
Abstract
Post-processing techniques are used to change a rendered image as a last step
before presentation and include, but is not limited to, operations such as change
of saturation or contrast, and also more advanced effects like depth-of-field and
tone mapping.

Depth-of-field effects are created by changing the focus in an image; the parts
close to the focus point are perfectly sharp while the rest of the image has a variable
amount of blurriness. The effect is widely used in photography and movies as a
depth cue but has in the latest years also been introduced into computer games.

Today’s graphics hardware gives new possibilities when it comes to computa-
tion capacity. Shaders and GPGPU languages can be used to do massive parallel
operations on graphics hardware and are well suited for game developers.

This thesis presents the theoretical background of some of the recent and most
valuable depth-of-field algorithms and describes the implementation of various so-
lutions in the shader domain but also using GPGPU techniques. The main objec-
tive is to analyze various depth-of-field approaches and look at their visual quality
and how the methods scale performance wise when using different techniques.
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Chapter 1

Introduction

The purpose of this first chapter is to introduce the reader to the thesis. It will
provide a heads up start about what is coming. First the problem is described and
stated. Secondly we summarize the major objectives of the thesis, what we strive
to achieve. This is followed by the report outline which explains how the report is
structured. The last part presents recommended prerequisites that we believe are
necessary to fully understand the content of the thesis.

1.1 Problem Description
Today’s games deliver outstanding visual experiences to the player and developers
like Electronic Arts Digital Illusions CE AB (DICE) always strive to push the limits
of the hardware. New visual effects, more game content and fresh challenges are
all among the things that gamers of today expect when playing new games.

The game industry has always been one of the fields that have pushed the
computer graphics visuals to the next level, which is almost always done with the
goal to mimic reality of the world and to produce movie-like results. Something
that has been missing for a long time is certain visual cues that traditionally
have been too complex and time consuming to accurately simulate in real time.
Because of this, effects like Depth-Of-Field (DOF), that imitates a camera lens
and presents the reality in a human-like perspective, have so far been limited to
the movie industry. In the case of DOF this is usually a matter of making objects
at certain depths appear blurry while keeping sharpness where the focus is.

The blurriness could clearly be seen as a demolisher of other special effects but
it also provides depth cues that are important to the viewer and can guide the
player to pay attention to certain areas. This property is also something that is
widely used and accepted in the field of photography.

With proper post-processing, DOF effects and many others can be achieved
with simpler methods than the ones being physically correct. Unfortunately, even
with simpler models, post-processing can be both complex and computationally
costly. Therefore, more advanced post-processing effects such as DOF and bloom
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2 Introduction

filters are missing in most games. However, with higher demands and more com-
puting power this is becoming closer to reality.

During recent years Graphics Processing Units (GPU) have been used more
and more to meet these high demands. The GPU can outrace the Central Process-
ing Unit (CPU) when it comes to computing power and is much more suited for
most kinds of parallel computations. However, using the standard rendering meth-
ods for post-processing does not utilize the full potential of the available power
and feature set that modern GPUs have. General-Purpose computation on GPU
(GPGPU) techniques using custom GPGPU languages such as NVIDIA’s Com-
pute Unified Device Architecture (CUDA) or ATI’s Compute Abstraction Layer
(CAL) have a much better mapping of what the hardware is actually capable of.
GPGPU languages therefore provide possibilities to create much more advanced
post-processing effects than it would be possible to do, using the standard high
level shading languages.

1.2 Thesis Objectives

The scope of this thesis is to implement advanced post-processing filters such
as DOF using High Level Shading Language (HLSL), CUDA and possibly other
GPGPU languages. The theory part involves in-depth studies of post-processing
algorithms and how they can be applied to the GPGPU space. Furthermore,
performance between different algorithms and with different techniques is to be
examined.

In addition, our objective is to implement and investigate how these new tech-
niques can be used to improve post-processing in the computer games industry.
Problems like what methods are suitable, and the tradeoff between quality and
performance will be further evaluated.

1.3 Outline of Report

Following this introductory chapter will be chapter 2, which describes the back-
ground, i.e., gives an introduction to the image processing field, and the use of
post-processing in computer graphics. In addition, we introduce the GPU and give
some examples of previous work. Chapter 3 goes into more details about camera
models and DOF, how it is perceived and methods for simulating the effect in
computer graphics. Discussed in chapter 4 is the theory of CUDA and in chap-
ter 5 we explain our implementations and how we use the theory from chapter 3
and 4 to produce different DOF simulations. Finally, our results are presented in
chapter 6 and chapter 7 adds discussion and conclusions. The last chapter also
brings forth ideas about future improvements and possibilities.
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1.4 Reader Prerequisites
To fully understand and appreciate the content of this thesis, good knowledge and
understanding of image processing, computer graphics, and fundamental photog-
raphy is highly recommended. It is also beneficial to have an understanding of
computer games.





Chapter 2

Background

In this chapter we present the area of image processing and techniques related to
post-processing. The first section gives a brief introduction to digital images and
what processes can be applied. Secondly we discuss how post-processing is done
and its role in computer graphics. Next we give a concise presentation of the GPU
and continue with how it can be used for both visual effects and more general
purposes. We conclude with various previous works in the DOF area, that are
important for the thesis.

2.1 Digital Image Processing
Digital image processing refers to manipulation and processing of digital images
using a computer. A digital image is composed of a finite number of image ele-
ments, also called pixels, which describe the intensity and color of the image. A
digital image can come from many sources. It could be a picture taken with a
digital camera, or a photograph or painting that has been scanned into digital
form, or in our case images from a rendered three dimensional (3D) scene.

Dimensions of an image are measured in pixels that correspond to the width
and height of an image. For color images these pixels contains three or four
channels. One channel for each of the colors red, green and blue. If a fourth
channel is present, it typically contains alpha/transparency values.

When talking about image processing there are a number of processes that can
be pointed out to give basic understanding of the field [4].

• Image acquisition is the first process that we have to consider and deals with
the origin of a digital image. Generally, the acquisition of an image also
involves some pre-processing, for example scaling or rotation.

• Image enhancement is probably the most used and appealing area. The idea
here is to highlight important details to enhance the visual experience of an
image. An example of this is adjustment of contrast or brightness. This
stage is naturally very subjective.

5



6 Background

• Image restoration is used to rescue and restore damaged images. This also
deals with image enhancement, but is not subjective in the same matter.
Instead, restoration deals with minimizing the amount of degradation by
relying on mathematical or probabilistic models as a measurement.

• Color image processing has been gaining importance as the use of digital
photography and Internet has increased. Methods of how to tamper with
color images, to enhance and extract features, is of great interest since almost
all images now appear in color.

There are of course many more examples of how to alter images, such as morphing,
compression, segmentation and recognition. However, for the purpose of this thesis
those processes are of lesser importance.

2.2 Post-processing
Post-processing is a type of image processing with the difference that there is
in most cases additional information available, for example scene depth values.
Adjusting and changing an image can highly affect how the output is percepted
and is therefore important in the fields of computer graphics.

The post-processing step takes place after an image is acquired either from
a 3D rendering or from another source. The step includes but is not limited
to simple special effects such as grayscale, simple blur, saturation, contrast, and
image morphing but also more advanced effects like DOF, tone mapping, motion
blur, and bloom filters.

When talking about post-process rendering, we usually do not have the same
resources as during the normal rendering pass. Typically there is no sense of
objects or lights, instead we have plain images that describe the scene. The post-
processing step does generally not intervene with the ordinary rendering pipeline,
rather is it executed as a separate image processing step.

For more simple filters in the post-processing pass this is usually not a problem,
since they are mostly concerned about the color image that is produced after the
3D-scene is rendered. For the more advanced filters this pass can require additional
information about the scene, for example the depth. A rendered example with both
color and depth information can be seen in figure 2.1. The additional information
can be output in different buffers during the rendering pass for later use when the
post-process takes place.

2.3 Graphics Processing Unit
To meet the high demands of today’s computer graphics the GPU plays an im-
portant role. This special processor is built and optimized for the parallel data
operations that computer graphics makes use of [2].

In computer graphics many of the visual effects are nowadays calculated on
the GPU. This is usually suitable since the GPU works very well with parallel
computing and is especially fast if the work area is small.
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Figure 2.1. Depth and color. Linear grayscale depth map on left (white is far away),
color image for the same scene on the right.

For some time the graphics pipeline has been programmable to the developer,
which gives additional processing power and allows for more advanced rendering
effects. This ability to control the details of the graphics pipeline is called "the
programmable graphics pipeline", in contrary to the traditional "fixed-function
pipeline" that did not really offer any control to the programmer.

2.3.1 The Programmable Graphics Pipeline
In order to control the graphics pipeline the developer needs to write so-called
shader programs that are uploaded to the GPU memory. Usually these shader
programs are written in a special shader language. The three most important
ones are Microsoft’s HLSL, NVIDIA’s Cg and GLSL that comes from the open
source community that also created OpenGL.

Despite the fact that all of them are C-like and offers essentially the same
functionality they support different levels of programmability and they are also
used with different graphics software libraries. HLSL is used with Microsoft’s own
DirectX library whereas the two latter are utilized with the OpenGL, an open
graphics library.

Usually there are two types of programs: vertex shaders and fragment shaders.
The vertex shader handles geometry data, and has the ability to modify positions,
normal vectors, and other vertex properties. The other type is the fragment shader
which works per-pixel and can adjust values such as color and opacity.

Nowadays, a third type of shader is also occurring called geometry shader. The
aim of a geometry shader is to allow for more control than simply modifying the
position of vertices coming from the input data. In this new shader it is therefore
also possible to add and remove vertices.

