Scaling the Pipeline

Stefan Boberg
Technical Director, Frostbite

. . @bionicbeagle &

¥{. @FrostbiteEngine o

Frostbite Engine

« Started 2004 as common DICE engine initiative
* Now in general use within EA Games label

« ~1]15 titles in development

« Diverse genres!

Frostbite Engine - FPS

(DANGER CLOSE

Frostbite Engine - Racing

Criterion

Frostbite Engine - RPG

BiOWARE

Frostbite Engine - Action

= LS ISCERAL

GAMES

Frostbite Engine - RTS

Scale / Dimensions

— Multi-site collaboration

» Shanghai, Europe, North America
— Large teams

* 400+ contributors in some cases
— Multiple VCS branches
— Many target platforms

e PE. PS3, XboxBel
— Content rich games iR

Scale - Example (Battlefield 3)

» Ballparksize
— 500GB raw DCC assets
— 80GB native Frostbite assets ('source data’), 100k files
— ~18GB target data (PC)
— 100,000 individual build steps (PC)
e Current games in development are larger
— Hello Bioware! © "

Frostbite Architecture

Fe G Vew Toow fcare Wedow ep

zolonis Bx 1 mvces B8 B
:

-—l-- m View Fiter Camers
++ Hamciua F

r —‘g"tructu

" — Build-cent™® ,
i Single asget Ioad"_,_g
— Always prevw g

game h_andles assets and
work our way "backwards”
through the pipe.

Asset Packaging Model

« Bundles
— Linear stream of assets (usually)

Chunks are random access (pull)

— Levels, sublevels (streaming) » Bundles are linear read iny (push) =

e Chunks » Superbundles are container files, ®
e - storing bundles and chunks
- — Free streaming data blobs a \

. -) — Datainside V|5|bleonce irs wenl
~ — Texture mips, movies, meshes I 45 e g

Packaging

» During development, layout is stored in Avalanche Storage Service
— Stores full description of bundles and superbundles
— Stored as packages with chunk references

— Bundles are assembled on-the-fly when requested by game / tools (via
SRR

— Game does not know the difference between network and disk builds (single
path) a
» Complete packaging logic is executed every build pass 3
- — Includingiterative builds! '
G - — Somust be very fast

R e 2o > A .

Avalanche Storage Service

» Core Frostbite component
* Everydeveloperruns aninstance locally
* Windows Service
— RESTful HTTP interface
— Via HTTP (server implemented using http.sys API)

 http.sys can serve data directly (in kernel mode) from system page cache (zero
copy)
» \eryscalable

— ... with significant optimizations for local access

Avalanche Storage Service

« Target (i.e built) data storage
e Chunkstore

Message bus
Tracing/diagnostics infrastructure
Production metrics infrastructure

e Build results and build
dependency tracking information

* Layoutinformation (defines
packaging)
 Network cache / build cache
+ * Peer-to-peerbuild distribution

e eke

Avalanche Storage Service - Chunk Store

14

~

Branch” 2 I

— Content Addressable Storage
» Key-value storage (immutable)

* key=SHAl(value) Lol

» Basic deduplication

* See: Venti, Git $.Assetl
— Other services rely on this heavily

 Build Store

 Build Cache Assetl’

» Asset Database (Celsius)
— Base primitive: "Package”
* JSON/BSON-like binary document format
* Usually with attachments (stored as chunk references)

Chunks

&/ as R e
3 P X
2 IO

e
58
g
55
-
4%
N

Asset Pipeline Goals

— Time spent waiting for build = waste
— Optimize bootstrap time (initial build)
* Build throughput
— Optimize feedback time (iterative builds)
— Large games require extremely scalable solutions
— Challenging!

* And a bit of a thankless task... if people notice your work, it's probably because you
broke something, orit’s too slow! ©

"1
4

.
X

Back of the envelope... bootstrap time

* Building entire game from scratch
— Input: ~80 GB source data
— Output: ~18 GB target data
— Total: 100GB

» |fwe would read and write all data at full speed
— Let’s say ~50MB/sec throughput
— 10071024/50 = 2048 sec = 34 minutes
i g — ...and that’s without any CPU work at all
¥ "-"‘ — ...and with no additional I/O for temporary assets

System Performance

e CPU Performance
— Well understood

— Reasonable tools for analy il g ery Sleepy, GlowCode, VS)
— . Strings, strings, strings
B Siofege
— Not quite as well understood among game developers
— Often overlooked, often the bottleneck!

