3.2)

When sampling an edge shared between two neighboring faces the buffer
needs to be sampled in reverse. As described in [11] we solve this by denoting
the sampling direction with a negative sign on the edge color index to denote
that the edge color buffer should be sampled in reverse, and handle these
occurrences in the shader code during rendering.

13



CHAPTER 3. IMPLEMENTATION

3.3 MIP-mapping

As mentioned in the background section we store separate MIP-maps for each
face, and we always create the maximum number of MIP-levels m defined by
eq. 3.3 where m is an integer.

m = log2(R) (3.3)

MIP-maps are computed for each vertex, edge, and face and stored in a
linear fashion sequentially in memory following the previous MIP-map of one
level lower. Storing the MIP-data in this fashion allows us to fetch the color
index of a given MIP-level by calculating and using an offset from the original
color index into the color buffer. In figure 3.1 storage of the MIP-levels for an
edge with a resolution of 8 is illustrated. Since a vertex always has exactly
one color value regardless of MIP-level, the offset for a vertex is increased by
1 for each MIP-level The calculation of the offsets for edges and faces is the
sum of the number of samples from all previous MIP-maps of lower level for
that edge or face. Note that by convention a MIP-level of 0 corresponds to
the finest resolution.

Figure 3.1: Storage of MIP-levels generated for an edge of resolution 8.

From eq. 2.1bc we derive the offset calculations in eq. 3.4ab. Since the

14



CHAPTER 3. IMPLEMENTATION

sums have the forms of geometric progressions as described in [11] we can
calculate the offset for a given MIP-level as in eq. 3.4ab.

Emip =

mip−1∑
k=0

(2m−mip+1 ∗ 2k)−mip

= 2m+1 − 2m−mip+1 −mip

(3.4a)

Fmip =

mip−1∑
k=0

(22(m−k)−1)− 3

mip−1∑
k=0

(2m−k−1) + mip

=

mip−1∑
k=0

(22(m−mip)+14k)− 3

mip−1∑
k=0

(2m−mip2k) + mip

=
1

3
(22m+1 − 22(m−mip)+1)− 3(2m − 2m−mip) + mip

(3.4b)

In eq. 3.4ab the integer m is the maximum number of MIP-levels possible
with the current face resolution, defined as in eq. 3.3, and mip refers to the
MIP-level for which we seek the offset for. In the implementation we always
generate every possible MIP-level, down to the lowest possible resolution
which corresponds to vertex colors.

3.4 Non-uniform face resolutions

As described in the previous section vertices only store a single color value
regardless of resolution or MIP-level, and faces do not share color data with
other faces, therefore these two cases with non-uniform face resolutions do
not need any special treatment. Edges can however be shared between faces.

In the case of an edge having neighboring faces of different resolutions we
pick the higher resolution for the edge when generating the color data. Since
we only allow resolutions that are of power of 2 and since we always create
every possible MIP-level as discussed in the previous section, this allows us
to pick an appropriate MIP-level of the shared edge when rendering the edge
from the perspective of the low resolution face.

15



4 — Results and Benchmarks

The results presented were run on a desktop computer running Windows
7 64-bit with a Intel X5650 CPU with 6 cores at 2.66 GHz. The graphics
cards used separately were an NVidia 670 GTX and an AMD R7950. All
time measurements were done on a head model consisting of 7473 triangles,
originally using a texture map with a resolution of 1024x1024 pixels. Mesh
colors renderings and timings were done on the head model with a per-face
resolution of 16 unless otherwise stated. The color data used to populate
the mesh colors color buffer was generated by sampling the existing texture
map for the model in a preprocessing step, hence we achieved a visually
equivalent result compared to the original texture-mapping. Renderings were
done in the Frostbite 3 engine, and all time measurements were taken from
the internal GPU timing tools in Frostbite.

