
DEGREE PROJECT, IN , SECOND LEVELCOMPUTER SCIENCE

STOCKHOLM, SWEDEN 2015

Surface data on dynamic topologies

A REAL TIME TECHNOLOGY FOR TOPOLOGY
INDEPENDENT STORAGE OF SURFACE DATA

ANDREAS TARANDI

KTH ROYAL INSTITUTE OF TECHNOLOGY

COMPUTER SCIENCE AND COMMUNICATION

Surface data on dynamic topologies

ANDREAS TARANDI
taran@kth.se

JANUARY 2015

Master of Science in Engineering
Computer Science and Technology

School of Computer Science and Communication
Royal Institute of Technology

Supervisor at CSC was Mario Romero
Examiner was Olle Bälter

Problem was provided by EA DICE
Supervisor at DICE was Jan Schmid

Ytdata på dynamiska topologier

Abstract

We implement, combine, and evaluate the work by
H.Schäfer (2012) in ”Multiresolution attributes for tessellated
meshes” and C.Yuksel (2010) in ”Mesh Colors” for storing
surface data such as colors, normals and displacement directly
on the surface for 3D geometry in a topology-independent way.
We provide implementation details missing in the original pa-
pers and propose and evaluate possible optimizations to the
techniques, with a focus on usage in real-time applications.

The technique of storing data directly on the surface pro-
vides advantages over the commonly used texture mapping
such as the eliminations of discontinuities and seams. The
proposed technique is also useful on dynamic topologies where
texture mapping is difficult.

We also evaluate the performance of these techniques in a
real time application where they perform resonably well, but
not better than traditional techniques, leading to the conclu-
sion that they are only suitable to use in situation where tra-
ditional techniques fall short.

Referat
Ytdata på dynamiska topologier

Vi implementerar, kombinerar och evaluerar algoritmerna fö-
reslagna av H.Schäfer (2012) i ”Multiresolution attributes for
tessellated meshes” och av C.Yuksel (2010) i ”Mesh Colors”
för att lagra ytdata så som färg, normaler och deformering
direkt på ytan för 3D geometri oberoende av dess topologin.
Vi tillför detaljer kring implementeringen som saknades i de
ursprungliga texterna och föreslår och evaluerar möjliga opti-
meringar av dem, med fokus på realtidsapplikationer.

Att lagra datan obeorende av geometrins topologi har vissa
föredelap getemot den traditionella metoden texturmappning,
bland annat elimineringen av sömmar och diskontinuiteter.
Den föreslagna algoritmen är också användbar på dynamiska
topologier där texurmappning är svårt.

Vi utvärderar också algoritmernas prestanda i en realtidsap-
plikation där de presterar acceptabelt, men inte bättre än de
traditionella metoderna, vilket leder till slutsatsen att de en-
dast är rimliga att använda i de fall då det inte är rimligt att
använda traditionella metoder.

Preface

This is a Master’s Thesis at the School of Computer Science and Communication at KTH. The
problem was provided by EA DICE and the project was executed there.
I would like to thank my supervisor at KTH, Mario Romero for his support throughout my
work with the thesis. I would also like to thank my supervisors at DICE; Jan Schmid, Torbjörn
Söderman and Christopher Birger, as well as the other employees at DICE who made me feel
welcome. It has truly been a great experience.

Contents
1 Introduction 1

1.1 Background . 1
1.1.1 Texture mapping . 1
1.1.2 Tessellation . 1
1.1.3 Barycentric coordinates . 1
1.1.4 Related work . 1

1.2 Problem definition . 2
1.2.1 Limitations . 2

1.3 Purpose . 2
1.4 Performance measurement . 3

2 Implementation 4
2.1 The tessellator pattern . 4
2.2 Displacement surface data . 5

2.2.1 On face index given REV . 5
2.3 Mesh colors . 6

2.3.1 Index calculation . 6
2.3.2 Differences in our implementation . 6

2.4 LOD-levels and MIP-mapping . 7
2.4.1 Displacement . 7
2.4.2 Mesh colors . 8

2.5 Implementation considerations . 8
2.5.1 Reversed edges . 8

2.6 Theoretical performance . 8
2.6.1 Memory usage . 8
2.6.2 Time . 8

2.7 Compute shader tessellation . 9
2.7.1 Buffer size calculation . 9
2.7.2 Triangle pattern generation . 9
2.7.3 Per-face buffer offset . 10

2.8 Optimizations . 10
2.8.1 Data compression . 10
2.8.2 Triangle strips . 10

3 Results 12
3.1 Performance tests . 12

3.1.1 Tests . 12
3.1.2 Baseline test . 12
3.1.3 Mesh color . 12
3.1.4 Hardware-fixed tessellation pipeline . 12
3.1.5 Compute shader tessellator . 13
3.1.6 LOD and MIP-levels . 13

4 Discussion 17
4.1 Analysis . 17
4.2 Conclusion . 17

4.3 Future work . 18

Bibliography 19

Appendix A Glosary 21

Chapter 1

Introduction

This chapter will give an introduction to the
problem, as well as providing an overview of the
field and previous work done on the problem.

1.1 Background

1.1.1 Texture mapping

Mapping of textures onto surfaces have since
the early days of computer graphics been the
preferred nonprocedural way of providing de-
tail to a geometric surface [Catmull, 1974].
This technique has the inherent problem of re-
quiring a map for a 3D surface onto the 2D do-
main. If one allows disjunct islands and non-
uniform distribution in the 2D mapping, the
problem can be solved for all 3D geometries
with only minimal seams where the islands con-
nect [Akenine-Möller et al., 2008].