- — Limited analysis tool knowledge | :
g £, * ETW/Xperf (Windows Performance Toolkit) . S
- * Resource Monitor, Performance Counters, code iﬂStrume;,tfa‘tj?Qu A

: g5 SeleT
+, Bl L A

Storage Hierarchy

Typical Latency Typical Throughput

Registers < 1nsec n/a
Cache < 10nsec >100G/sec
DRAM <500nsec >1G/sec

Network Cache <50 psec n/a

SSD <200 psec >200M/sec
HDD <20ms >50M/sec

Storage Hierarchy

t's a CACHE HIERARCHY
— Larger caches help performance
— Free system RAM is used as cache
DON'T FORGET TO PUT A LOT OF MEMORY INTO WORKSTATIONS
— It will reduce the impact of 1/O
— Working set fits in free RAM -> GOOD!
If the working set does not fit in system cache, performance falls off a cliff
— Just like CPU work when you don’t stay in L1/L2/L3 cache
~* Werecommend our teams to get 32GB RAM workstations when purchasing
" "" — They don’t! ‘ &% e *’ :

Pt
C£F

Storage

e The fastest1/O request is the one you don’t!

e Mission:
— Reduce seeks
— Reduce blockingon 1/0

Build Output - Avalanche

We don’t use traditional file system storage for storing build function outputs
We use packages and Log Structured Storage

Benefits:

— Single 'oplog’ file stores all build state (also used for dependency tracking)

— Mostly sequential I/O (attachments are stored in separate CAS pool)

— No fragmentation

— Nofile open/close overhead

— Cheap ’branching’ i
— Simple copying of build state from one machine to another - pick up where they left Qﬁ‘ R

\ _: " .S
LN /}m! :.'? TN -5 ";
ok -, [T o

Network Cache

* Network is often faster than local storage

— Assuming data is in server RAM

— Remember the storage hierarchy!

— So ensure cache server has plenty of RAM

— ldeally the entire working set should fit in memory

— DICE server currently has 32GB RAM

» Should probably be upgraded

* Allnodesrun aninstance, and queries always go through the local instance
- Hierarchical |

~ — Flexible topology (also: WAN replication for remote sit.')f
vy s M. il Do ' 1 S

T i
Lty J

Network Cache - Basic Cache

e Uses key-value store over HTTP
» Values are opaque blobs
* Implemented in Avalanche Storage Service
— Using HTTP.SYS API - very efficient and scalable
— Leverages system cache for maximum throughput — no dedicated buffering
» Data stored in Chunk Store
— Content Addressed Storage (CAS), SHA1 key
— Same content - same key => basic deduplication ("single instance storage”)
— As used by Git, Venti, etc
~+ Metadatain Google LevelDB e

Network Cache - Package Cache

Structured values ("package”)
— Essentially, JSON documents (but in custom BSON-like binary format)

— FEach package may have BLOB attachments
Used for data build caching

Same basic format used to persist ‘'normal’ build results
— Same data can be referenced from build results and cache package

— R EG CapY
i — Async fetch of bulk data not required for making build progress

Build Caching Implementation

Keys generated from build inputs
— Inputfile contents (SHA1)
— Other state (build settings, etc)

— Build function version (manual’ hash)
Cacheable build functions split into two phases
— First phase registers all the inputs -
— Second phase does the work Cache Key

Build scheduler
— Executes first phase

— Queries cache
— Useresults if available - otherwise run second phase

TS AR

Build Model

* Apply function to map source data to target

— asset. ... = f(asset,, e ---)

target
* Goal: purely functional, no side effects!

— Easy parallelism
— Lazy Evaluation

» Not quite there yet.

* Requires some adjustment and initially more mental energy than the
i unfortunately very common basic "blobby” and very stateful build
B structure. :

Benchmark - BF3 (PC)

Produces ~18GB build

— Timeincludes“indexing” - i.e determining relationships between assets, metadata
extraction, SHA1 hash for all files, pre-parsing XML files etc (@ 45s)

Best case build time - 15m30s (SSD, 2x Xeon 2687w, 32GB RAM)
— ~1GB/min
— Cached data already available locally
— CPU limited, not very parallel (avg 3 LP busy per target platform)
Clean system build time - 25 min
— Pullsdown all data from network
- — ~500MB/min
* Room for improvement! (more async work, more paralle‘lism) e

Asset Database (Celsius)

» Data managed in Avalanche Storage Service

e Similarimplementation to build store

e |.elog Structured

* Produced by a mapping process “importing” data into the database
— Very much like the regular data build process!

— Data may be imported from native format files
— ...orother data sources (SQL, Excel, whatever)

= Savinginvolves "exporting” database assets back to files <l
| — l.e areverse mapping | P

%

TS AR

Celsius - Benefits

* No need to save to disk (or check out) before build
* Snapshotisolation for builds
* Cheap branching for creating multiple sessions
— |.e preview same level/object/shader side-by-side, different settings
* Tightly integrated with build system
& o Eashisyiiie
— Seconds to get up and running
5 — Lazy fetch
~ ...tons more

-

T

Q&A

Slides will be available shortly:

k. * http://www.bionicbeagle.com

bttp://publicatio

ns.dice.se
R

A Y Wer
-

http://www.bionicbeagle.com/
http://publications.dice.se/