2.3.2 Vertex Shader
The vertex shader handles the geometry information in the scene by doing an
operation on each vertex that is fed to the graphics processor. A vertex is a
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description of a position in 3D-space, but can also have other properties connected,
e.g., color and texture coordinates. Vertices are then used to define polygons that
describe objects in a 3D-scene.

The shader cannot create any new vertices but it can modify properties such as
position, normal, colors and texture coordinates. The intention is to transform 3D
positions into screen space, however there is obviously room for additional actions
as well. In general the vertex shader also calculates a depth value for each vertex
in a scene, which can be used for other operations later on in the pipeline.

2.3.3 Fragment Shader
The fragment shader is also known as pixel shader in DirectX. Input comes from
the rasterization step where fragments are made to fill the surfaces created by the
vertices with color. Here the fragment shader can perform per-pixel operations,
typically to simulate lighting effects, and change the color of each fragment. In
order to make the rendering look as realistic as possible, the fragment shader
has access to light sources, normal vectors, textures and possibly other resources
passed in by the developer.

2.4 General Purpose Processing
Since the GPU has become so powerful during the recent years, the latest trend
is to use it for more than plain graphics applications. Also the programmable
shaders and the efficient parallel architecture are making the GPU very attractive
as a speed up for many other computing problems.

In the latest shader models, introduced by Microsoft with DirectX 10 (DX10),
the specification unifies the different shaders into a new single computation pool
of programmable resources. This pool can be used as the developer pleases for
vertex shaders, fragment shaders and the new geometry shader. In addition, the
unified shader hardware balances better depending on what shader requires extra
computing resources.

The parallel computing fashion that the GPU comes with, operates with vec-
tors. This means that a vector operation, such as dot product or cross product,
can be performed with a single operation on the GPU, however it would take the
same number of operations as the number of components in the vector, on the
CPU side. In computer graphics this has been obvious for a longer time, but is
clearly useful for other applications as well. General purpuse computing is trying
to take advantage of this feature and is often referred to as GPGPU.

One former problem has been that it was hard to make use of the GPU with
more general data, mainly because both the hardware and the programmable
shaders were intended for graphics. However in the last years better tools have
been developed. One of these tools is NVIDIA’s CUDA, a Software Development
Kit (SDK) and an Application Programming Interface (API) that allows the pro-
grammer to an extension to C, instead of one of the ordinary shader languages.
Usually this is much easier because it is not restricted in the same way as shader
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programs are when it comes to memory access and control over the execution pro-
cess. ATI/AMD offers similar technology called CAL. Tools like these makes it
easier to create programs that can utilize the power of the GPU for more general
purposes.

2.5 Previous Work
Work has been done regarding DOF for quite some time, which means that dif-
ferent solutions have come forth in the process. Methods have been developed for
both real-time and offline applications, supplying a flora of ideas and techniques
that can be implemented. It is important to understand that when real-time per-
formance is of the essence, more simplified and computationally light solutions are
necessary and they cannot compete with the more computationally heavy solutions
when it comes to realism.

Almost all methods have in common that they achieve variable blurs according
to a simulated lens, further discussed in section 3.2.2, and tries to mimic the human
perception. In [18] and further improved in [20], Tatarchuk et.al. makes use of
a thin lens model, Poisson disc distribution and downsampled images to achieve
DOF effects for game cinematics. The results are good but only small blurs are
supported and artifacts arise around objects where fast changes of sharpness occur.
A similar approach is further discussed in [5] with the same rendering problems
for a real-time in-game solution.

When real-time performance is not the main goal other methods has been
tested. For interactive frame rates, [1] and [11] use heat diffusion to create larger
blurs by solving differential equations on graphics hardware. The first one stated
runs in several passes to blur the image more and more for each pass, and the latter
solves a tridiagonal matrix, further discussed in section 3.5.2, to achieve blurs with
no blur size limit whatsoever. Another method, based on bilinear interpolation,
has been discussed in [14] that is efficiently coupled to new graphics hardware and
supports variable blur sizes when run in multiple passes.

Slower methods have been made as well, for areas where rendering time is not
utterly important. In [13], the authors propose an image-based algorithm where
sets of output images are calculated depending on depth values. The images are
then recomposed to achieve the final result that is natural and fairly realistic. To
get perfectly realistic simulations, ray traced solutions has to be made. Unfor-
tunately these are too slow to be run for anything except still images, but can
effectively be used for reference rendering or when the rendering time is not a
problem. In addition, ray traced methods cannot be applied when the overall
pipeline does not support it. In most cases information about the geometry is
not available in the post-process step, and that is where the DOF effects are most
effectively implemented.

There has been discussions about whether or not DOF effects in computer
games affect the player when it comes to in-game performance. In [10] a study
was made regarding this topic and after testing it was found that players do not
perform worse when DOF is turned on, and was at the same time appreciated by
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the testers.



Chapter 3

Depth of Field

This chapter presents the fundamentals of DOF and the physics behind the effect.
The first part talks about the human perception and why this effect occurs. The
second section discusses different camera models and how lens parameters can
be used to affect the outcome of an image. Furthermore, different blurring ap-
proaches are described followed by a section focusing on depth calculation. Lastly
we describe a more advanced method for creating and calculating larger and better
blurs for DOF. The last section is additionally the most theoretically heavy but
also necessary for the upcoming implementation chapter.

3.1 Human Perception
To understand the human visual judgement and stimuli, perception is always of
importance when dealing with image generation [4]. Changes in illumination and
focus can highly affect the perception of an image. Focus and blurriness are used
in the human brain as depth cues, and are therefore of great importance when it
comes to three dimensional perception.

3.1.1 Focus in the Human Eye
Since the human eye can only focus on a small part of the visual area at a time, it
has to change its properties depending on the focus distance. The lens changes its
refractive power to adjust the focal length (distance from lens to retina), resulting
in sharp and blurry areas. The DOF is the area that appears to be sharp in front
of and beyond the focus point as seen in figure 3.1.

3.2 Camera Models
When capturing a scene, may it be in reality (photography) or from a computer
generated world (rendering), different images are being generated depending on
the camera setup. Lenses and camera parameters may bend, distort, or blur the
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12 Depth of Field

Figure 3.1. Depth of field photo example. Focus on the backside of the frame with
short DOF gives blurry foreground and background.

output. How we choose the camera model will therefore be of great significance for
the resulting image. The two most common models are described in this section,
but keep in mind that there are also other models available such as fisheye lenses
(wide-angle lenses).

3.2.1 Pinhole Camera Model
A pinhole camera model can be used to project a 3D-scene onto a screen. In most
real-time computer graphics applications this is the standard way of rendering.
Light scattered from the environment is sent though an infinitely small hole before
hitting the image-plane, as shown in figure 3.2. This results in a perfectly sharp
and focused image [20]. Only one ray is allowed through the hole for each pixel in
the image, hence no opportunity for distortion or blurring is given. However, this
method is fast and easily implemented and has therefore been the most used one
in the past.

3.2.2 Thin Lens Camera Model
Real-world cameras have a thin lens that bundles of light can pass through. From
each point in the scene a cluster of light rays is emitted through the lens. They
are being refracted by the lens and refocused at a point close to, or on the image
plane. If the bundle converges exactly on the image plane the pixel will be in full
focus. If this is not the case the bundle will go through the image-plane without
converging on it, giving way to an intersecting, circular area called the Circle Of
Confusion (COC) [5]. How this camera model works is illustrated in figure 3.3.

The parameters used in a thin-lens model are the following:

• f - focal length

• a (f-stop) - aperture number

• dfocus - focal distance
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Image
plane

Figure 3.2. Pinhole camera model, where a single ray from a fragment hits the image
plane and results in a perfecly sharp image.

Image
plane

u v

Lens

f

Circle of
confusion

a

Figure 3.3. Using the thin lens model a boundle of rays passes through the lens and
creates a COC.
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• u - distance between a point and the camera lens

• v - distance behind the lens where image is in focus

The thin-lens equation states the relationship between f , u and v as:

1
u

+ 1
v

= 1
f

(3.1)

The COC diameter for a point at distance d from the camera can be computed as:

coc =
∣∣∣∣ f dd− f

− f dfocus
dfocus − f

∣∣∣∣ (d− fa d

)
(3.2)

3.3 Blurring Methods
All spatial-smoothing (blurring) techniques are using the same basic fundamen-
tals. For every pixel in the image, a new color is calculated based on the pixel’s
surroundings. How the samples are chosen depends on the method and could be
either symmetric or non-symmetric to give the desired result. In this section we
will discuss bilinear interpolation and Gaussian blur since they can be seen as the
building blocks for more advanced methods.

3.3.1 Bilinear Interpolation
When talking in mathematical terms, bilinear interpolation is the extended version
of linear interpolation, which is used to find the value of an unknown function for
a particular point on a line. If the four corner-values on a rectangular grid are
known, the value of point P inside the grid can be estimated by first doing linear
interpolation on the horizontal lines, followed by an interpolation on the resulting
vertical line, as illustrated in figure 3.4:

y2

y

y1

x2x1 x

Q12

Q11

Q22

Q21

R2

R1

P

Figure 3.4. Bilinear interpolation illustration where the value at P is calculated from
the corner values at positions Q11, Q12, Q21, and Q22.

Using the notation from figure 3.4 we can define the value at point P as
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f(P ) ≈ y2 − y
y2 − y1

f(R1) + y − y1

y2 − y1
f(R2), (3.3)

where f(R1) and f(R2) are the horizontal interpolations:

f(R1) ≈
x2 − x
x2 − x1

f(Q11) + x− x1

x2 − x1
f(Q21), (3.4)

where R1 = (x, y1) and

f(R2) ≈
x2 − x
x2 − x1

f(Q12) + x− x1

x2 − x1
f(Q22), (3.5)

where R2 = (x, y2).
Using the basic functionality of the bilinear interpolation on graphics hardware,

fast blurring and effective down sampling becomes available [15]. For example a
small blur can be achieved by, for every pixel, do a bilinear sampling at the lower-
right corner of the pixel, resulting in an average value for those four adjacent pixels
[13].

