

Scope Stack Allocation
Andreas Fredriksson, DICE

<dep@dice.se>

Contents
● What are Scope Stacks?
● Background – embedded systems
● Linear memory allocation
● Scope Stacks
● Bits and pieces

What are Scope Stacks?
● A memory management tool

● Linear memory layout of arbitrary object hierarchies
● Support C++ object life cycle if desired

● Destructors called in correct dependency order
● Super-duper oiled-up fast!
● Makes debugging easier

Background
● Why is all this relevant?
● Console games are embedded systems

● Fixed (small) amount of memory
● Can't run out of memory or you can't ship –

fragmentation is a serious issue
● Heap allocation is very expensive

● Lots of code for complex heap manager
● Bad cache locality
● Allocation & deallocation speed

Embedded systems
● With a global heap, memory fragments

● Assume 10-15% wasted with good allocator
● Can easily get 25% wasted with poor allocator

● Caused by allocating objects with mixed life
time next to each other
● Temporary stuff allocated next to semi-permanent

stuff (system arrays etc)

Heap Fragmentation

● Each alloc has to traverse
the free list of this structure!
● Assuming “best fit” allocator

for less fragmentation
● Will likely cache miss for

each probed location
● Large blocks disappear

quickly

Memory Map
● Ideally we would like fully

deterministic memory map
● Popular approach on console
● Partition all memory up front

● Load new level
● Rewind level part only

● Reconfigure systems
● Rewind both level, systems

● Fragmentation not possible

Linear Allocation
● Many games use linear allocators to achieve

this kind of memory map
● Linear allocators basically sit on a pointer

● Allocations just increment the pointer
● To rewind, reset the pointer

● Very fast, but only suitable for POD data
● No finalizers/destructors called
● Used in Frostbite's renderer for command buffers

Linear Allocator Implementation
● Simplified C++ example

● Real implementation needs checks, alignment
● In retail build, allocation will be just a few cycles

 1 class LinearAllocator {
 2 // ...
 3 u8 *allocate(size_t size) {
 4 return m_ptr += size;
 5 }
 6 void rewind(u8 *ptr) {
 7 m_ptr = ptr;
 8 }
 9 // ...
10 u8 *m_ptr;
11 };

Using Linear Allocation
● We're implementing FrogSystem

● A new system tied to the level
● Randomly place frogs across the level as the player

is moving around
● Clearly the Next Big Thing

● Design for linear allocation
● Grab all memory up front

Mr FISK (c) FLT
Used with permission

FrogSystem - Linear Allocation
● Simplified C++ example

 1 struct FrogInfo { ... };
 2
 3 struct FrogSystem {
 4 // ...
 5 int maxFrogs;
 6 FrogInfo *frogPool;
 7 };
 8
 9 FrogSystem* FrogSystem_init(LinearAllocator& alloc) {
10 FrogSystem *self = alloc.allocate(sizeof(FrogSystem));
11 self->maxFrogs = ...;
12 self->frogPool = alloc.allocate(sizeof(FrogInfo) * self->maxFrogs);
13 return self;
14 }
15
16 void FrogSystem_update(FrogSystem *system) {
17 // ...
18 }

Resulting Memory Layout

FrogSystem Frog Pool

Allocation
Point

POD Data

Linear allocation limitations
● Works well until we need resource cleanup

● File handles, sockets, ...
● Pool handles, other API resources
● This is the “systems programming” aspect

● Assume frog system needs a critical section
● Kernel object
● Must be released when no longer used

FrogSystem – Adding a lock
 1 class FrogSystem {
 2 CriticalSection *m_lock;
 3
 4 FrogSystem(LinearAllocator& a)
 5 // get memory
 6 , m_lock((CriticalSection*) a.allocate(sizeof(CriticalSection)))
 7 // ...
 8 {
 9 new (m_lock) CriticalSection; // construct object
10 }
11
12 ~FrogSystem() {
13 m_lock->~CriticalSection(); // destroy object
14 }
15 };
16
17 FrogSystem* FrogSystem_init(LinearAllocator& a) {
18 return new (a.allocate(sizeof(FrogSystem))) FrogSystem(a);
19 }
20
21 void FrogSystem_cleanup(FrogSystem *system) {
22 system->~FrogSystem();
23 }

Resulting Memory Layout

FrogSystem Frog Pool CritialSect

Allocation
Point

POD Data
Object with cleanup

Linear allocation limitations
● Code quickly drowns in low-level details

● Lots of boilerplate
● We must add a cleanup function

● Manually remember what resources to free
● Error prone
● In C++, we would rather rely on destructors

Scope Stacks
● Introducing Scope Stacks

● Sits on top of linear allocator
● Rewinds part of underlying allocator when

destroyed
● Designed to make larger-scale system design

with linear allocation possible
● Maintain a list of finalizers to run when rewinding
● Only worry about allocation, not cleanup

Scope Stacks, contd.
● Type itself is a lightweight construct

 1 struct Finalizer {
 2 void (*fn)(void *ptr);
 3 Finalizer *chain;
 4 };
 5
 6 class ScopeStack {
 7 LinearAllocator& m_alloc;
 8 void *m_rewindPoint;
 9 Finalizer *m_finalizerChain;
10
11 explicit ScopeStack(LinearAllocator& a);
12 ~ScopeStack(); // unwind
13
14 template <typename T> T* newObject();
15 template <typename T> T* newPOD();
16 };
17