1.1.2 Tessellation

A relatively recent feature in graphics hard-
ware is programmable tessellation. It pro-
vides a way of subdividing the geometry on
the GPU (graphics processing unit) with full
control of the location of the newly generated
vertices. Tessellation affords CPU (central pro-
cessing unit) algorithms to run on a coarser
base mesh and reduces the load on the memory
bus to the GPU, while maintaining or improv-
ing the granularity of the rendered mesh.

Tessellation adds two programmable shader
stages to the graphics pipeline: the hull-shader
and the domain-shader. In addition to this
a fixed stage, the actual tessellator, is added.
The hull-shader is run per patch (a polygonal
face) and controls the input parameters to the
tessellator and does per-patch calculation. The
domain-shader is run once for each point on the

output patch and its purpose is to generate a
vertex for the point [Microsoft, 2013a].

A common way of encoding the extra detail
in the mesh geometry is storing it as a texture
(commonly known as a displacement map), and
mapping it to the surface in the same way as
a color texture [NVIDIA, 2010]. Due to the
intrinsic problems with seams in texture map-
ping, this may result in holes or ridges in the
mesh, which in many cases is unacceptable.

1.1.3 Barycentric coordinates

Barycentric coordinates are triples of numbers
{α, β, γ} corresponding to weights placed at the
vertices of a triangle [Weisstein, 2014]. The
sum of the weights α, β, and γ is 1.0. They
are used in tessellation to provide the relative
position of a newly generated vertex within a
triangle.

Figure 1.1: Barycentric coordinates {α, β, γ}
on a equilateral triangle [Wikipedia, 2008].

1.1.4 Related work

Multiple solutions to handling seams in dis-
placement maps have been previously explored.

1

CHAPTER 1. INTRODUCTION

Piponi and Borshukov proposed a technique for
finding an optimal and intutive mapping called
”pelting”, combined with a method for blending
texture mappings together, to solve the prob-
lem [Piponi and Borshukov, 2000]. Nießner
and Loop proposed a technique using a tiled
texture format and a displacement function,
but it relies on a static topology and thus
doesn’t solve the issue of texture mapping a
dynamic topology [Nießner and Loop, 2013].

Sander et al. proposed a solution to tex-
ture mapping progressive meshes by using tex-
ture atlases, which solves some of the texture
stretch issues, but not the problem with dy-
namic topologies [Sander et al., 2001].

Yuksel et al. proposed a way of stor-
ing surface color details directly associated
with the 3D geometry surface, avoiding en-
tirely the problem of mapping between tex-
ture and model space [Yuksel et al., 2010].
Schäfer et al. later extended this, proposing
a similar technique for handling displacement
data [Schäfer et al., 2012]. Both these methods
provide a one to one mapping between surface
data and topology, and are thus feasable to use
on dynamic topologies. We will further explore
the techniques presented in these papers in this
thesis.

1.2 Problem definition

In this thesis we will go through the pro-
cess of implementing and combining the al-
gorithm by Yuksel et al. with the algorithm
by Schäfer et al. to provide a technique that
is completely free from texture mapping while
still providing both color and geometry de-
tails [Yuksel et al., 2010] [Schäfer et al., 2012].
The original papers lack important details re-
quired to implement the algorithms. We will
provide the details of our implementation here.

Schäfer et al. proposed in their ”Lim-
itations and Future Work” section that if
the hardware tessellator could provide a
unique index per generated vertex, the
costly index retrieval algorithm could be re-
moved [Schäfer et al., 2012]. We have experi-
mented with removing the index retrieval al-
gorithm by taking advantage of the hardware
available today, namely Compute Shaders, that

can perform general purpose computing on
GPUs (GPGPU). This also eliminates another
limitation mentioned by Schäfer et. al in ”Lim-
itations and Future Work”, that current hard-
ware only supports tessellation factors up to
64. It may also increase performance on AMD
hardware where tessellation performance in
general is not on par with NVIDIA hardware,
while usually outperforming NVIDIA hardware
when it comes to GPGPU (General Purpose
GPU).

1.2.1 Limitations

We will not consider the problem of compress-
ing the data on disk or the actual generation of
the surface data. For testing purposes, we will
convert texture mapped surfaces to our data
format, but we will not be concerned with cre-
ating a signal optimal approach such as the one
used by H.Schäfer et al., since our primary pur-
pose for the algorithm is to directly work with
the new data format, and not conversion from
existing textures.

1.3 Purpose

The main purpose behind evaluating these
techniques, beside the obvious advantage
of eliminating discontinuities and distortions
caused by texture mapping, is the usage on a
dynamic topology.

Simulated or hand-crafted dynamic topology
mesh morphing can be used to improve aes-
thetics and realism. For these techniques to
have applications in games or other real-time
systems, a replacement for texture mapping is
required. Animation of the texture mapping is
infeasible when it contains discontinuities, as is
the case in complex models.

Since these techniques stores the surface data
directly related to the topology, moving trian-
gles around on the surface does not require ad-
ditional work to keep the surface data intact.
Furthremore, adding geometry does not raise
further challenges, given that the only required
update is the insertion of the data for the new
faces.

A secondary advantage of these techniques is
that they could allow artist to directly paint on

2

1.4. PERFORMANCE MEASUREMENT

the mesh. This could be useful even if one end
up baking the data to a traditional texture in
the end.

In addition to these advantages, these tech-
niques could also be useful in the case of
procedurally-generated meshes and other cases
of programmatically processed meshes.

