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What are Scope Stacks?
● A memory management tool

● Linear memory layout of arbitrary object hierarchies
● Support C++ object life cycle if desired

● Destructors called in correct dependency order
● Super-duper oiled-up fast!
● Makes debugging easier



  

Background
● Why is all this relevant?
● Console games are embedded systems

● Fixed (small) amount of memory
● Can't run out of memory or you can't ship – 

fragmentation is a serious issue
● Heap allocation is very expensive

● Lots of code for complex heap manager
● Bad cache locality
● Allocation & deallocation speed



  

Embedded systems
● With a global heap, memory fragments

● Assume 10-15% wasted with good allocator
● Can easily get 25% wasted with poor allocator

● Caused by allocating objects with mixed life 
time next to each other
● Temporary stuff allocated next to semi-permanent 

stuff (system arrays etc)



  

Heap Fragmentation

● Each alloc has to traverse 
the free list of this structure!
● Assuming “best fit” allocator 

for less fragmentation
● Will likely cache miss for 

each probed location
● Large blocks disappear 

quickly



  

Memory Map
● Ideally we would like fully 

deterministic memory map
● Popular approach on console
● Partition all memory up front

● Load new level
● Rewind level part only

● Reconfigure systems
● Rewind both level, systems

● Fragmentation not possible



  

Linear Allocation
● Many games use linear allocators to achieve 

this kind of memory map
● Linear allocators basically sit on a pointer

● Allocations just increment the pointer
● To rewind, reset the pointer

● Very fast, but only suitable for POD data
● No finalizers/destructors called
● Used in Frostbite's renderer for command buffers



  

Linear Allocator Implementation
● Simplified C++ example

● Real implementation needs checks, alignment
● In retail build, allocation will be just a few cycles

 1 class LinearAllocator {
 2     // ...
 3     u8 *allocate(size_t size) {
 4         return m_ptr += size;
 5     }
 6     void rewind(u8 *ptr) {
 7         m_ptr = ptr;
 8     }
 9     // ...
10     u8 *m_ptr;
11 };



  

Using Linear Allocation
● We're implementing FrogSystem

● A new system tied to the level
● Randomly place frogs across the level as the player 

is moving around
● Clearly the Next Big Thing

● Design for linear allocation
● Grab all memory up front

Mr FISK (c) FLT
Used with permission



  

FrogSystem - Linear Allocation
● Simplified C++ example

 1 struct FrogInfo { ... };
 2 
 3 struct FrogSystem {
 4     // ...
 5     int maxFrogs;
 6     FrogInfo *frogPool;
 7 };
 8 
 9 FrogSystem* FrogSystem_init(LinearAllocator& alloc) {
10     FrogSystem *self = alloc.allocate(sizeof(FrogSystem));
11     self->maxFrogs = ...;
12     self->frogPool = alloc.allocate(sizeof(FrogInfo) * self->maxFrogs);
13     return self;
14 }
15 
16 void FrogSystem_update(FrogSystem *system) {
17     // ...
18 }



  

Resulting Memory Layout
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Linear allocation limitations
● Works well until we need resource cleanup

● File handles, sockets, ...
● Pool handles, other API resources
● This is the “systems programming” aspect

● Assume frog system needs a critical section
● Kernel object
● Must be released when no longer used



  

FrogSystem – Adding a lock
 1 class FrogSystem {
 2     CriticalSection *m_lock;
 3 
 4     FrogSystem(LinearAllocator& a)
 5     // get memory
 6     ,   m_lock((CriticalSection*) a.allocate(sizeof(CriticalSection)))
 7     // ...
 8     {
 9         new (m_lock) CriticalSection; // construct object
10     }
11 
12     ~FrogSystem() {
13         m_lock->~CriticalSection(); // destroy object
14     }
15 };
16 
17 FrogSystem* FrogSystem_init(LinearAllocator& a) {
18     return new (a.allocate(sizeof(FrogSystem))) FrogSystem(a);
19 }
20 
21 void FrogSystem_cleanup(FrogSystem *system) {
22     system->~FrogSystem();
23 }



  

Resulting Memory Layout
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Linear allocation limitations
● Code quickly drowns in low-level details

● Lots of boilerplate
● We must add a cleanup function

● Manually remember what resources to free
● Error prone
● In C++, we would rather rely on destructors



  

Scope Stacks
● Introducing Scope Stacks

● Sits on top of linear allocator
● Rewinds part of underlying allocator when 

destroyed
● Designed to make larger-scale system design 

with linear allocation possible
● Maintain a list of finalizers to run when rewinding
● Only worry about allocation, not cleanup



  

Scope Stacks, contd.
● Type itself is a lightweight construct

 1 struct Finalizer {
 2     void (*fn)(void *ptr);
 3     Finalizer *chain;
 4 };
 5 
 6 class ScopeStack {
 7     LinearAllocator& m_alloc;
 8     void *m_rewindPoint;
 9     Finalizer *m_finalizerChain;
10 
11     explicit ScopeStack(LinearAllocator& a);
12     ~ScopeStack(); // unwind
13 
14     template <typename T> T* newObject();
15     template <typename T> T* newPOD();
16 };
17 



  