4.1 Filtering

Nearest filtering and linear filtering produces results as expected. Since color
samples are effectively placed on the geometry the nearest filtering results in
a hexagonal pattern, while the linear filtering results in a blended transition
between color samples. The filtering is illustrated in figures 4.1a and 4.1b
respectively. Note the clearly visible hexagonal pattern in the result from
nearest filtering. Table 4.1 shows render times for mesh colors using nearest-
and linear filtering for different resolutions, as well as the regular UV-mapped
texture rendered with linear filtering for reference.

(a) Nearest filtering (b) Linear filtering

Figure 4.1: Triangle illustrating nearest and linear filtering operations respectively

16



CHAPTER 4. RESULTS AND BENCHMARKS

Table 4.1: Render times for mesh colors and regular texture map by filter operation
and GPU.

Resolution 16
Timing (ms) Nearest Linear UV-texture

NVidia 670 GTX 0,14 0,21 0,04
AMD R7950 0,12 0,16 0,04

Resolution 32
Timing (ms) Nearest Linear UV-texture

NVidia 670 GTX 0,23 0,38 0,04
AMD R7950 0,15 0,17 0,04

4.2 MIP-maps

Timings for different MIP-levels can be seen in figure 4.2. Visual results
from MIP-mapping can be seen in figure 4.3, illustrating MIP-levels 0 (native
resolution), 2, and 4 rendered with linear filtering.

Figure 4.2: Rendering times for different MIP-levels.

17



CHAPTER 4. RESULTS AND BENCHMARKS

Figure 4.3: From left to right; Native resolution, MIP-level 2 , and MIP-level 4.

4.3 Non-uniform per-face resolutions

The possibility to have non-uniform per-face resolutions is one of the main
advantages of mesh colors. Figure 4.4 illustrates a closeup of an example
of non-uniform per-face resolutions rendered with nearest filtering in order
to make the difference in resolution more apparent, and figure 4.5 shows
rendering timings for different per-face resolutions.

Figure 4.4: Non-uniform per-face resolutions rendered with nearest filtering.

18



CHAPTER 4. RESULTS AND BENCHMARKS

Figure 4.5: Rendering times for different per-face resolutions.

4.4 Memory usage

In table 4.2 we have compared the size of the original texture used for the head
model to the size of the mesh colors color buffer using a per-face resolution
that gives a visual equivalence to the original texture when rendered.

Table 4.2: Memory usage comparison between a regular texture map of 1024x1024
pixels and mesh colors using a resolution resulting in visual equivalence.

Method Samples Uncompressed (bytes) JPG compressed (bytes)
Regular 1 048 576 4 194 304 128 170

Mesh Colors 765 564 3 062 256 -

From the table we see that fewer color samples are needed for mesh colors
to achieve a visual equivalence compared to rendering with regular textures
(a decrease in the number of samples by approximately 27%). Since there
are no established methods for compressing the mesh colors data the data is
stored in it’s uncompressed form. This results in the mesh colors color data
taking up memory space of approximately a factor of 24 compared to the
JPG compressed texture.

19



CHAPTER 4. RESULTS AND BENCHMARKS

4.5 Issues

There are a few issues with mesh colors that Yuksel raises in [12] and most
of these issues are reproducible in our implementation.

The lowest possible resolution for mesh colors is that of vertex colors,
e.g. the lowest resolution is dictated by the geometric detail of the mesh.
This could become a problem if the camera is far enough from the mesh
for several faces to fall within the same pixel, since mesh colors filtering
cannot sample across multiple faces in it’s current implementation. This
would involve traversing the geometry to find the neighboring face data.
Most modern renderers including Frostbite use sub-pixel sampling and will
thus weigh samples from several faces and produce a correct final pixel color.

Since a face has uniform resolution and the number of samples per edge
and face are derived from this resolution in eq. 2.1, the use of elongated
triangles will cause a disproportionate spatial distribution of color samples
along edges and on faces. A degenerate case is illustrated in figure 4.6 where
a low resolution and nearest filtering is used to clearly illustrate the issue.
The original UV-map and UV-coordinates of the mesh were used to popu-
late the mesh colors buffer. In the figure we see skewed hexagonal shapes
running down the middle of the side of the church mesh caused by the elon-
gated triangles in the geometry. An equilateral triangle would render with
symmetrical hexagonal shapes.