We have chosen to evaluate these techniques
since they have the potential to be used in real-
time applications, and work well for dynamic
topologies.

1.4 Performance measurement
We carry out all performance measurements in
this thesis using DirectX Queries with results
in milliseconds. This metric provides the actual
process time on the GPU.

3

Chapter 2

Implementation

Here we provide the details of the implementa-
tion of the techniques, including problems and
solution for overcoming them.

2.1 The tessellator pattern

One of the main problems we faced implement-
ing H.Schäfer’s multiresolution algorithm was
to imitate the hardware tessellator on the CPU.
This is required to get the exact barycentric
coordinates for the vertices generated by the
hardware tessellator. In turn, this precision
supports the generation of correct surface data
and provides the base for our Compute Shader
implementation of tessellation.

Unfortunately, Microsoft and the hardware
providers are restrictive with the implementa-
tion details of their tessellators, and the best
description found was the one provided by F.
Giesen in ”A trip through the Graphics Pipeline
2011, part 12: Tessellation” [Giesen, 2011].
From Giesen we deduced the following method,
which exactly imitates the hardware tessellator
for even tessellation factors.

For edges, the tessellation is obvious; for
a tessellation factor TE the edge is divided
into TE equally large parts. For faces, on the
other hand, the subdivision is less obvious; the
face tessellation first divides the triangle into
a number of rings. For a tessellation factor T
the number of rings are T

2 . For even tessella-
tion factors the innermost ring is a degenerate
triangle.

Then, for each ring, the three corner vertices
are calculated using θr, φr (equation (2.1)) (for
ring r where 1 ≤ r ≤ rings).

Figure 2.1: A triangle with tessellation level 4
with two rings; one normal and one degenerate
triangle.

θr = 1
3

+ (2
3

∗ 1
rings

)(rings − r)

φr = 1 − θr

2
(2.1)

The three vertices {α, β, γ} building the in-
ner triangle are:

 α
β
γ

 =

 θr φr φr

φr θr φr

φr φr θr

 (2.2)

That is, each corner vertex is built from one
primary component (θr) and two smaller com-
ponents (φr) of equal size. Since the barycen-
tric coordinates must sum up to one, the two
smaller components are easily calculated from
the primary one.

The primary component is calculated as the
distance in rings from the center of the triangle
(1

3 , 1
3 , 1

3). The distance from an outer triangle

4

2.2. DISPLACEMENT SURFACE DATA

corner to the center is 2
3 (since the center is at

component value 1
3), and all rings are equally

spaced from each other, thus the formula for
θr.

Each edge on the ring is then subdivided into
T − 2r equal big parts. The hardware tessella-
tor takes the tessellation factors for the edges
in the order u == 0, v == 0, w == 0. That is
in terms of our vertices β → γ, γ → α, α → β,
so to ensure consistency we always process the
edges in this order. Thus we generate the
barycentric coordinates for the vertices accord-
ingly.

Figure 2.2: A triangle tessellated with tes-
sellation level 4 on all edges and its face.

2.2 Displacement surface data
We have implemented ”Multiresolution at-
tributes for tessellated meshes” by
Schäfer et. al. but limited to triangle primi-
tives [Schäfer et al., 2012]. The technique gen-
erates data for the same positions generated by
the hardware tessellator, thus eliminating the
need for filtering the data.

Since the fixed GPU tessellator only outputs
the barycentric coordinates for the generated
vertices, the first step of the domain shader
is to convert these coordinates into something
more useful. Schäfer et. al proposes the use
of a ring-, edge- and vertex-index (hencefor-
ward known as REV), since these are relatively
painless to calculate from the barycentric co-
ordinates. This conversion is well covered by

H.Schäfer et al. and is thus not repeated here.
The REV coordinates are each relative to their
current scope, that is ring to the current face,
edge to the current ring, and vertex to the cur-
rent edge.

2.2.1 On face index given REV

The next step is to find the location in the point
data buffer for the current REV. For outer
edges and the three original vertices this is a
straightforward usage of the V-index (for outer
edges) or E-index (for original vertices), but
the vertices on the face requires a bit more at-
tention. Moreover, the original paper lacks the
details of this implementation.

From the V-formula in the original paper
(equation (2.3)), we can deduce that the num-
ber of indices on any edge on ring R is (T −2R),
giving the formula in equation (2.4) for the
number of indices on a ring R (T is the tes-
sellation factor, in this case the inner).

V = b′
E

α + β + γ − 3bmin
(T − 2R) (2.3)

indices(R) = 3(T − 2R) (2.4)

The unique index relative to the face for any
vertex is then the number of vertices in all the
previous rings (starting at R1, since R0 is the
edge ring) plus the number of vertices in all
the previous edges on the current ring, plus the
current vertex index (equation (2.5)).

I(R, E, V) =
R−1∑
r=1

indices(r) (2.5)

+ E(T − 2R) + V

By using the formula for the sum of
an arithmetic progresssion, followed by re-
duction this can be simplified to equa-
tion (2.6) [Wikipedia, 2014a].

I(R, E, V) = 3(R − 1)(T − R) (2.6)
+E(T − 2R) + V

5

CHAPTER 2. IMPLEMENTATION

Precalculating the data for the point
buffer

Next, we need to have the actual displacement
data in the point buffer. For this, we calculate
the barycentric coordinates for all vertices with
the method described in section 2.1. These val-
ues are sent to an algorithm generating data for
that position, either through texture lookup or
some procedural algorithm.