3.3.2 Gaussian Blur
The image-blurring filter known as Gaussian blur uses a normal distribution for
deciding the transformation that should be applied to an image’s pixels. The
distribution function in two dimensions (2D) can be stated as:

G(u, v) = 1
2πσ2 e

−(u2+v2)/(2σ2) (3.6)

Where σ2 is the standard deviation and r (r2 = u2 + v2) is the blur radius of
the distribution. Values from this distribution can be used to construct kernels
(convolution matrices), that can be applied to an image in 2D. Every pixel gets
a new value based on the values of its neighborhood and the Gaussian kernel.
Each tap in the kernel contains a weight saying how much the pixel in that spot
should affect the outcome of the new computed pixel value. An example of a 3x3
approximated Gaussian discrete kernel can be constructed as in figure 3.5 [18].

1 2 1
2 4 2
1 2 1

Figure 3.5. Appoximated Gaussian weights for a kernel of size 3x3, the center pixel is
aligned with the pixel being calculated.

To be more efficient when convolving, symmetrical filter kernels can be separated
into two identical smaller kernels. Filtering an image with these two kernels (one of
them transposed) will result in the same output as if the image was being filtered
with the former one. The separable kernels extracted from figure 3.5 can be viewed
in figure 3.6:
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1 2 1 and
1
2
1

Figure 3.6. These two separate kernels can be used in two passes instead of the single
kernel in figure 3.5 to allow for faster filtering.

3.3.3 Poisson Disc Filter
Another way of blurring an image is to apply a Poisson disc filter for each pixel
in the image. Stochastic methods according to a Poisson disc distribution is used
for determination of the tap positions on the filter kernel [18].

The center tap is aligned with the pixel being filtered, and the outer taps are
being sampled from the pixels in the neighborhood. A Poisson disc with 12 taps
for image blurring could look like figure 3.7.

Filter taps:

Center sample

Outer samples

Figure 3.7. Example of a Poisson disc distribution with 12 outer taps where the position
of the taps are used to sample pixel values from an image.

3.3.4 Summed-Area Tables
Variable width filters in constant time per pixel can be achieved using a Summed-
Area Table (SAT) as in [6, 7, 9]. Every entry in the table stores the sum of all
values between the entry point and the lower left corner in the image, resulting in
small values in the lower left, and high values in the upper right (depending on
input). When computing the table for a 2D-image, one can efficiently do a sum
scan first for all the rows followed by all the columns of the image.

When creating a box filter using a SAT only four texture lookups are needed
per pixel, one for every corner in the blurring area surrounding the computed
pixel. How far away the samples are made depends on the size wanted for the
filter region. The result of the filter can be written as:

sfilter = sur − sul − slr + sll
w × h

(3.7)
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where sur is the upper right fetch, sul is the upper left, and so on. w and h are
the width and height of the filter kernel.

3.4 Depth Calculation
A pixel on the image-plane has a color sampled from the 3D-scene. In a similar
fashion every pixel on the image-plane could have a depth value depending on the
3D-representation. This value can be calculated as the distance from the pixel in
the image-plane to its corresponding point in 3D-space.

The DOF filter is totally dependent on these values, hence they are needed for
the fundamental computations. There are different methods available for resolving
these values and the approach depends on the rendering API, platform hardware
and programmer’s choice.

3.4.1 Extracting Depth Values

The depth value could be calculated in the vertex shader and stored in the alpha
channel in the framebuffer, or saved to an external texture for later use. This
is not optimal though, since the alpha channel might be used to store material
opacity values and using an extra texture requires time and memory that might
be indispensable. Therefore, other methods have been developed, allowing the
programmer to efficiently make a copy of the depth buffer and use it as a texture
at a later stage. This approach and similar has been the best way to go before
the release of DX10. On state-of-the-art hardware you can now directly access
the depth buffer as a shader resource (texture) and use it in your shaders with no
extra expense [3].

3.4.2 Precision of the Depth Buffer

The standard hardware depth buffer, or Z-buffer as it is also called, is calculated
with the assumption that it is going to be used to decide visibility. This means
that for every pixel that is to be drawn, if there are objects that must be rendered
to the same pixel, a comparison is made in the hardware. The object with the
depth closest to the observer is drawn to the screen. Usually objects closer to the
screen are more important and cover a larger area of the screen than distant ones.
Therefore, the depth buffer has better precision near the observer and is not stored
linearly throughout the depth. Another reason is that optimization makes it pos-
sible to interpolate the depth calculation for each pixel by using the vertex depth.
This takes fewer computations and, even though this is essentially done anyways
for texture coordinates, it is originally a speed up that has stayed. Additionally,
linear depth is not something that is useful for all applications. Unfortunately, for
DOF, linear depth is of utter importance. For these types of situations there is an
alternative to the standard Z-buffer called W-buffer that has linear depth. Sadly,
this one has not too good support in hardware at the current time.
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3.5 Simulated Diffusion Method
From a performance perspective, acquiring large variable width blur kernels are
a major complication. Gaussian blur kernels can be made efficient but becomes
slow when the kernel size is too large. Larger kernels will also cause troubles for
complex boundaries of in-focus and out-of-focus objects. Simulated diffusion is a
way to deal with this problem by applying knowledge from the field of thermal
heat [1]. This method will respect the boundaries of objects that are in different
focus areas as well as dealing with spatial varying blurs [11]. How this is done is
further explained in next section 3.5.1.

3.5.1 Heat Diffusion
Simulated heat diffusion comes from the idea that the COC circles are treated as
heat transfusion variations. This allows every pixel to diffuse onto their neighbor-
hood as if they where temperature samples on a surface. Using this formulation,
heat conductivity will vary depending on the circle of confusion. In-focus objects
will therefore carry conductivity of zero, keeping the object in-focus and at the
same time maintain its boundaries [11].

If we consider an image x(u, v) that we want to diffuse using the heat equation,
our result image y(u, v) can be derived from equation 3.8.

γ(u, v)∂y
∂t

= ∇ · (β(u, v)∇y) (3.8)

Here γ is the specific heat for the medium and β is the heat conductivity. By using
the input image as the initial heat distribution we can integrate the heat equation
with respect to the time and get a blurred result image.

We need to use a numerical method to solve this equation, and there are a
number to choose from. The most intuitive method is known as forward Euler’s
method but will not be sufficient enough for our performance demands. In [12],
the authors propose another method called Alternating Directions Implicit (ADI)
where they are using this to simulate shallow water, independent of wave speed.
This method is furthermore used in [11] where the idea is to split the heat equation
into two substeps where each axis is made separately, much in the same way as a
2D Gaussian kernel can be separated into two one dimensional Gaussian kernels
as explained earlier in section 3.3.2.

Using this method, each substep must solve equation 3.9.

γ
∂y

∂t
= ∂

∂u
β(u)∂y

∂u
(3.9)

To make this as simple as possible and since we are dealing with pixels with unit
distance we can, by selecting a time step equal to 1, discretize this equation over
space as in equation 3.10:

γi(yi − xi) = βi(yi+1 − yi)− βi−1(yi − yi−1), (3.10)
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where β0 = βn = 0 (n is the last value of i), to force the boundary of the image
to be surrounded by heat insulators and will therefore be treated as in-focus.

Equation 3.10 can usefully be written in a tridiagonal matrix form, how this
benefits us is further explained in section 3.5.2.

3.5.2 Tridiagonal Systems
A tridiagonal system can be written in the form Ty = x, where x is the input
and y is the output and T is the quadratic tridiagonal matrix with nonzero entries
only in the diagonal positions and their closest neighbours as:

b1 c1 0
a2 b2 c2

a3 b3 c3
. . . . . . . . .

0 an bn




y1
y2
y3
...
yn

 =


x1
x2
x3
...
xn

 (3.11)

Tridiagonal systems can for example be of use when simulating water [12] or,
as in our case, when calculating DOF [11]. Tridiagonal systems can be solved
very efficiently in constant time per sample as opposed to other systems with
matrices on other forms. For solving the tridiagonal system one can make use
of the traditional lower/upper triangular decomposition and forward/backward
substitution method [8], which will guarantee a correct solution in constant time
regardless of filter kernel size. In our situation however, we are interested in a
method that makes good use of the parallelism of the GPU, and another approach
known as cyclic reduction is more feasible for our needs when it comes to efficiency
and speed.

3.5.3 Cyclic Reduction
The recursive method known as cyclic reduction, reduces the size of the matrix
T in phases (cycles) until only one row remains (T must be of size N = 2n − 1).
This last row is then propagated back into the partial matrices until the whole
system is solved. The computations needed for solving the system in this way can
be divided into smaller parts and distributed to multiple computing threads [7],
hence giving way to good parallelism that is well suited for the GPU.

Since this is a key method for our work it is of importance to discuss it further,
so consider a tridiagonal matrix of phase j asM j and the vector as yj . The values
in each row of M j is stated aji , b

j
i and c

j
i similar to equation 3.11. The operations

that are needed to work out the values in row i in the matrix are [19]:

αji = − aj−1
i

bj−1
i−2j−1

, γji = − cj−1
i

bj−1
i+2j−1

, (3.12)

aji = αjia
j−1
i−2j−1 , cji = γji c

j−1
i+2j−1 , (3.13)
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bji = bj−1
i + αji c

j−1
i−2j−1 + γji a

j−1
i+2j−1 , (3.14)

yji = yj−1
i + αjiy

j−1
i−2j−1 + γji y

j−1
i+2j−1 (3.15)

It is clearly seen in equation 3.15 that the system is dependent on the previous
phase. The row dependency for the different phases can be viewed in figure 3.8
where the top of the tree is the last and final level and is obtained by computing
equation 3.15.