Scope Stacks, contd.
● Can create a stack of scopes on top of a single

linear allocator
● Only allocate from topmost scope

● Can rewind scopes as desired
● For example init/systems/level
● Finer-grained control over nested lifetimes

● Can also follow call stack
● Very elegant per-thread scratch pad

Scope Stack Diagram

Linear Allocator

Scope
Scope

Active Scope

Scope Stack API
● Simple C++ interface

● scope.newObject<T>(...) - allocate object with
cleanup (stores finalizer)

● scope.newPod<T>(...) - allocate object without
cleanup

● scope.alloc(...) - raw memory allocation
● Can also implement as C interface

● Similar ideas in APR (Apache Portable Runtime)

Scope Stack Implementation
● newObject<T>()

 1 template <typename T>
 2 void destructorCall(void *ptr) {
 3 static_cast<T*>(ptr)->~T();
 4 }
 5
 6 template <typename T>
 7 T* ScopeStack::newObject() {
 8 // Allocate memory for finalizer + object.
 9 Finalizer* f = allocWithFinalizer(sizeof(T));
10
11 // Placement construct object in space after finalizer.
12 T* result = new (objectFromFinalizer(f)) T;
13
14 // Link this finalizer onto the chain.
15 f->fn = &destructorCall<T>;
16 f->chain = m_finalizerChain;
17 m_finalizerChain = f;
18 return result;
19 }

FrogSystem – Scope Stacks
● Critical Section example with Scope Stack

 1 class FrogSystem {
 2 // ...
 3 CriticalSection *m_lock;
 4
 5 FrogSystem(ScopeStack& scope)
 6 : m_lock(scope.newObject<CriticalSection>())
 7 // ...
 8 {}
 9
10 // no destructor needed!
11 };
12
13 FrogSystem* FrogSystem_init(ScopeStack& scope) {
14 return scope.newPod<FrogSystem>();
15 }

Memory Layout (with context)

FrogSystem Frog Pool CritialSect

Scope

Finalizer
Chain

Allocation
Point

POD Data
Object with cleanup
Finalizer record

(other stuff)...

Scope Cleanup
● With finalizer chain in place we can unwind

without manual code
● Iterate linked list
● Call finalizer for objects that require cleanup
● POD data still zero overhead
● Finalizer for C++ objects => destructor call

Per-thread allocation
● Scratch pad = Thread-local linear allocator

● Construct nested scopes on this allocator
● Utility functions can lay out arbitrary objects on

scratch pad scope

 1 class File; // next slide
 2
 3 const char *formatString(ScopeStack& scope, const char *fmt, ...);
 4
 5 void myFunction(const char *fn) {
 6 ScopeStack scratch(tls_allocator);
 7 const char *filename = formatString(scratch, "foo/bar/%s", fn);
 8 File *file = scratch.newObject<File>(scratch, filename);
 9
10 file->read(...);
11
12 // No cleanup required!
13 }

Per-thread allocation, contd.
● File object allocates buffer from designed scope

● Doesn't care about lifetime – its buffer and itself will
live for exactly the same time

● Can live on scratch pad without knowing it
 1 class File {
 2 private:
 3 u8 *m_buffer;
 4 int m_handle;
 5 public:
 6 File(ScopeStack& scope, const char *filename)
 7 : m_buffer(scope.alloc(8192))
 8 , m_handle(open(filename, O_READ))
 9 {}
10
11 ~File() {
12 close(m_handle);
13 }
14 };

Memory Layout: Scratch Pad

File BufferFilename

Scope

Finalizer
Chain

Allocation
Point POD Data

Object with cleanup
Finalizer record

File

Parent Scope

Old
Allocation
Point

Rewind Point

PIMPL
● C++ addicts can enjoy free PIMPL idiom

● Because allocations are essentially “free”; PIMPL
idiom becomes more attractive

● Can slim down headers and hide all data members
without concern for performance

Limitations
● Must set upper bound all pool sizes

● Can never grow an allocation
● This design style is classical in games industry
● But pool sizes can vary between levels!

– Reconfigure after rewind
● By default API not thread safe

● Makes sense as this is more like layout than
allocation

● Pools/other structures can still be made thread safe
once memory is allocated

Limitations, contd.
● Doesn't map 100% to C++ object modeling

● But finalizers enable RAII-like cleanup
● Many traditional C++ tricks become obsolete

● Pointer swapping
● Reference counting

● Must always think about lifetime and ownership
when allocating
● Lifetime determined on global level
● Can't hold on to pointers – unwind = apocalypse
● Manage on higher level instead

Conclusion
● Scope stacks are a system programming tool

● Suitable for embedded systems with few variable
parameters – games

● Requires planning and commitment
● Pays dividends in speed and simplicity

● Same pointers every time – debugging easier
● Out of memory analysis usually very simple

● Either the level runs, or doesn't run
● Can never fail half through

Links
● Toy implementation of scope stacks

● For playing with, not industrial strength
● http://pastebin.com/h7nU8JE2

● “Start Pre-allocating And Stop Worrying” - Noel
Llopis

● http://gamesfromwithin.com/start-pre-allocating-and-stop-worrying

● Apache Portable Runtime
● http://apr.apache.org/

Questions

Bonus: what about..
● ..building an array, final size unknown?

● Standard approach in C++: STL vector push
● Instead build linked list/dequeue on scratch pad
● Allocate array in target scope stack once size is

known
● ..dynamic lifetime of individual objects?

● Allocate object pool from scope stack
● Requires bounding the worst case – a good idea for

games anyway

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