We precompute and store the new normals
for the vertex. Care should be taken when ren-
dering to use the original normal when apply-
ing the displacement, and not the generated
one. Since generating the data takes time for
complex meshes, we generate and store it in a
simple file structure in a preprocess step.

2.3 Mesh colors
The original paper explains in detail the mesh
coloring algorithm [Yuksel et al., 2010]. Thus,
we will not describe it here. The paper does
not provide implementation details surround-
ing the index lookup given the coordinate Bij

(figure 2.3) (from section 4.1 ”2D Filtering”).
Those details we will describe here.

2.3.1 Index calculation
Starting with Bij , we have three cases; vertex,
edge, or face. If Bij exactly matches one vertex
coordinate we are on a vertex. If either of Bi

or Bj are zero, or the sum of the two is equal
to the resolution R, we are on an edge. In all
other cases we are on the face.

The formulas for calculating the indices and
offset in the data buffer are given in the sections
below.

Vertex

Vindex =

0 if Bj = R

1 if Bi = 0 and Bj = 0
2 if Bi = R

(2.7)

Edge

Eindex =

0 if Bi = 0
1 if Bj = 0
2 if Bi ̸= 0 and Bj ̸= 0

(2.8)

Figure 2.3: The coordinate Bij for the ver-
tices of a triangle.

Eoffset =

R − Bj if Eindex = 0
Bi if Eindex = 1
Bj if Eindex = 2

(2.9)

Face

For faces, the data offset is the sum of all the
previous columns plus the row offset. The row
and column indices both start at one, since in-
dex 0 is contained within the edges.

Foffset =
i−1∑
k=1

(R − (k + 1)) + (j − 1)

=(2R − 2 − i) ∗ (i − 1)
2

+ (j − 1)

(2.10)

2.3.2 Differences in our
implementation

Given the improvements in hardware since the
original paper, we have used a structured array
buffer instead of using the original workarounds
with 2D textures [Yuksel et al., 2010]. We also
combine the data lookup with the displacement
lookup. We must still use per vertex data in
the fragment shader, but we can use integers
without interpolation between stages, a feature
that was not widely available in 2010 hardware.

6

2.4. LOD-LEVELS AND MIP-MAPPING

2.4 LOD-levels and
MIP-mapping

We have support for storing and rendering dif-
ferent LOD and MIP-level, but the selection
of which level to use is outside of the scope of
this thesis, and thus in our implementation the
selection is done manually for the whole mesh.

For both displacement and color data, we
pregenerate m = log2(T) LOD-levels (for col-
ors this is equivalent to MIP-levels). We store
the LOD-levels contiguously in memory. The
data for a given LOD-level can be accessed by
adding an offset to the list’s header memory
address.

Note that LOD-level 0 is the highest resolu-
tion, and LOD-level m has lowest resolution.
The tessellation factor T for a LOD-level lod
(and equivalently resolution for mesh colors) is
T = 2m−lod.

Figure 2.4: Lowest LOD resolution.

The following sections will cover how to gen-
erate the offset in the memory buffer for a given
LOD-level, with LOD-level 0 at offset 0.

For the corner vertices, the offset is simply
the LOD-level, since there is only one data
point for each LOD-level, but for the edges and
face it is not as simple.

2.4.1 Displacement

Edges

The first thing needed to calculate the offset is
the number of data points (P) for any given
edge and LOD-level. The number of vertices

Figure 2.5: Highest LOD resolution.

on an edge is T + 1, but neither corner vertex
is included in the edge buffer. The number of
data points is thus equation (2.11).

P (lod, m) = 2m−lod − 1 (2.11)

The offset (O) for a LOD-level is the sum of
all the data points in the previous LOD-levels
(equation (2.12)).

O(m, lod) =
lod−1∑
k=0

P (k, m) (2.12)

= 2m + 2m−1 + ... + 2m−(lod−1)

This can be rewritten as a geometric pro-
gression with start value a = 2(m−lod+1),
ratio r = 2, and n = lod (equa-
tion (2.13)) [Wikipedia, 2013].

O(m, lod) =
lod−1∑
k=0

(2(m−lod+1) ∗ 2k) − lod

= 2m+1 − 2m−lod+1 − lod
(2.13)

Faces

The same operations for faces are more compli-
cated. The number of points on a face is given
by equation (2.14).

P (T) = 3(T 2

4
− T

2
) + 1 (2.14)

7

CHAPTER 2. IMPLEMENTATION

From equation (2.14) we derive equa-
tion (2.15) and (2.16).

P (lod, m) = 3(22(m−lod−1)

−2m−lod−1) + 1 (2.15)

O(m, lod) =
lod−1∑
k=0

P (k, m) (2.16)

This can be written with two geometric pro-
gressions, one with r = 4 and one with r = 2
(equation (2.17), (2.18) and (2.19).

a0 = 22(m−lod) = 4m−lod

r0 = 4 (2.17)

a1 = 2m−lod

r1 = 2 (2.18)

O(m, lod) = (2.19)

3(
lod−1∑
k=0

4m−k−1 −
lod−1∑
k=0

2m−k−1) + lod =

4m − 4m−lod − 3(2m − 2m−lod) + lod

2.4.2 Mesh colors

Edges

For edges, we similarly compute the offset
to our method for displacement edges (sec-
tion 2.4.1).

Faces

We calculate the number of data points for one
face using equation (2.20) and (2.21).