The back substitution is started when the final level is reached and the values
of yi can be determined recursively. The first operation is

yn−1
0 = yn−1

0
bn−1

0
(3.16)

and the other values of yi can be computed as:

yi = yj−1
i − aj−1

i yi−2j−1 − cj−1
i yi+2j−1

bj−1
i

(3.17)

where j is the last phase in the reduction step.

Level

1

0

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rows

Figure 3.8. Row dependency for odd-even cyclic reduction for N = 15. The tree illus-
trates the connectivity of three downsampling passes in the cyclic reduction algorithm.
Data from level 0 is used in the calculation of level 1 and so on until a level with only
one value remains.



Chapter 4

CUDA

We chose CUDA as our GPGPU programming language mainly because of its ease
of use but also because of its fairly large community which offered great support.

This chapter explains the essential knowledge needed to use NVIDIA’s pro-
gramming API CUDA. We start off by explaining what this type of programming
can be used for and what is needed from the programmer to utilize it. Next we
introduce two more technical sections which describe available computational re-
sources and how to best take advantage of these, as discussed in [17]. This chapter
is important for the second half of the following implementation chapter.

4.1 General

CUDA is a C-like language provided by NVIDIA for programming more general
computations on the GPU. CUDA is supported on NVIDIA graphics cards from
the G80-series and later. The advantage of this compared to using a standard
graphics API is that CUDA do not limit the programmer to a fixed pipeline nor
demands learning a specific language but is purely an extension to C. In practice,
this gives a pretty flat learning curve for most programmers. In addition, it does
not require that general data is mapped to fit a graphics application as before.

As mentioned in section 2.4 the GPU has traditionally been reserved for graph-
ics computations and the GPU was developed to fit the needs for these types of
applications; usually highly parallel computations with large data sets, such as
arrays with pixels and vertices. The hardware is therefore designed in a way that
fewer transistors are used for data caching and flow control and more for process-
ing. A comparison scheme can be seen in figure 4.1.

This makes the GPU very well suited for problems that can be executed for
many elements at the same time and does not have too much data dependency.
Naturally this can be taken advantage of in applications outside computer graphics.

21
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Control ALU

ALU

ALU

ALU

Cache

DRAM DRAM

CPU GPU

Figure 4.1. Comparison scheme between CPU and GPU transistor setup. The GPU
consists of more transistors, giving way to fast parallel computation but less caching and
flow control.

4.2 Memory Usage
CUDA also offers better memory addressing, with both gather and scatter ca-
pability, which is shown in figure 4.2 and basically translates to both read and
write access at any location. The lack of this has been one of the major difficul-
ties with standard shaders and a main reason that "render-to-texture" techniques
implemented in section 5.3.1 are being used.

ALU

DRAM

Gather

d0 d1 d2 d3

ALU

DRAM

Scatter

d0 d1 d2 d3

ALU ALU

Figure 4.2. The left side shows a memory gathering instruction where values from
various DRAM positions are read by a computing unit. The right side shows scattering
of values into memory.

4.2.1 Device Memory
The first memory type on the GPU is Device Random Access Memory, which
corresponds to the device memory. This is the counterpart to Random Access
Memory on the CPU side. Device memory holds the largest capacity and can be
both read and written to by the host CPU. When using CUDA, we divide device
memory into three different memory spaces: global memory, texture memory, and
constant memory. The reason is that they are optimized for different usages.

Global memory is a non-cached and straight forward memory, but also the most
time-costly memory type. Access to global memory should therefore be minimized
as much as possible. Texture memory is read-only but does also offer a 2D spatial
local cache, so threads that read texture coordinates that are close together achieve
best performance.
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Constant memory is also read-only and contains a caching function but is not
spatial dependent but more so fully used when all threads read from the same
address.

4.2.2 Shared Memory
CUDA features an on-chip shared memory with fast read and write access. As
shared memory indicates it can be used to share data between threads, but is
limited to do so within a block; blocks will be further discussed in section 4.3.
When utilized accurately, the shared memory can minimize fetching from global
memory and thus making the implementation depend less on memory bandwidth.
Put simple, shared memory lies closer to the computational units and therefore
gives faster access with minimal latency. A scheme of this can be seen in figure 4.3.

Without shared memory

DRAM d0 d1 d2 d3

Control

Cache
ALU ALU ALU . . .

Control

Cache
ALU ALU ALU . . .

d4 d5 d6 d7 . . .

. . .

With shared memory

Shared
memory

d0 d1 d2 d3

Control

Cache
ALU ALU ALU . . .

Control

Cache
ALU ALU ALU . . .

d4 d5 d6 d7

. . .

DRAM d0 d1 d2 d3 d4 d5 d6 d7 . . .

Shared
memory

Figure 4.3. Shared memory reduces memory latency by shortening the distance between
computing unit and memory. The upper figure shows a setup without shared memory
while the lower illustrates how shared memory can allow for faster access.

Clearly, shared memory brings the preeminent performance gain when numerous
memory reads from device memory occurs. The programming pattern is therefore
typically to stage device memory data into shared memory, process the data when
in shared state, synchronize threads, and finally write back to device memory.

Shared memory can be as fast as register accessing provided that there are no
bank conflicts between threads. Banks are memory modules that can be accessed
concurrently, so reads and writes in memory can be dealt with at the same time
as long as they fall in unique memory banks. When two memory addresses fall
within the same bank, a bank conflict arises [6]. To resolve this a serialization is
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done and the hardware splits the memory bank into as many separate parts as
necessary until the bank conflict is resolved.

In order to reach as good performance as possible with CUDA it is especially
important to understand how memory banks and memory addressing works so
bank conflicts can be minimized and memory allocation made efficient.

Since shared memory can only be accessed by threads within a block, next
section, 4.3, will discuss the meaning and function of these two.

4.3 Programming Model
When using CUDA, the GPU can be seen as an extra compute device that can
off-load the CPU for portions of the application. The most advantageous types
of sections are those that need to be executed repeatedly but are independent
of different data. These sections are compiled into so-called kernels, which are
downloaded to the device.

4.3.1 Threads
The GPU works best with a very high amount of threads that runs at the same
time. Threads are run in different batches called thread blocks. Within these
blocks they share data through the shared memory described in section 4.2.2.

4.3.2 Grids
Naturally there is a limit of how many threads that a block can contain. To
increase the total number of threads even more blocks are grouped into grids
of blocks. Several blocks can be run simultaneously but cannot communicate
between, nor be synchronized between different blocks. The execution order of
different blocks in a grid is unfortunately undefined, so there is no safe way for
threads to communicate with each other even if they belong to the same grid.

4.3.3 Execution
Depending on the hardware different amounts of blocks can be processed at the
same time. It is also dependent on how much shared memory each block requires
since the amount of shared memory is split among the threads in each block. Each
processed block is then split into so-called warps.

The notion of warps is very important as shared memory contains banks, men-
tioned in section 4.2.2, which have the same size as a half-warp. This means that a
shared memory request for a warp is split into two parts, one for each half. Hence,
a thread that belongs to the first half of a warp cannot generate any bank conflicts
with a thread belonging to the other half of the same warp. This is valuable when
trying to optimize CUDA kernels.
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Implementation

This chapter explains practical details of the implementations that were made. The
first part briefly describes the application environment, followed by the camera and
the DirectX section were we discuss the algorithms implemented using HLSL. The
last section goes through the CUDA implementation and how the algorithms were
transferred to fit the multi-threaded domain.

5.1 Application Environment
For the implementations Microsoft Visual Studio 2005 was used as development
environment. As programming language we use C++ with DX10 extended with
HLSL as the high level shading language. All these choices are industry standard
and are a natural part of the development at DICE. Especially DX10, which is
available with Microsoft Windows Vista, was chosen for its improved depth buffer
capabilities. It is also the expected next generation gaming platform.

5.2 Camera
We simulate a thin lens to be able to create variable blurs in our implementations.
Basically our lens model takes the depth map as input and converts it into a blur
amount map, taking lens parameters, maximum COC and near/far plane into
consideration.

The standard depth map in DirectX is non-linear to allow for more accurate
near camera Z-buffering. In our case though, we need a linear depth map if the
DOF effect is to make any sense. The solution to the linearity problem is to divide
all vertex Z values, passed through the vertex shader, with the far plane distance,
scaling the range of it between 0.0 and 1.0. This will result in a linear output that
will not change during perspective division. To further optimize this computation
we can instead directly do the scaling on the Z column in the projection matrix to
obtain the linear depth map.

25



26 Implementation

When we have a linear depth map we calculate the COC for every pixel using
equation 3.1 from section 3.2.2. The parameters: aperture, focal length and focal
distance, can be changed with sliders during runtime to change the DOF effect.

5.3 DirectX
DirectX is as OpenGL a proprietary hardware graphics acceleration platform for
Microsoft Windows. At DICE this is the standard development environment and
therefore a natural choice for our implementation.

As of version 10 of DirectX a number of new features have been presented to
supported hardware. As mentioned in section 2.4 the new application pool offers
new ways to allocate resources for where they are best needed and the geometry
shader delivers totally new ways to handle vertices by allowing both creation and
deletion.

Another improvement is the use and handling of shader resources. This has
been greatly improved with added functionality for reading the depth buffer as a
shader resource (a texture). This was not possible in DirectX 9 where an extra
pass of texture creation and copy process was needed. For our purpose this is a
clear upgrade since our application depends heavily on the depth buffer.