4.6 Images

Figure 4.7 shows a larger image of the head model rendered with mesh colors
with a per-face resolution of 16. In figure 4.8 a house model with 236 triangles
is rendered with mesh colors with a per-face resolution of 256 to illustrate
that the method works well with a high number of color samples per triangle
as well. No UV-coordinates were used when rendering. The mesh colors color
buffer was populated in a preprocessing step by sampling the mesh’s original
texture maps with existing UV-coordinates, therefore we achieved a visual
equivalence with mesh colors compared with the original texture-mapping.

20



CHAPTER 4. RESULTS AND BENCHMARKS

Figure 4.6: Skewing of color samples for elongated triangles.

21



CHAPTER 4. RESULTS AND BENCHMARKS

Figure 4.7: Head model rendered with mesh colors.

22



CHAPTER 4. RESULTS AND BENCHMARKS

Figure 4.8: House model with a large number of color samples per triangle.

23



5 — Discussion

The rendering times in table 4.1 and in figure 4.5 indicate that the AMD
card handles higher color resolutions better than the NVidia card. This
might be due to the higher memory bandwidth of the AMD card (25% higher
bandwidth compared to the NVidia card used). This difference in memory
bandwidth might also be the reason for the greater relative speedup for the
Nvidia card for higher MIP-levels compared to the AMD card as seen in
figure 4.2. The number of color buffer lookups in the pixel shader are the
same regardless of the MIP-level, but with fewer cache misses for higher
MIP-levels the difference in memory bandwidth between the graphics cards
might be less noticeable. Since a change in resolution only affects the size of
the color buffer this conclusion makes sense. These findings highlights the
importance of the ability for mesh colors to use non-uniform face resolutions.

Compression of the mesh colors data is a big issue. The texture map
originally used for the head model uses JPG compression when stored on
disk. As seen in table 4.2 the mesh colors color data in our use case takes
up approximately 24 times more memory on disk than a JPG compressed
UV-mapped texture of visual equivalence. For mesh colors to be a realistic
alternative to regular UV-mapped texture a solution to this problem would
need to be researched. During implementation we saw that a high mesh colors
resolution resulted in a color buffer that did not fit in the video memory of
the graphics card and resulted in the data being swapped back and fourth
between the CPU and the GPU, causing a big performance hit. This further
highlights the importance into researching compression methods for mesh
colors data for the method to be a realistic alternative to traditional texturing
methods.

5.1 Comments & reflections

A lot of the time spent on this thesis was dedicated to getting familiar with
the Frostbite code base and developing a plan for implementing mesh colors
to work with the different pipelines in the engine, all the way from processing
mesh data, to generating the mesh colors data buffers, to loading data in
runtime, to getting the data to the GPU and finally rendering using the
correct shader permutations. We have shown that mesh colors is a realistic
alternative to regular UV-mapping for real-time rendering. Although not as
fast and efficient as textures with hardware accelerated filtering operations
and MIP-map support alike, one might consider using mesh colors for special
cases where the method’s advantages outweighs it’s drawbacks.

24



CHAPTER 5. DISCUSSION

5.2 Limitations in implementation

The implementation focused on implementing the core rendering technology
of the mesh colors method in the Frostbite engine. For mesh colors to be used
in production an implementation of a paint tool would have to researched
and developed.

We only consider triangular meshes, although possible extensions of mesh
colors to quadrilateral meshes and subdivision surfaces are mentioned briefly
in [12].

Rendering functionality that would have to be considered if implemented
fully is choosing correct MIP-levels depending on some metric e.g. the screen-
space area of a triangle or distance to the camera for a pixel. Since MIP-levels
are fully implemented in this thesis the choice in runtime of which MIP-level
to use would be trivial to implement.

25



6 — Future Work

The usage of the tessellation stage in the graphics pipeline seems superfluous
since no actual tessellation takes place. Granted, mesh colors could trivially
be extended to support tessellated geometry as mentioned in [12], but for
this implementation it is only used for the per-patch context available in the
hull shader. An avenue of future investigation could be looking into solutions
that does not need to pass through the tessellation stage.