P (T) = (T − 2)
2

(T − 1) (2.20)

= T 2

2
− 3T

2
+ 1

P (m, k) = 22(m−k)

2
− 32m−k

2
+ 1

= 22(m−k)−1 − 3 ∗ 2m−k−1 + 1
(2.21)

This offset calculation can too be written as
a geometric progression (equation (2.22)).

O(m, lod) (2.22)

=
lod−1∑
k=0

22(m−k)−1 − 3
lod−1∑
k=0

2m−k−1 + lod

= 1
3

(22m+1 − 22(m−lod)+1)

− 3(2m − 2m−lod) + lod

2.5 Implementation
considerations

2.5.1 Reversed edges

Since edge data is shared between two half-
edges, one of them will need to render the con-
tent of the shared buffer backwards to represent
it correctly. In our implementation, we encode
this by using a negative sign on the edge index,
indicating that it should be read backwards.

2.6 Theoretical performance

2.6.1 Memory usage

Compared to storing raw texture data in GPU
memory our technique would consume approx-
imatly the same amount of memory assuming
that we use equivalent resolutions. It can even
yield better results, since it support variable
resolution per face. Textures compressed with
DXT with hardware decompression though ob-
viously takes up less memory, since we don’t
have any compression scheme for our hexago-
nal data pattern.

2.6.2 Time

Time analysis of GPU tasks are seldom useful,
since what’s more important on the GPU is
cache locality and memory access.

8

2.7. COMPUTE SHADER TESSELLATION

2.7 Compute shader tessellation
We have implemented a version of the integer
subdivision tessellation pattern in a compute
shader. The primary reason for this was to see
if performance could be improved by having the
tessellator yield a unique index instead of only
a barycentric coordinate. To contain complex-
ity, our implementation is limited to work only
with even integer tessellation factors.

2.7.1 Buffer size calculation
Since compute shaders is unable to allocate
global memory or issue draw calls a buffer
to store all the generated vertices and indices
must be generated before the compute shader
can run. Thus, we need to know the exact num-
ber of vertices and indices that would be gen-
erated.

For inner tessellation, given the factor T the
number of vertices is equation (2.25).

nV (R) = 3(R − 1)(T − R) + 1 (2.23)

nR(T) = 3
2

T · 1
3

= T

2
(2.24)

nV (T) = 3(T

2
− 1)(T − T

2
) + 1

= 3(T 2

4
− T

2
) + 1 (2.25)

The reason for the single +1 in the formula
is that the innermost triangle is a degenerate
triangle (single vertex) for even tessellation fac-
tors (which is the only one we support).

The number of edge segments are the number
of vertices without the last degenerate triangle.
Thus:

nE(T) = nV (T) − 1 = 3(T 2

4
− T

2
) (2.26)

The number of faces are twice the number of
edges, since for each edge segment one triangle
is added outwards, and one inwards:

nF (T) = 2 ∗ nE(T) = 6(T 2

4
− T

2
) (2.27)

For the outer edges, these numbers are sim-
ply the edge tessellation factor (both for num-
ber of vertices and number of faces).

For triangle list rendering, the number of in-
dices are three times the number of faces. The
actual number of indices drawn is controlled
by an indirect draw call to support controlling
LOD-levels from the GPU.

2.7.2 Triangle pattern generation
Generation of the vertices follow the method
described in section 2.1. We then need to con-
nect them by generating indices. In this sec-
tion, we will cover the method for generating
them for triangle lists, but in the optimization
section we will show how to calculate indices
for triangle strips.

Each ring on the face is processed separately
and, since the edges are special, they are han-
dled separately from the inner rings. For each
line segment on the ring, a face is generated
connecting inwards. For the inner segments,
another face is added connecting outwards.

Inwards connecting point

The first value needed to calculate the index for
the vertex on the next ring inwards is the ratio
between the inner and outer ring, the ”triangle
factor” TF (equation (2.28)), where ES is the
number of line segments on the inner and outer
edge.

TF = ESI + 1
ESO

(2.28)

IC = (ESI ∗ IE (2.29)
+ ⌊TF ∗ (IV + 1)⌋) mod 3ESI

Equation (2.29) show how to calculate the
connect index inwards, where IE and IV is the
index of the edge and vertex relative to their
context (ring and edge respectively). The for-
mula is only valid for ESI > 0 since modulo 0
is undefined. The index calculated is relative
to the inner ring.

Outwards connecting point

In the same way as we calculate the inwards
connecting point, we need to calculate a point

9

CHAPTER 2. IMPLEMENTATION

for connecting the outwards face from the line
segment. These points must be selected so that
the triangles do not overlap with the inwards
faces, thus the triangle factor is the inverse of
the triangle factor for the inwards face, and we
round up instead of down.

TF = ESO

ESI + 1
(2.30)

IC = ⌈TF ∗ (IV + 1)⌉ (2.31)

The index calculated in equation (2.31) is as
opposed to the inwards index not relative to
the ring, but to the edge. This is due to the
fact that for the outermost ring, the size of the
edges are not consistent throughout the ring
and needs to be handled separately. Care must
still be taken to be sure to keep the index inside
the ring, in the same way as the modulo in the
inward case.

2.7.3 Per-face buffer offset

For each face we need to find where in the
vertex and index buffer to start writing our
data. We do this by keeping a buffer with the
next write offsets in and reserving the size of
the current face (found by using the formulas
described in section 2.7.1) with atomic opera-
tions.

The offset cannot be calculated per-face since
the tessellation level may vary and, thus, a
single face cannot calculate the offset without
knowing the previous faces’ tessellation factors.

2.8 Optimizations

Both of these optimizations are only applicable
to the compute shader tessellator.