5.3.1 Standard DirectX 10 Pipeline
Since the standard rendering pipeline is somewhat fixed in its way of handling data
and computations there is a need for arranging the pipeline in a stepwise manner.
For our post-processing operations this refers to multi-pass rendering where we
are passing textures back and forth for GPU procedures.

The technique when data is stored as a texture, processed on the GPU, and
saved as a texture is called "render-to-texture". When done in multiple passes it is
sometimes called "ping-ponging" because usually the data is transferred back and
forth between textures. This, of course, gives an overhead of data transfer time
between CPU and GPU. But the trade off for not using the GPUs parallelism is
much worse, so in the end there is still a huge gain when using this method.

Figure 5.1 shows a simple scheme of how the data in form of textures are
bound and sent to the GPU for processing, saved in texture again, and sent back
for further processing.

The methods and implementations described in following sections 5.3.2 - 5.3.5
are using this scheme for passing textures as data for GPU processing.

5.3.2 Gaussian and Pyramid Blurs
To get a good understanding of blurring methods on the GPU, we have imple-
mented simple Gaussian and pyramid blurs that can be used as reference and for
speed-tests. Separable Gaussian kernels can be created with size 3, 5, 7 or larger
and run through the shader in two passes. The kernels are made according to the
theory in section 3.3.2 and for each size we make use of an offset vector and a
weight vector, giving way to an efficient data structure. When calculating the new
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Data / Textures
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Figure 5.1. Schematic over the render-to-texture pipeline, where data from previous
rendering is used in the upcoming iteration step.

color for a pixel on the screen, texture lookups are made in the input image ac-
cording to the offset vector. The output values are weighted correctly (multiplied
with the value in the weight vector) and fed back to the pixel. This is done first
as a horizontal pass followed by the vertical one to achieve a 2D-symmetric filter
solution.

This simple method can be of use when we construct the more advanced filters
later on. We also found it valuable to try bigger blurs for speed-testing, and we
therefore constructed a pyramid kernel that can take any user defined value. The
difference between this one and the separable Gauss is the underlying function that
sets the weight vector. The middle tap in the pyramid blur with odd size N has the
weight of (N+1)/2 and the other weights get their value as (middle tap weight −
number of steps to middle tap). This results in a separable kernel as the one seen
in figure 5.2.

1 2 3 4 5 6 7 6 5 4 3 2 1

Figure 5.2. Pyramid kernel of size 15. The middle tap (7) is aligned to the position
with the pixel currently being filtered.

To make use of the highly efficient texture lookups that are available on recent
hardware, we have also created a filter system based on box filters using interpo-
lation on the GPU as discussed in section 3.3.1. We have a function that does
one bilinear texture lookup only, at the lower corner of a pixel, resulting in values
from the four adjacent pixels that can then be weighted (a 2x2 box filter) as in
equation 5.1.

h2×2
box = 1

4

[
1 1
1 1

]
(5.1)

When an image is passed through this filter a blurred version will be the result.
As discussed in [14], the method can be used to create bigger blurs by passing the
image through several times, each time giving way to more blur, the same way
as larger Gaussian blur kernels gives more blur. The drawback with this method
is that the data will have to be transported back and forth in the GPU, once
for every small 2x2 blur resulting in a fairly slow solution, when many passes are
needed.
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5.3.3 Poisson Disc Solution

Our Poisson disc solution is based on the theory in section 3.3.3 and supports
small but variable blurs. Solutions similar to the one we present here are used
for games that are currently on the market [20], as it is known to be fast and
"accurate enough". We start off by calculating the COC with a thin lens model as
described in section 3.2.2. After that, we construct a Poisson disc of the wanted
size depending on the COC. The distributions we use have 8 taps, which are
scattered across the circle to get an even sample area. Each tap has an offset
vector according to its distance from the middle tap so the texture lookups can be
done easily. We obviously want to have blurrier areas where the COC is big, and
we therefore create a smaller version of the input image, called the downsampled
image. This image is 1/16 the size of the input image, hence does not contain as
much details as the full scale version.

For each pixel, for every tap in the Poisson disc, we do a texture lookup in
both the full scale and the down sampled image. We already have the COC
value for the Poisson disc center, and can therefore linearly interpolate (blend
between two values) between the two different resolutions and save a new color
value depending on the COC value. Once this is done for all taps on the disc, a
final value is accumulated and scaled to fit the output.

The results of the method gives the desired output, however there are draw-
backs as well. When there is a fast change in COC between pixels, artifacts will
arise creating halos around objects in focus. To compensate for these there are
two choices worth considering. We can either scale the taps’ contribution to the
disc, depending on if they have COC values larger or smaller than the middle tap,
or do another pass with the disc for every tap in the image. The latter gives the
best result when tweaked properly, but is very slow and scales the computations
needed with the number of taps. The first stated fix will help a little and does
not scale the computation noticeable. There is no way to get rid of the halos
totally though and these artifacts and the small blur radius are considered to be
the disadvantages with the Poisson disc based DOF.

5.3.4 Multi-Passed Anisotropic Diffusion

The previous methods discussed in section 5.3.2 and 5.3.3 are good for simple
purposes, but performs badly visually when it comes to more advanced imple-
mentations. Because of this we wanted to implement an approach based on heat
diffusion explained in section 3.5.

Our implementation is based on [1] in which they also introduce anisotropy
in the heat equation. This is done by adding a weighting function which helps
to preserve edges. The weight function varies with COC and is then implicit
dependent on the depth buffer. Equation 5.2 shows the heat equation for image I
combined with the weighting function g.

∂I

∂t
(x, y, t) = ∇ · (g(x, y, t)∇I(x, y, t)) (5.2)
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Since g is not varying with time, but with the depth value, it can be concidered
as a constant. This insight will simplify the equation to equation 5.3.

∂I

∂t
(x, y, t) = g∇ · (∇I(x, y, t)) = g∆(I(x, y, t)) (5.3)

Using this equation we will obtain the same results as a local convolution with a
Gaussian kernel of same width as COC in this point. Notice that COC still varies
depending on what point we are considering, so there is not only one Gaussian
kernel. To solve this we use an explicit numerical scheme stated in equation 5.4.

In+1
i,j = Ini,j + 0.25∇− · (gi,j∇+Ini,j) (5.4)

where ∇− and ∇+ are the neighbouring pixels gradient values.
For our implementation we first render a pass for saving a texture with weight-

ing values. After that we iterate the original image with equation 5.4. The iteration
step will continue until sufficient blur is achieved (further details in appendix B).
If the iteration step continues for N steps, it can be compared with Gaussian
smoothing of width σ according to equation 5.5.

N = σ2

2
√

2
(5.5)

The iteration step is also the methods largest drawback. For bigger blurs a ex-
tensive number of iterations are needed which obviously will affect performance.
For example, using 20 iterations is still just above a Gauss kernel of size 7, which
can be seen in figure 5.3. That is usually not enough for large DOF nor film-like
camera parameters and is still too computational heavy for real-time applications.

Figure 5.3. Relation between iterations and comparable Gaussian kernel width.

5.3.5 Separable Simulated Diffusion
As discussed in section 3.5 huge blurs can be achieved with advanced methods.
We have implemented a solution using tridiagonal systems according to the theory
in section 3.5.2.
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To make use of the cyclic reduction algorithm we have to create additional
resources to deal with the new data that the algorithm outputs. We therefore
create new textures that can be used for temporary storage with the sizes necessary
for the accurate down sampling. We will need a double setup of these textures, one
for the output values in each phase, and one for the algorithms semantic values.
For an image with width (2N − 1) the temporary textures needed gets their width
in an iterative manner as b(2M−1)c whereM is the phase of the texture, resulting
in the smallest texture being 1 in width, the next 3, then 7 and so on, until we
reach the width of the input image. Since the algorithm is done in two passes, we
first do the horizontal pass, and then a vertical pass with the difference that the
texture sizes in the vertical pass are changed according to height instead of width.
All the information that is to be stored could be packed into one larger texture,
but we found it much easier and more controllable to use multiple resources.

The algorithm itself is run in three steps that are all done in two passes once
the resources are created:

1. Calculate the heat conductivity β for the current pixel and the previous
pixel by sampling from the depth map, and save these values as a
data triple in the matrix texture at the same position as the current
pixel. The data we store at this step is: −βprev, 1 + βprev + β,−β and
corresponds to the a, b and c values in the tridiagonal matrix.

2. Level down the image/matrix texture in phases and calculate partial
solutions for the tridiagonal matrices stored for each row in the image
until only one value remains. This is done according to the cyclic
reduction method described in section 3.5.3.

3. Level up the image in phases and propagate the solution keys back into
the partial solutions until the whole system is solved.

How the tridiagonal matrix values are saved to the matrix texture can be seen in
figure 5.4. The pseudo code for step 2 and 3 looks as follows (for more details see
appendix B):

- Level Down
1: FOR L = 1...log2(N+1) - 1 {
2: FOR all pixels {
3: # Compute alpha and gamma
4: # Compute a, b, c
5: # Set the output value
6: }
7: }
8: #Normalize the output of the last level with b

- Level Up
9: FOR L = log2(N+1) - 2...0 {
10: FOR all pixels {
11: IF pixel position is [odd] THEN
12: # Set output from last level
13: ELSE
14: # Set output based on a,b,c and old value
15: }
16: }
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Figure 5.4. Tridiagonal matrix saved to texture. Values from the depth map are used
to calculate parameters in the tridiagonal matrix and are stored as a texture (as RGB).
One tridiagonal matrix corresponds to one row in the matrix texture.