Another issue is compression of the color data, primarily on disk but also
during runtime. During the writing of this report there is currently a thesis
project under way at DICE that is looking at efficient compression algorithms
specifically for the data generated and used by mesh colors.

In a real-time application such as games meshes often have several repre-
sentations of decreasing geometric detail, often referred to as different levels
of detail (LOD). A mesh’s LOD levels are somewhat a mesh equivalence to
a texture’s MIP-levels. For this thesis we have implemented MIP-levels for
mesh colors, but have not investigated if and how the mesh colors data from
the original mesh could be used when generating mesh colors data for the
different LOD-levels of a mesh. This is a subject that could be investigated
further.

Another interesting area for future work is an implementation of a paint
tool using mesh colors to enable artists to use mesh colors in production. For
a paint tool one would have to take a number of items under consideration,
e.g. usable work flows, suitable data structures etc. A tool for use by artists
would have to handle editing operations which are trivial when adding or
deleting geometry, but it gets a bit more tricky when for example increment-
ing the resolution of arbitrary faces. The pipeline for this thesis consists of
generating the color data as a preprocessing step on the CPU, and neatly
packing both face data and color data in linear arrays ready for rendering.
The tool would need to use a data structure which can handle on-the-fly
adjustments of e.g. face resolutions, inserting data into the color buffer and
updating all affected color buffer indices in the face data buffer. A linear
array structure as used in this thesis would entail inserting data into an ar-
ray, shifting all subsequent elements and adjusting all affected color indices
in the face data buffer. One suggestion might be to have an editing mode
(e.g. “painting mode”) using some form of map structure, and when finished
painting again pack all data neatly in linear arrays suitable for rendering.

26



Bibliography

[1] Automatic generation of mipmaps. http://msdn.microsoft.com/en-
us/library/windows/desktop/bb172340(v=vs.85).aspx. Accessed 2014-
06-03.

[2] Barycentric coordinate system. http://http://en.wikipedia.org/wiki/Barycentric coordinate system.
Accessed 2014-08-28.

[3] Deep paint 3d. http://www.diskovery.com/. Accessed 2014-06-03.

[4] Deferred shading. http://en.wikipedia.org/wiki/Deferred shading. Ac-
cessed 2014-08-12.

[5] Mari. http://www.thefoundry.co.uk/products/mari/. Accessed 2014-
02-24.

[6] Tessellation overview. http://msdn.microsoft.com/en-
us/library/windows/desktop/ff476340(v=vs.85).aspx. Accessed
2014-06-05.

[7] B. Burley and D. Lacewell. Ptex: Per-face texture mapping for produc-
tion rendering. In Proceedings of the Nineteenth Eurographics Confer-
ence on Rendering, EGSR’08, pages 1155–1164, Aire-la-Ville, Switzer-
land, Switzerland, 2008. Eurographics Association.

[8] E. Catmull and J. Clark. Seminal graphics. chapter Recursively Gener-
ated B-spline Surfaces on Arbitrary Topological Meshes, pages 183–188.
ACM, New York, NY, USA, 1998.

[9] A. Schilling and G. Knittel. System and method for mapping textures
onto surfaces of computer-generated objects, May 22 2001. US Patent
6,236,405.

[10] R. Stuart Fergson. Practical Algorithms for 3D Computer Graphics. A
K Peters/CRC Press, 2 edition, 2013.

[11] A. Tarandi. Surface data on dynamic topologies. Master’s thesis, KTH
Computer Science and Communication, 2014.

[12] C. Yuksel, J. Keyser, and D. H. House. Mesh colors. ACM Trans.
Graph., 29(2):15:1–15:11, Apr. 2010.

[13] J. Zink, M. Pettineo, and J. Hoxley. Practical rendering and computation
with Direct3D 11. CRC Press, Boca Raton, 2011. An A.K. Peters book.

27