2.8.1 Data compression

The segment consuming the majority of the
time in the compute shader is the sequence of
writes to global memory for indices and ver-
tices. To reduce this, as many of the calcula-
tions as possible is moved to the vertex shader.
This reduces the amount of data needed to be
written from the compute shader.

The data compression optimization that we
have accomplished stores the barycentric coor-
dinate {α, β, γ} in one 32 bit integer by storing
two of the components (α, β) as 16-bit in-
tegers and calculating the last one from these
(α + β + γ = 1).

2.8.2 Triangle strips

As writing to memory takes up the mayor
part of the tessellation and there are many
more indices than vertices, performance can
be increased by reducing the number of in-
dices by using triangle strips instead of triangle
lists [Microsoft, 2013b].

Index structure

How the indices are generated needs some care
for triangle strips so as to get winding order
right, connecting the different rings and even
more so for connecting the different triangles
in the mesh (which may not be next to each
other). The special cases are handed using de-
generate triangles which are not rendered.

When processing the original triangles we
start and end each with double vertices, this to
make sure that they can always connect with
the next and previous triangle group and that
there wont be any problems with the first and
last triangle in the mesh. Each ring inside the
triangle also starts and ends with double ver-
tices. The double start vertices are the same
as the triangle start vertices for the outer edge.
Figure 2.6 illustrates the double lines with tri-
angle strips.

For each edge section, two indices are gen-
erated (as opposed to the six indices generated
for triangle lists). Of these indices, one is on the
current edge and one, on the next ring inwards.
The formula for the inwards facing index is al-
most the same as before (equation (2.32)).

IC = (ESI∗IE+⌊TF ∗(IV)⌋) mod 3ESI (2.32)

Number of indices

The number of indices have obviously changed.
The new formulas for calculating the number
of indices are equation (2.33) and (2.34).

10

2.8. OPTIMIZATIONS

Figure 2.6: Triangle strips for edges with
varying tessellation levels: The bent lines are
for illustration purposes only, and shows where
the lines doubles over.

nIInner(T) = 6∗(T 2

4
− T

2
)+4∗(T

2
−1) (2.33)

nIEdge(Tedge, Tinner) = (2.34)
2 ∗ max(Tedge, Tinner − 2)

Comparing this to the number of indices for
triangle lists we get the following difference (for
face tessellation):

nI lists(T) − nIstrips(T) = (2.35)

= 9(T 2

4
− T

2
) + 3

− (6 ∗ (T 2

4
− T

2
) + 4 ∗ (T

2
− 1))

= 3
4

T 2 − 7
2

T + 4

This is approximately 30% fewer indices than
with triangle lists (figure 2.7).

-10%

0%

10%

20%

30%

40%

0 10 20 30 40 50 60 70

Tessellation factor

In
d

ex
 r

ed
u

ct
io

n
 i

n
 p

er
ce

n
t

Figure 2.7: The index reduction in percent of
using triangle strips over triangle list.

11

Chapter 3

Results

This section covers the results of our implemen-
tation.

Figure 3.1: The head model rendered with
our algorithm, using tessellation level 32, and
color resolution 64 [McGuire, 2011].

Our method produces visual equivalent re-
sults of traditional methods, with the added
advantage of elimitating the need for UV-
mapping, which is as stated in the purpose sec-
tion (section 1.3) useful for mesh morphing and
procedually-generated meshes.

3.1 Performance tests
We have run performance tests to investigate
the usability of these techniques in real time
applications. The tests were run on both
a NVIDIA GeForce GTX 680 and a AMD
Radeon HD 7950.

3.1.1 Tests

The tests were run with the head model, con-
sisting of 8842 faces. The tessellation level
is 32, and the color resolution 64. All per-
formance measurements is done using DirectX

Queries with results in milliseconds. This met-
ric provides the actual process time on the
GPU.

The following are the different parameters we
have tested:
Color: Only pixel color with phong shading.
No tessellation.
Tessellation: Only tesselation, no colors.
Full: Tessellation and colors.

3.1.2 Baseline test

To put our test in context, we have tested
shaders that use traditional textures for color
and displacement. The displacement shader in-
cludes normal map lookup for normals on the
new vertices. The results for this test are are in
table 3.1. All tests uses hardware accelerated
bilinear filtering for texture sampling.

3.1.3 Mesh color

Tests with only mesh colors, with different fil-
ters. The results for this test are are in ta-
ble 3.2. These should be compared to the Color
baseline test, and as such the NVIDIA results
are especially bad (7 times worse performance).
On AMD hardware the render times are only
approximatly twice as long as the baseline test.

3.1.4 Hardware-fixed tessellation
pipeline

Tests using the hardware tessellator. Full ver-
sion uses mesh colors. The results for this test
are are in table 3.3. Here the NVIDIA results
are on par with the baseline tests, while on
AMD our technique is slightly better with no
coloring in the picture, but with coloring it per-
formce much worse.

12

3.1. PERFORMANCE TESTS

3.1.5 Compute shader tessellator
Tests using our compute shader tessellator with
different optimizations. Full version uses mesh
colors. The format for the numbers here are
total render time, followed by time spent in
the computer shader. The results for this test
are are in table 3.4. Without color the perfor-
mance on AMD hardware is equivalent to the
fixed pipeline versions, but with color it per-
forms much better. The NVIDIA performance
is never really close to the fixed pipeline ver-
sions.

3.1.6 LOD and MIP-levels
The results for the different LOD- and MIP-
levels are found in figure 3.2, figure 3.3 and
figure 3.4. These results are in general a expo-
nential decrese in render time, as expected.