5.4 CUDA

The multi-threaded, GPU based approach of CUDA can effectively optimize CPU-
driven algorithms and is proven to be fast when it comes to memory reads and
scatter/gather operations. We decided to implement our algorithms from sec-
tion 5.3 using CUDA to get an understanding of the powers/weaknesses of the
framework. Furthermore we implemented a SAT based DOF using the CUDA
Data Parallel Primitives Library (CDPPL). Also of interest was to investigate
whether or not CUDA allows for more advanced post-processing implementations.

5.4.1 Standard CUDA Pipeline

Compared to the DirectX 10 pipeline the way of computing data using CUDA
is bit different. Even though there is a sense of textures there is no real fixed
pipeline that we need to follow. Sometimes because of data dependencies and
memory limitations we are however required to do multiple passes with our data.
This should not be confused with "render-to-texture" but is rather a memory
management method. When using texture memory, the routine looks similar.
This is because of texture write limitations, which is not allowed yet, but could
still be switched to device or shared memory.

Since version 2.0 of CUDA was still in beta and did not support direct access
to GPU data we first download the needed data to CPU and then give our CUDA
kernels access. The same goes for uploading the result to the GPU. This gives
a pretty expensive overhead that hopefully disappears with the final version 2.0
and later, but during our implementations this was still a drawback. On the other
hand, the performance drop is not included in our timings.

In the CUDA kernel itself blocks, threads and memory are setup and allocated
with respect to rules and limitations mentioned in chapter 4. This is highly de-
pendent on the application and will therefore be described individually for each
implementation.
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5.4.2 Gaussian Blurs in CUDA
As discussed in section 3.3.2, information about a pixel’s neighborhood is needed
to obtain a Gaussian blur. The big difference between our DirectX and CUDA
implementation involves blocks, threads, and memory accesses. Since we wanted
to try out different solutions we decided to implement three unique solutions, each
building on a different memory structure. One uses device memory access, one uses
texture reads and one uses shared memory write/reads. The two former methods
are pretty straightforward and have much in common with our implementation
from section 5.3.2.

For all solutions the first two steps are the same, we start off by copying
the input data from the host computer to the device domain, making sure the
correct amount of data is allocated and transferred. After that we make use of the
constant device memory, where we store the needed filter kernel, which is fairly
small memory wise and will not change during the lifetime of the CUDA kernel.
When the setup is done we run the CUDA kernels, one for the horizontal blur, and
one for the vertical. The block setup for the two first approaches is set to 16x16,
and the number of blocks depends on the width and height of the image. Keep in
mind that when using device memory or textures, we are not bound to do reads
only inside the own block.

In the device memory only approach, we simply do data reads at the positions
needed for each thread, and normalize and store the output value. For the texture
read approach we first copy the device allocated data to a cudaArray, which can
be bound to a texture (before kernel execution). Then data from the texture can
be read from inside the kernel using tex2D reads, and the blur can be constructed
as in the first approach.

When using the shared memory, the approach is a bit different. We start of with
the horizontal pass where the blocks are constructed with a height of 1 and a width
depending on the kernel radius. As discussed in section 4.3 threads are executed
in chunks of half-warp size and should be aligned to fit the memory addresses
so no shared memory bank conflicts occur. To meet these recommendations the
width of a block is chosen as in figure 5.5 where blockDimX is set to 256 and
kernelRadiusAlign is chosen so we can make sure the memory banks are aligned
(preferable 16 for smaller filters).

kernelRadius

kernelRadiusAligned

blockDimX kernelRadius

Figure 5.5. Thread block for row filtering pass. Block width is chosen as a sum
of currently processed pixel area width, the kernel radius and a aligned kernel radius.
Aligning the memory is not necessary but can increase performance.

We use one thread for each position in the block and apron and makes a copy
from device memory to shared memory. This is done block-wise and not for every
entry since the whole block may access the same shared memory throughout the
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kernel lifespan. After the copy all threads within the block calculate the blur as in
the other methods; the difference is that all data gathered comes from the shared
memory this time.

The vertical pass has the same semantics as the horizontal one, but the blocks
have to be changed to fit both the vertical filter layout and the memory banks. The
blocks we use looks as in figure 5.6 where the blockDimY is set to 16. Preferably we
would like to have blocks with bigger height to maximize the block size, but since
we use floating point variables with four channels the shared memory size would
not be enough. blockDimX is set to 16 to fit the wanted half-warp execution.

blockDimY

kernelRadius

kernelRadius

blockDimX

Figure 5.6. Thread block for column filtering pass. Block width dimension is kept as
16 to fit the half-warp execution while block height is the sum of the pixel area height
with kernel radius as an apron buffer on both sides.

5.4.3 Multi-Passed Anisotropic Diffusion in CUDA
Our CUDA based solution using diffusion in multiple passes is very similar to
the implementation in section 5.3.4 when it comes to the mathematic algorithm.
Hence, parts of it will not be repeated again. There are still new things to keep
in mind when using CUDA though, and to get information about the speed of
the different memories we did four implementation using global memory, texture
memory, shared memory and global/shared memory. For the global memory so-
lution we simply copy the data to the device, run the kernel and go through the
computations and save the output, which is passed into the kernel once again
depending on the number of iterations.

The texture based approach is fairly similar but in the kernel data is read
from a texture while the results are still stored in device memory. The cudaArray,
which is bound to the input texture, needs to be filled after every CUDA kernel
execution to make sure the next pass gets up-to-date data. The block sizes used
here is 16x16.

For the shared memory implementation we use a block that is of size 32x8 with
an extra apron of 1 at each border, since the algorithm needs to access data one
unit around the computed pixel. We start the kernel by allocating shared memory
and every thread fills it with one value from the global memory at the thread’s
position. After that, all reads are done from shared memory when computing the
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result, which is sent back into the kernel for further passes.
After creating the shared memory based solution, we decided to make a hybrid

approach, which uses shared memory for the horizontal fetches and device memory
for the vertical fetches. This gives way to blocks of size 256 x 1 plus an apron of
1 at each side, and lets us align the reads to the shared memory banks.

5.4.4 Seperable Simulated Diffusion in CUDA
As already discussed in section 5.3.5 the algorithm based on matrix reduction and
simulated diffusion requires extra resources to hold the information needed to solve
the system. Therefore we start with allocation, device memory for the input image
data, temporary image data for between the passes, output image data, input and
output depth data and finally memory for the ABC matrix for the horizontal and
vertical pass. We use blocks of size 256 x 1. Since the huge amount of data needs
to be transferred in and out of the CUDA kernels we decided to use cudaArrays
and texture binds for the final implementation because the total amount of shared
memory on the device is not sufficient. Furthermore the maximum number of
registers available is not enough for a shared memory only based approach.

To handle the different input/output sizes that every pass is coupled with we
make use of a standard C-struct to keep all information in good order and easily
accessable. As described in section 3.5.1 the solver can be divided into two parts,
one horizontal and one vertical, where the output image of the horizontal pass is
the input image of the vertical pass. This is the case here and for both passes we
first run the down-sampling, and then the up-sampling. Between the iterations in
the passes we copy the device data from the output image and ABC matrix to the
corresponding cudaArrays as discussed in section 5.4.3.

5.4.5 Summed-Area Table Blur in CUDA
Our SAT approach is divided into two parts, the first is to construct the SAT,
and the second is to compute the filter value for each pixel in the image. For
the first part of the solution we make use of NVIDIA’s CDPPL, which includes
an optimized scan algorithm, exactly the one we are looking for. Input to the
algorithm is a 2D data structure and we therefore separate the color layers in our
input image and run the scan once for every layer. Since we need to create the
sum of both the rows and columns, we run it twice per layer with a transpose in
between and afterwards to get a horizontal and a vertical run.

Once the last transpose is made we reconstruct our image to its original com-
position and execute the blur CUDA kernel. We use a texture to sample the SAT
and calculate the new output value with the algorithm described in section 3.3.4.
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Results

This chapter presents the results from our applications. Firstly, we discuss the
test environment and the systems running the tests. The second part presents
timing performance of the different implementations in HLSL and CUDA. The
last section shows the visual quality of the different approaches and artifacts that
has come forth.

6.1 Test Environment
The implementation part of this thesis was built upon DX10, using HLSL and
CUDA for post-processing. For all solutions we start the post-processing with
a rendered image and a depth map. The objectives of our tests are to evaluate
performance in HLSL and CUDA for the different algorithms, and furthermore
look at visual quality and arising artifacts.

The Gaussian blur filter is a pure evaluator of the different memory types
available in CUDA and how they scale performance wise versus the textures of
HLSL. The Multi-Passed Anisotropic Diffusion (MPAD) gives a good picture of
how multiple kernel and shader runs scale in performance when the amount of
iterations is being pushed high. The Separable Simulated Diffusion (SSD) is the
most advanced algorithm and deals with memory capacity and usage.

The performance runs have been commenced on two separate machines with
the following specifications:

• Windows Vista

• Intel(R) Xeon(R) CPU E5450 @ 3.00 Ghz (4 CPUs)

• GeForce 8800 GTS 512 / GeForce 8800 Ultra 768

Calculated time in all tests is displayed in milliseconds (ms) for both graphics
devices.

35
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6.2 Performance
Measuring performance of our different implementations gives an analysis of which
algorithms are "fast enough" and have potential for future game development, and
lets us setup a clear picture of how CUDA scales versus HLSL when it comes to
post-processing.

The performance tests are being run with HLSL and CUDA and we capture
the GPU time usage for the different methods. To achieve trustworthy and solid
data we run every algorithm 100 times and calculate the mean value of those
executions.

6.2.1 Gaussian Blur
Gaussian blur is a fairly simple calculation but for larger filters it gets very heavy
on the pixel shader. As seen in table 6.1 the standard HLSL technique with two
passes on the shader is clearly the fastest for the smaller kernel of size 7. This is
not particularly surprising since the pixel shader is optimized for picking pixels in
a small neighborhood. Already at this state there are major differences between
the three different CUDA implementations and the importance of correct usage of
memory shows.