Scope Stacks, contd.
● Can create a stack of scopes on top of a single 

linear allocator
● Only allocate from topmost scope

● Can rewind scopes as desired
● For example init/systems/level
● Finer-grained control over nested lifetimes

● Can also follow call stack
● Very elegant per-thread scratch pad



  

Scope Stack Diagram

Linear Allocator
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Scope

Active Scope



  

Scope Stack API
● Simple C++ interface

● scope.newObject<T>(...) - allocate object with 
cleanup (stores finalizer)

● scope.newPod<T>(...) - allocate object without 
cleanup

● scope.alloc(...) - raw memory allocation
● Can also implement as C interface

● Similar ideas in APR (Apache Portable Runtime)



  

Scope Stack Implementation
● newObject<T>()

 1 template <typename T>
 2 void destructorCall(void *ptr) {
 3     static_cast<T*>(ptr)->~T();
 4 }
 5 
 6 template <typename T>
 7 T* ScopeStack::newObject() {
 8     // Allocate memory for finalizer + object.
 9     Finalizer* f = allocWithFinalizer(sizeof(T));
10 
11     // Placement construct object in space after finalizer.
12     T* result = new (objectFromFinalizer(f)) T;
13 
14     // Link this finalizer onto the chain.
15     f->fn = &destructorCall<T>;
16     f->chain = m_finalizerChain;
17     m_finalizerChain = f;
18     return result;
19 }



  

FrogSystem – Scope Stacks
● Critical Section example with Scope Stack

 1 class FrogSystem {
 2     // ...
 3     CriticalSection *m_lock;
 4 
 5     FrogSystem(ScopeStack& scope)
 6     :   m_lock(scope.newObject<CriticalSection>())
 7     // ...
 8     {}
 9 
10     // no destructor needed!
11 };
12 
13 FrogSystem* FrogSystem_init(ScopeStack& scope) {
14     return scope.newPod<FrogSystem>();
15 }



  

Memory Layout (with context)
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Scope Cleanup
● With finalizer chain in place we can unwind 

without manual code
● Iterate linked list
● Call finalizer for objects that require cleanup
● POD data still zero overhead
● Finalizer for C++ objects => destructor call



  

Per-thread allocation
● Scratch pad = Thread-local linear allocator

● Construct nested scopes on this allocator
● Utility functions can lay out arbitrary objects on 

scratch pad scope

 1 class File; // next slide
 2 
 3 const char *formatString(ScopeStack& scope, const char *fmt, ...);
 4 
 5 void myFunction(const char *fn) {
 6     ScopeStack scratch(tls_allocator);
 7     const char *filename = formatString(scratch, "foo/bar/%s", fn);
 8     File *file = scratch.newObject<File>(scratch, filename);
 9 
10     file->read(...);
11 
12     // No cleanup required!
13 }



  

Per-thread allocation, contd.
● File object allocates buffer from designed scope

● Doesn't care about lifetime – its buffer and itself will 
live for exactly the same time

● Can live on scratch pad without knowing it
 1 class File {
 2 private:
 3     u8 *m_buffer;
 4     int m_handle;
 5 public:
 6     File(ScopeStack& scope, const char *filename)
 7     :   m_buffer(scope.alloc(8192))
 8     ,   m_handle(open(filename, O_READ))
 9     {}
10 
11     ~File() {
12         close(m_handle);
13     }
14 };



  

Memory Layout: Scratch Pad
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PIMPL
● C++ addicts can enjoy free PIMPL idiom

● Because allocations are essentially “free”; PIMPL 
idiom becomes more attractive

● Can slim down headers and hide all data members 
without concern for performance



  

Limitations
● Must set upper bound all pool sizes

● Can never grow an allocation
● This design style is classical in games industry
● But pool sizes can vary between levels!

– Reconfigure after rewind
● By default API not thread safe

● Makes sense as this is more like layout than 
allocation

● Pools/other structures can still be made thread safe 
once memory is allocated



  

Limitations, contd.
● Doesn't map 100% to C++ object modeling

● But finalizers enable RAII-like cleanup
● Many traditional C++ tricks become obsolete

● Pointer swapping
● Reference counting

● Must always think about lifetime and ownership 
when allocating
● Lifetime determined on global level
● Can't hold on to pointers – unwind = apocalypse
● Manage on higher level instead



  

Conclusion
● Scope stacks are a system programming tool

● Suitable for embedded systems with few variable 
parameters – games

● Requires planning and commitment
● Pays dividends in speed and simplicity

● Same pointers every time – debugging easier
● Out of memory analysis usually very simple

● Either the level runs, or doesn't run
● Can never fail half through



  

Links
● Toy implementation of scope stacks

● For playing with, not industrial strength
● http://pastebin.com/h7nU8JE2

● “Start Pre-allocating And Stop Worrying” - Noel 
Llopis

● http://gamesfromwithin.com/start-pre-allocating-and-stop-worrying

● Apache Portable Runtime
● http://apr.apache.org/



  

Questions



  

Bonus: what about..
● ..building an array, final size unknown?

● Standard approach in C++: STL vector push
● Instead build linked list/dequeue on scratch pad
● Allocate array in target scope stack once size is 

known
● ..dynamic lifetime of individual objects?

● Allocate object pool from scope stack
● Requires bounding the worst case – a good idea for 

games anyway
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