13

CHAPTER 3. RESULTS

Figure 3.2: Performance of LOD-level. Both hardwares shows an expected performance increase
on decreased level of detail.

Figure 3.3: Performance of MIP-levels. Relatively small impact, probably due to number of actual
samples not decreasing (but cache locality improves performance)

14

3.1. PERFORMANCE TESTS

Test AMD NVIDIA
Color 0.11 ms 0.11 ms
Tessellation 30.6 ms 9.65 ms
Full 30.7 ms 9.75 ms

Table 3.1: Baseline test: Performance of textured techniques. Used as a baseline when evalutating
the other tests.

Test AMD NVIDIA
Nearest 0.18 ms 0.40 ms
Bilinear 0.26 ms 0.70 ms

Table 3.2: Performance of mesh colors. On AMD hardware this technique is approximatly twice
as slow as the baseline. On NVIDIA hardware the performance is even worse, approximatly 7 times
as slow.

Test AMD NVIDIA
Tessellation 25.77 ms 9.65 ms
Full 70.80 ms 9.75 ms

Table 3.3: Performance of surface data tessellation with fixed tessellator. On NVIDIA hardware
this technique performs identical with the baseline test, while AMD hardware falls short on Full (ie
with mesh colors).

Test AMD NVIDIA
No optimizations 38.0 ms / 17.0 ms 51.0 ms / 35.0 ms
Compression 38.0 ms / 17.6 ms 47.0 ms / 30.0 ms
Compression and triangle strips 25.0 ms / 7.8 ms 28.0 ms / 15.0 ms
Compression, triangle strips and mesh colors 48.4 ms / 7.8 ms 40.0 ms / 15.0 ms

Table 3.4: Performance of surface data tessellation with compute shader tessellator. First number
is total time, second is time spent in compute shader. On AMD hardware this techniques provides
better times than the fixed pipeline version.

15

CHAPTER 3. RESULTS

Figure 3.4: Performance of LOD in Compute Shader. Shows a expected exponential curve.

16

Chapter 4

Discussion

This section covers our reasoning surrounding
the results and the future possibilities for it.

4.1 Analysis
As can be seen from the performance tests the
hardware tessellator on AMD have some issues.
Whats interesting though is how much worse
the AMD card performed in the full test versus
how it performed in the tessellator only test,
especially since the times for mesh colors alone
is in the context negligible. We have found that
the cause for this performance hit is the extra
data that needs to be sent from the domain
shader to the vertex shader for mesh colors to
work. AMD cards have issues with too much
data being sent between shader stages. This is
a good point for future optimizations.

On the other hand the AMD card outper-
forms the NVIDIA card when it comes to com-
pute shaders (this is especially clear if one look
at the compute shader times only, 7.8 ms on
AMD versus 15.0 ms on NVIDIA), and that
makes it possible for us to perform our tessel-
lation there, for better results.

The other notable difference between the
cards is in mesh colors where the AMD card
is better. The reason for this might be
the higher memory bandwidth of the HD7950
since mesh colors require a lot of mem-
ory lookups, especially for the bilinear fil-
ter [HWCompare, 2012].

The performance improvement of reducing
the LOD-level is no surprise, the tessellation
reduction is in power-of-twos and the results
reflects this. For the MIP-levels the improve-
ment of reducing the MIP-levels is not very big,
but this is not the primary reason for MIP-
mapping. The number of lookups are not re-
duced either, since that is controlled by the
number of rendered fragments. The reason for

the performance improvement is probably due
to better cache locatity of the samples.

Worth noticing on the overall performance is
that the mesh used in the tests have a high poly
count and that an unnecessarily high tessella-
tion level was used. The performance times for
our algorithms should be considered in compar-
ison with the baseline tests.

There are also the consideration of storing
the displacement data in a different pattern
than that for colors. Doing so saves filter-
ing since the storage pattern always exactly
matches that from the tessellator, but on the
other hand this adds complexity to the imple-
mentation, and if in the future compression is
concidered, two different schemes, or a scheme
that works on both patterns must be deviced.
Thus it could be worth using the mesh color
pattern for both data types.

4.2 Conclusion

We have implemented and evaluated tech-
niques for storing color and displacement data
directly in a 3D-topology. From the perfor-
mance results one can conclude that these
methods could be usable in a real application,
but since they obviously do not outperform
the traditional methods they should only be
used in cases where they are more suitable than
the traditional methods or when the traditional
methods is infeasible.

Even if the color data and displacement data
is stored in a similar way they should still be
handled separately, since the desired resolution
for colors is often higher than the desired res-
olution for displacement. It could though be
worth concidering using the same pattern for
both displacement and colors, to save imple-
mentation complexity.

17

CHAPTER 4. DISCUSSION

4.3 Future work
To work well with meshes with dynamic topol-
ogy animation of the data is probably needed.
Animation could probably be solved relatively
easy, given that support for effectively stream-
ing data to the GPU exists, but to properly
render dynamic topology that would probably
already be a requirement.

Another issue that needs to be addressed is
compression of the data, primary when stored
on disk. One could also explore the possibil-
ity to compress the color in the GPU mesh
color buffer to reduce the memory footprint.
Another point of optimization is to reduce the
amount of sent between shader stages for mesh
colors, especially to improve performance on
AMD cards.

18

Bibliography

[Akenine-Möller et al., 2008] Akenine-Möller,
T., Haines, E., and Hoffman, N. (2008).
Real-Time Rendering 3rd Edition, chapter
6. Texturing, pages 147–199. A. K. Peters,
Ltd., Natick, MA, USA.