As we progress to larger kernels the impact of what memory is used in the
CUDA implementation become more obvious. Shared memory and better use of
threads out-performs the two other more naive solutions. For the last kernel size
this implementation even out-performs the otherwise faster shader for larger image
sizes, while the two other CUDA applications fall far behind. This is most likely
because the shader is getting limited by texture cache, which does not extend to
the full kernel size. With CUDA we can control what needs to be cached and in
this way use fast shared memory to our advantage.

HLSL CUDA
Kernel Size Image Size Texture Shared Texture Device

7 × 7 2562 0.13 0.73 1.06 1.60
7 × 7 5122 0.47 1.40 3.54 5.72
7 × 7 10242 1.86 4.79 13.66 22.00

15× 15 2562 0.24 0.75 1.82 3.14
15× 15 5122 0.87 1.54 6.52 11.80
15× 15 10242 3.42 5.31 25.63 46.00

33× 33 2562 0.91 1.01 3.51 6.60
33× 33 5122 3.96 3.24 13.29 25.40
33× 33 10242 17.20 12.07 52.45 99.80

Table 6.1. Timings for 2D Gaussian separable blur on GeForce 8800 GTS 512.
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6.2.2 Poisson Disc
Our Poisson disc based DOF is the fastest method and as we can see in table 6.2,
3 ms for a 1K (10242) image is not much. This method was only implemented on
the shader, since we are confident that the algorithm will scale pretty similar as
the 7x7 Gaussian blur from table 6.1 when constructed in CUDA, because of the
small sampling neighborhood. Furthermore this is the method currently used by
most developers and is already fast enough for usage when run in HLSL.

Size 8800 Ultra 8800 GTS
2562 0.21 0.21
5122 0.77 0.78
10242 3.00 3.12

Table 6.2. Timings for Poisson disc based DOF using HLSL.

6.2.3 Summed-Area Table
Constructing and sampling from the SAT is slower then doing the Poisson disc
approach, which can be seen when looking at table 6.3 and 6.2 respectively. When
the input image is becoming bigger, the SAT algorithm does not scale as bad as
the Poisson disc when it comes to performance, but on the other hand the time
needed is fairly long already at the 256× 256 image and the 1K image takes 11.90
ms on the 8800 Ultra which is high.

Size 8800 Ultra 8800 GTS
2562 4.65 6.27
5122 6.12 8.33
10242 11.90 17.50

Table 6.3. Timings for summed-area table based DOF using CUDA.

6.2.4 Multi-passed Anisotropic Diffusion
The approach taken by the MPAD method offers very realistic results with rather
uncomplicated calculations and implementation. On the other hand, the character
of it being a multi-passed method gives overheads that are hard to work around.
In table 6.4 we can see the obvious impact that more passes have, especially for
larger image sizes which forces the GPU to transfer quite large amounts of data
in memory. The broader bandwidth of 8800 Ultra compared to 8800 GTS shows
to be quite important when shoveling pixels [16].

The result is nevertheless one of the best of all the methods, and this without
too much trouble on the way. Color bleeding is in principal not visible at all and
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the borders are preserved clean. This good result also works throughout a very
high amount of passes. More about the visual result in section 6.3.

For CUDA the overhead of texture transportations are a major part of the tim-
ings. It should be taken into consideration that the memory copying instructions
used are not fully optimized in the beta version that we were running. Conse-
quently, CUDA seems to suffer from far worse overhead than the shader imple-
mentation but is still something that we cannot assume to disappear fully even in
a final version. However, with CUDA’s shared memory it should be possible to
work out a few passes within the same kernel and cut down on copy instructions.

With the support from the graph in figure 5.3 we can see that we need several
passes to achieve satisfactory blur on the image. A closer look in table 6.4 shows
that each pass for a 1K image takes around 0.8 ms and is far too expensive for real-
time performance, with CUDA this extends to the double. Since texture look-ups
stay close together for all passes, which benefits the shader, this is then again not
too surprising. With faster CUDA copy operations the difference would probably
be less significant.

HLSL CUDA
Iterations Image Size 8800 Ultra 8800 GTS 8800 Ultra 8800 GTS

5 2562 0.28 0.41 1.49 1.86
5 5122 0.97 1.61 2.75 3.53
5 10242 3.83 6.70 7.81 10.23

15 2562 0.79 1.20 3.49 4.03
15 5122 2.79 4.70 6.94 8.68
15 10242 11.17 19.51 20.88 27.52

25 2562 1.30 1.98 5.52 6.18
25 5122 4.66 7.77 11.02 13.83
25 10242 18.32 32.31 34.03 44.64

35 2562 1.81 2.77 7.23 8.34
35 5122 6.42 10.92 15.15 18.98
35 10242 24.82 45.11 47.17 61.81

Table 6.4. Timings for multi-passed anisotropic diffusion based DOF.

6.2.5 Separable Simulated Diffusion
The reduction needed for the matrix solving in this method presented somewhat
difficult implementation problems for us, both with CUDA but even more so with
shaders. Structuring and storing is a big part of the algorithm and it was not
always straightforward to get it efficient.

However, it seems like we succeeded a lot better with the shader model than
the CUDA model. CUDA gets big overheads due to memory copying which is not
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present in the shader. Still, we do not believe that the CUDA timings in table 6.5
reflect the situation perfectly. There is probably much more to do when it comes
to optimization and memory setup and usage in the CUDA implementation.

Nevertheless, there are some natural causes why CUDA does not perform that
well here. First, the strength in CUDA is when there are reads that can be saved
in shared memory and reused; this algorithm does not really contain too much
where this can be practiced. Secondly, shared memory size, which at this point is
only 16 kilobytes, grid size limits, and amount of registers limits us to very small
resolutions. As a result, optimization is very much limited compared to the other
algorithms if larger image sizes are to work.

One interesting thing that we saw in this algorithm is that the difference be-
tween the more high-end card, 8800 Ultra, and the one aimed more towards the
middle-range consumer, 8800 GTS 512, is not that big at all. Only in the shader
implementation at higher resolutions is the difference in computing power truly
noticeable. This is most likely because the algorithm does a very small amount
of calculations but still several iterations of memory copying. The later is more
probable to take the same time for both cards, thus putting them pretty much
side to side.

HLSL CUDA
Image Size 8800 Ultra 8800 GTS 8800 Ultra 8800 GTS

2562 1.71 1.86 11.23 10.06
5122 2.90 3.62 17.86 15.45
10242 7.31 11.85 29.49 30.45

Table 6.5. Timings for separable simulated diffusion based DOF.

6.3 Visual Quality
There are different things to consider when examining the output images from the
various implementations. Filter impact, in terms of allowed blurring size and the
nature of the gather method used, play a big part in deciding the good and bad
properties of a DOF filter. Different artifacts arise when filtering and these must
also be in the calculation when choosing method. Some artifacts can be overlooked
when traded for better performance, but in other cases the distortions might be
unacceptable. A side by side comparison can be seen in figure 6.1.

6.4 Filter Impact
The maximal blur amount achievable is different for the various methods. SSD can
achieve blurs of any size in constant time because of the nature of the algorithm.
Endless blur can also be achieved using the MPAD, but only with an immense
number or iterations, which is not considerable for real-time applications. The
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SAT DOF does also support huge blurs in constant time but for the Poisson
disc method there are limitations since the sampling area for each pixel is fairly
small and the down sampled version of the image defines the maximum attainable
blurriness.

Figure 6.1. Top left: Original image. Top right: Result with Poisson disc method.
Bottom left: Result with MPAD method. Bottom right: Result using SSD approach.
Larger images can be seen in Appendix A.

6.5 Artifacts
Since we are working in screen space with only color and depth information we
are bound to get artifacts. The Poisson disc approach offers great performance
but suffers from color leaking, seen in figure 6.2 around sharp edges. This mainly
comes from the fact that we are sampling from a blurred image that by its nature
have neighboring pixel values. The artifact gives an appearance similar to a halo
or an aura around the object. The filter can be improved with additional samples
in the Poisson disc but will unsurprisingly have a negative impact on performance
and there will still be some color leaking left. Color leaking shows up in the MPAD
method too, but is far less apparent.

Another artifact can be seen in figure 6.3, where an edge of an out of focus
object gets sharp boundaries to an in-focus object. This is caused since the COC
is very small as the object is in focus. The only way to solve this is to use dif-
ferent passes where foreground, midground and background are treated separatly.
Knowing that we do not treat separate depth ranges differently this is an artifact
that all our algorithms suffer from.

The SSD method suffers from a blocking artifact shown in figure 6.4. This
happens since in-focus objects act as heat insulators in the heat equation and they
will therefore result in an impenetrable threshold for nearby blurs to pass. The



6.5 Artifacts 41

Figure 6.2. Around sharp edges, colors from the blurred image leak outside the in-focus
line.

Figure 6.3. A foreground area that is off-focus gets sharp edges to an in-focus back-
ground.
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solution comes from separating image layers depending on depth range and matte
out the in-focus object so that the background can be blurred correctly.

Figure 6.4. Blocking artifact where foreground and background meet.

The summed-area table approach suffers from huge amount of leakage artifacts,
especially when larger blurring areas are wanted and these cannot be overlooked.
Since the SAT method is both slower and does have far worse leakage than the
Poisson method we consider it a bad approach for DOF.
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Discussion

This chapter will conclude this thesis starting off by going through the implemented
methods and the used programming techniques. Furthermore it will suggest fu-
ture work and propose further improvements to the developed applications, also
discussing the eventual future break-through of GPGPU programming.