[Catmull, 1974] Catmull, E. E. (1974). A Sub-
division Algorithm for Computer Display of
Curved Surfaces. PhD thesis. AAI7504786.

[Giesen, 2011] Giesen, F. (2011). A trip
through the graphics pipeline 2011, part 12.
http://fgiesen.wordpress.com/2011/
09/06/a-trip-through-the-graphics-
pipeline-2011-part-12/. [Online; Ac-
cessed 2013-10-10].

[HWCompare, 2012] HWCompare (2012).
Geforce gtx 680 vs radeon hd 7950. http:
//www.hwcompare.com/12350/geforce-
gtx-680-vs-radeon-hd-7950/. [Online;
Accessed 2014-01-21].

[McGuire, 2011] McGuire, M. (2011). Com-
puter graphics archive. http://graphics.
cs.williams.edu/data. [Online; Accessed
2014-01-21].

[Microsoft, 2013a] Microsoft (2013a). Tessel-
lation overview. http://msdn.microsoft.
com/en-us/library/windows/desktop/
ff476340(v=vs.85).aspx. [Online; Ac-
cessed 2014-01-21].

[Microsoft, 2013b] Microsoft (2013b). Tri-
angle strips. http://msdn.microsoft.
com/en-us/library/windows/desktop/
bb206274(v=vs.85).aspx. [Online; Ac-
cessed 2014-01-21].

[Nießner and Loop, 2013] Nießner, M. and
Loop, C. (2013). Analytic displacement
mapping using hardware tessellation. ACM
Trans. Graph., 32(3):26:1–26:9.

[NVIDIA, 2010] NVIDIA (2010). Directx
11 tessellation. http://www.nvidia.com/

object/tessellation.html. [Online; Ac-
cessed 2014-01-21].

[Piponi and Borshukov, 2000] Piponi, D. and
Borshukov, G. (2000). Seamless texture
mapping of subdivision surfaces by model
pelting and texture blending. In Proceedings
of the 27th Annual Conference on Computer
Graphics and Interactive Techniques, SIG-
GRAPH ’00, pages 471–478, New York, NY,
USA. ACM Press/Addison-Wesley Publish-
ing Co.

[Sander et al., 2001] Sander, P. V., Snyder, J.,
Gortler, S. J., and Hoppe, H. (2001). Texture
mapping progressive meshes. In Proceedings
of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, SIG-
GRAPH ’01, pages 409–416, New York, NY,
USA. ACM.

[Schäfer et al., 2012] Schäfer, H., Prus, M.,
Meyer, Q., Süßmuth, J., and Stamminger,
M. (2012). Multiresolution attributes for tes-
sellated meshes. In Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D
Graphics and Games, I3D ’12, pages 175–
182, New York, NY, USA. ACM.

[Weisstein, 2014] Weisstein, E. W. (2014).
Barycentric coordinates. [From MathWorld
– A Wolfram Web Resource; Accessed 2014-
01-24].

[Wikipedia, 2008] Wikipedia (2008).
Triangle barycentric coordinates.
http://en.wikipedia.org/wiki/File:
TriangleBarycentricCoordinates.svg.
[Online; Accessed 2014-02-08].

[Wikipedia, 2013] Wikipedia (2013). Geomet-
ric progression. http://en.wikipedia.
org/wiki/Geometric_progression. [On-
line; Accessed 2014-01-21].

[Wikipedia, 2014a] Wikipedia (2014a). Arith-
metic progression. http://en.wikipedia.

19

BIBLIOGRAPHY

org/wiki/Arithmetic_progression. [On-
line; Accessed 2014-01-21].

[Wikipedia, 2014b] Wikipedia (2014b). Poly-
gon mesh. http://en.wikipedia.org/
wiki/Polygon_mesh. [Online; Accessed
2014-12-28].

[Yuksel et al., 2010] Yuksel, C., Keyser, J.,
and House, D. H. (2010). Mesh colors. ACM
Trans. Graph., 29(2):15:1–15:11.

20

Appendix A

Glosary

• Barycentric coordinates A three com-
ponent vector describing a position on a
triangle (see section 1.1.3).

• Bilinear filtering A filtering technique
that samples all neighboring pixels and
smoothly blends them.

• CPU Central Processing Unit

• DirectX A Graphics API on Microsoft
systems.

• DXT A texture compression algorithm fit
for real time decompression on the GPU

• GPU Graphics Processing Unit

• GPGPU General Purpose GPU. Refers
to the ability to perform general comput-
ing tasks on a GPU, often refered to a
Compute Shaders.

• LOD Level of Detail. A sequence of ver-
sions of the same mesh, with decreasing
detail.

• Mesh A collection of vertices edges and
faces that defines the shape of a three di-
mensional solid with flat faces and sharp
edges. [Wikipedia, 2014b].

• MIP Or Mipmaps. A pre-calculated opti-
mized sequence of lower resolution versions
of a texture.

• Nearest filtering A filtering technique
that always picks the color of the nearest
neighboring pixel.

• REV Ring-, Edge-, Vertex-index.
Acronym defined by H.Schäfer et al.
refering to a three component vector of
indices describing a discrete position on a
triangle.

• Tesselation The subdivision of a mesh
surface into smaller triangles.

• Topology In the scope of this thesis this
refers to the surface of a mesh.

• UV-mapping Or texture mapping. The
mapping of a 2d dimensional texture onto
the surface of a 3d dimensional mesh.

21