7.1 Conclusions

We were excited and hopeful to find plausible and fast methods for post-processing
when starting working on this project. Now when it is done we are pleased with
what we discovered but at the same time slightly disappointed that the more
advanced presented algorithms are still not swift enough for the games industry.

DOF is one of the hardest post-processing effects to achieve, mostly because of
its scattering process. Using GPGPU techniques to solve this is probably the right
way to go since random lookups is not preferred in ordinary shaders. However,
when using the latest technology there was also numerous implementation issues
that arose. Driver problems and beta versions in general sometimes did not offer
the full functionality or the full performance. Such things are most likely to be
fixed in a close future, but are still troublesome to work with. Additionally, such
versions rarely come with good documentation. On the other hand, using first-
hand versions and being part of new software is also very rewarding when giving
feedback to the developer.

Time consumption has been a major part of the project. The new GPU pro-
gramming techniques shows big potential in both ease of use for the programmer
and performance. Still, the time demands for an already optimized game engine
are so high that our implementations are not expected to be seen in a game any-
time soon. However, we believe that our results can be seen as an excellent base
for decision making when wanting to move on to more advanced effects maybe
together with new GPU techniques.
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7.1.1 Implemented Methods
Our version of the SSD method still has a bit to go if we are to achieve perfect
visual quality. The performance of the method is too slow to be run in real-time,
but in a couple of years this is likely to change. Solutions for the arisen artifacts has
been presented in [11] and could be implemented in our system if calculation time
was not of such importance. Already with half the work done, the method is too
time consuming for what we were searching for. Furthermore, solving the matrix
system in the SSD method only works for special resolutions, which might cause
problems when put into a game engine. Doing an efficient version using CUDA’s
shared memory is limited by the memory size and amount of registers and these
problems cannot be ignored when choosing method. However, with hardware
improvements and sufficient optimization this can definitely be an algorithm to
count on later on, much thanks to its endless blur capability.

Using a method such as MPAD works very well and could be utilized if there
is more computing power available. We must keep in mind that using higher
resolutions will require more passes if we are to obtain a convincing DOF effect.

The Poisson disc approach will most likely be the one used in the near future
and there are improvements to consider here as well if more GPU clock cycles are
available. The linear interpolation between the real image and a down sampled
version is effective in speed, but the result is not truly realistic. To totally abandon
the scaled image, and instead sample all values used from the full scale image,
taking more samples and averaging their values dependent of the depth-map would
most likely reduce the halo artifacts with the tradeoff of performance. However, if
a tradeoff of greater magnitude is needed, perhaps using a diffusion based method
should be considered instead.

7.2 Future Work
The implemented and presented DOF algorithms in this thesis do give room for
further improvements. We must simply acknowledge the fact that bleeding arti-
facts is the main problem for all DOF algorithms, and there is no easy solution
to this matter when real-time performance is essential, and furthermore, when
real-time performance in an already time-optimized game engine is needed.

This section will discuss future work and things that are important to consider
when it comes to implementing DOF effects in the coming years. The first part
goes through our applications and how they can be further improved and the
second part discusses the future of GPGPU programming.

7.2.1 Depth-of-Field Algorithms
For our implementations we had only the output image and the depth-map to our
disposal, limiting the work that could be done. If we instead could render parts
of the scene, and separate the background, foreground, and midrange objects in
the view, we could do multiple passes and blur the different parts independent of
each other and achieve even more realistic results, minimizing the leaking from
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in focus objects onto the background. These types of solutions would most likely
improve the visual quality, but would interfere with the other parts of the rendering
pipeline, being hard to integrate into current game engines. On the same time
these solutions would have problems in the mid-range area; i.e., objects belonging
to both foreground and midrange will be hard to filter when the COC change
significantly over a single geometry.

When it comes to future implementations for us, we do consider working more
on the diffusion based approaches, as they have the ability to create huge blurs and
make effects based on thicker lenses as seen in movies, minimizing bleeding with
the insulation criteria. On the same time creating smaller DOF effects using the
Poisson disc approach or similar is of greater interest in the near future because
of their speed and improving these is therefore also of importance for us.

7.2.2 General-Purpose Computation
Computer graphics has for a longer time been favored with the power of the GPU.
But as many other fields now have discovered the potential to use this additional
processor for other computations, it is likely that new tools for general purpose
computations are going to be added.

Tools like CUDA and CAL are already gaining popularity and with this there
will be new demands and possibilities of what applications that can be created.
The problem here is that they are vendor specific and will therefore not push for
an industrial type of usage. Computer games companies like DICE need to make
effects that work for a broad collection of hardware, thus programming effects
for specific hardware is not too accepted. Conversely, even today’s game consoles
require somewhat specific code solutions and a console’s exclusive abilities are
used as sales arguments. However, on the desktop side of gaming, such hardware
variations are more substantial and much harder to adapt to.

As with the new geometry shader there is also not unlikely that supplementary
shaders will be introduced later on, i.e., shaders that are more general between
different hardware and for a general purpose that requires more general computa-
tions.

What really speaks against doing post-processing with a GPGPU technique
instead of a shader is mainly that if the algorithm remains an image processing
problem, rather than a general calculation, the pixel shader will normally work
more than well.

A wish from our side would be for a numerous of different shader types that
can work side by side, and if possible, with shared data. This would keep the
strict but efficient pipe for graphics applications but at the same time give the
programmer freedom to utilize the GPU as a coprocessor for a variety of parallel
computations.
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Appendix A

Result Images

Figure A.1. Test scene 1: Original color image and depth map.
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Figure A.2. Test scene 1: Comparison between different DOF methods. Top: Result
with Poisson disc method. Middle: Result with MPAD method. Bottom: Result using
SSD approach.
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Figure A.3. Test scene 2: Original color image and depth map.
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Figure A.4. Test scene 2: Comparison between different DOF methods. Top: Result
with Poisson disc method. Middle: Result with MPAD method. Bottom: Result using
SSD approach.
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Figure A.5. Test scene 3: Setup with different DOF settings computed with MPAD.
Top: Car in focus. Middle: Soldier in focus. Bottom: Weapon in focus.



Appendix B

Pseudo Code

This is the simplified HLSL code for the MPAD algorithm, where the COC val-
ues for the pixel and two neighbours (left and upper) are already sampled into
txNeighbourDepth as r,g and b, and the rendered image is stored in txColorBuffer.
Here we also have integer steps in texture coordinates where texCoord is the cur-
rent position.

- Fetch color data
1: I = txColorBuffer.Sample(SamplePoint, texCoord);
2: IR = txColorBuffer.Sample(SamplePoint, texCoord + (1,0));
3: IL = txColorBuffer.Sample(SamplePoint, texCoord + (-1,0));
4: IT = txColorBuffer.Sample(SamplePoint, texCoord + (0,-1));
5: IB = txColorBuffer.Sample(SamplePoint, texCoord + (0,1));

- Calculate derivatives
6: gradPlusPlusU = IR - I;
7: gradPlusPlusV = IB - I;
8: gradPlusMinusU = I - IL;
9: gradPlusMinusV = I - IT;

- Sample COC values
10: g = txNeighbourDepth.Sample( SamplePoint, texCoord);

- Do the heat diffusion and return
11: gradMinus = g.r*gradPlusPlusU - g.g*gradPlusMinusU

+ g.r*gradPlusPlusV - g.b*gradPlusMinusV;
12: return (I + 0.25 * gradMinus);

54



55

This is the simplyfied CUDA code for the SSD algorithm’s row pass, where we
begin with the down pass, followed by the up pass. indexX and indexY are the
current coordinates on a 2D-grid. The tridiagonal matrices are already stored in
the rows of the abc texture.

- Down pass
- Set data coordinates
1: i_2j = indexX*2;
2: i_2j_p1 = i_2j + 1;
3: i_2j_p2 = i_2j + 2;

- Sample abc values
4: abc_2j = tex2D(tex_abc, i_2j, indexY);
5: abc_2j_p1 = tex2D(tex_abc, i_2j_p1, indexY);
6: abc_2j_p2 = tex2D(tex_abc, i_2j_p2, indexY);

- Sample color values
7: y_2j = tex2D(tex_color, i_2j, indexY);
8: y_2j_p1 = tex2D(tex_color, i_2j_p1, indexY);
9: y_2j_p2 = tex2D(tex_color, i_2j_p2, indexY);

- Calculate alpha and gamma
10: alpha = abc_2j_p1.x / abc_2j.y;
11: gamma = abc_2j_p1.z / abc_2j_p2.y;

- Store abc values
12: d_odata_abc[index].x = -alpha*abc_2j.x;
13: d_odata_abc[index].y = abc_2j_p1.y - (alpha*abc_2j.z + gamma*abc_2j_p2.x);
14: d_odata_abc[index].z = -gamma*abc_2j_p2.z;
15: d_odata_abc[index].w = 1.0;

- Store color value
16: d_odata_color[index] = y_2j_p1 - (alpha * y_2j + gamma * y_2j_p2);

- Normalize if last row
17: if (row_length == 2) d_odata_color[index] = d_odata_color[index] / d_odata_abc[index].y;

- Up pass
- Set small coordinate
1: indexX_small = indexX / 2;

- Sample abc and color values
2: abc_j = tex2D(tex_abc, indexX, indexY);
3: y_j = tex2D(tex_color, indexX, indexY);
4: y_jp = tex2D(tex_color_small, indexX_small, indexY);
5: y_jp_m1 = tex2D(tex_color_small, indexX_small - 1, indexY);

- Check if odd index and save color value
6: if (indexX % 2 == 1)
7: d_odata_color[index] = y_jp;
8: else
9: {
10: d_odata_color[index] = y_j - abc_j.z * y_jp - abc_j.x * y_jp_m1;
11: d_odata_color[index] = d_odata_color[index] / abc_j.y;
12: }


