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Abstract

In this master thesis report a new method for simulating waters surface
waves is presented. The method is well adapted for real-time applica-
tions and has been developed with computer games in mind. By sim-
ulating the water surface at several different resolutions simultaneously
using a construction similar to Laplacian Pyramids dispersion is handled
approximately resulting in a complex behaviour. The simulation is also
extended with a dynamic level of detail method and phenomenological
models for boundaries and high frequency waves. This method is pro-
totyped inside the Frostbite™ engine developed at EA™ DICE™ and
runs at 3 ms per time step on a single core of a Intel™ Xeon™ processor
with high quality results.



Referat

Interaktiva vattenvagor i realtid

Denna rapport presenterar resultaten for ett examensarbete om simu-
lering av vattenvagor. En ny metod for att simulera vattenvigor pre-
senteras. Denna metod &ar anpassad for realtids-tillampningar och har
utvecklats med datorspel i atanke. Genom att simulera en vattenyta med
flera upplosningar samtidigt i en pyramidstruktur hanteras dispersion
approximativt. Simuleringen varierar dynamiskt upplosning beroende
pa avstand till observatéren och for att 6ka detaljnivan finns ett feno-
menologiskt detaljsystem. En prototyp har utvecklats inuti spelmotorn
Frostbite™som utvecklats av EA™ DICE™. Prototypen simulerar ett
steg pa 3 ms men en kdrna hos en Intel™ Xeno™-processor med bra
resultat.
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Chapter 1

Introduction

Simulating water realistically is of great
interest in computer graphics since it is
such an important part of our world. It is
also a very complex problem. Today re-
alistic computer generated water is seen
in many movies. This not the case for
computer games. The simulations used
in movies are not computed in real-time
and a single frame may take several min-
utes or hours to compute (24 frames are
needed per second) and may use a cluster
of computers. In video games this is not
possible, instead the simulation has to be
computed in real-time on a single com-
puter or video game console. Because of
this only a 1/24th of a second is avail-
able per frame to achieve 24 frames per
second. Also only a fraction of a the com-
puter’s or the console’s processing power
is available since to rest of the game has
to be run at the same time. This is a dif-
ference of several orders of magnitude.
Because of this water is rarely simulated
in games today and when it is in a very
simple fashion.

In this thesis we will focus on surface
waves on water that as a whole is in rest.
Examples of this are ponds, lakes and
pools. The goal is to investigate how ac-
curately this can be done in a real time

context and find a method that is us-
able in games on this generation of con-
soles. The method should be easy to con-
trol from a user perspective: an artist
should be able to tweak as much as pos-
sible for artistic use in a computer game.
It should also be predictable in perfor-
mance. In games consistent performance
is more important than simulation ac-
curacy: keeping the frame-rate is more
important than keeping the simulation
physical. Another important area of fo-
cus is level of detail. In order to effi-
ciently use the computing power resolu-
tion should be adapted to the distance to
the observer. Waves far away need less
resolution than waves close since they
will occupy less screen space. Paralleliza-
tion is also important to utilize the paral-
lel nature of modern computer processors
and video game consoles.

An important area of research is in-
vestigating what simplification are use-
ful and provide realistic results. In this
thesis we limit our investigation to lin-
ear wave theory since it accounts for
important properties of water such as
wave speed dependency on wavelength
and water height. It is also an inter-
esting starting point since several com-



mon approximation may be derived from
it. Another advantage linear wave theory
provides is an intuitive understanding of
wave behavior that is hard to obtain with
other approaches.

Using linear wave theory we present
a method for simulating water surface
waves that approximates the height and
wavelength dependency of water waves.
In this way it captures the complexity of
water waves in nature. Our method is
well suited for level of detail techniques
and is highly parallizable.

CHAPTER 1. INTRODUCTION



Chapter 2

Background

One of the hardest problems in com-
puter graphics is fluid-simulation. Large
scale (millions of particles) offline fluid
simulations have not been possible un-
til recently with software such as Re-
alFlow [rea]. Large scale real-time simu-
lations are still not feasible. To simulate
fluid dynamics Navier-Stokes equations
have to be solved. Usually simulation is
restricted to incompressible Newtonian
fluids. This yields the incompressible
Navier-Stokes equations (2.1) and the
volume conservation equation(2.2):

0
p<V+V-Vv) = —Vp+ pViv +f
(2.1)

V-v=0 (2.2)

Where v is the flow velocity, p is the
fluid density, p is the pressure, p is
the dynamic viscosity and f represents
body forces such as gravity. These equa-
tions are usually solved with smoothed-
particle hydrodynamics (SPH) for fluids
and 3D grid-based methods for gases.
For real time solvers only modest particle
numbers (e.g.. 65 000 [Gre08]) and grid
sizes (e.g.. 128x128x32 grid [KID10]) can
be solved. These results are from simula-

tions utilizing the full processing power
of a high-end PC. In real-time applica-
tions such as games only a fraction of the
computing power is available: simulation
size has to be even less. In order to simu-
late more detailed fluids in real-time vast
simplifications have to be made.

2.1 The Height Field
Model

One way of simplifying the simulation is
to only consider the surface of the fluid
and to model it as a height field. This
means that the surface height (h) is mod-
eled as a function of horizontal spatial
coordinates (z,y). This effectively re-
duces the problem size by a dimension.
A height field correctly represents waves
on for example an ocean surface, a pond,
a river etc as long as the waves are fairly
small. Splashes and breaking waves can
not be represented however since they vi-
olate the height field assumption. Never-
theless this is a useful representation and
height field approach will be the focus of
this paper.

There has been a lot of research on
this description of water surfaces. We
will focus on the results of linear wave



theory and the shallow water equation.
Studying other higher order models such
as the Boussinesq model for water waves
are possible future areas of research.

2.1.1 Linear Wave Theory

Linear wave theory describe waves as
small perturbation of the water surface
and ignores effects of water current (ad-
vection). Also viscosity is assumed to be
zero. Because of this linear wave theory
does not correctly handle rivers, steep
waves etc. There are also several other
assumption that are out of the scope for
this brief introduction. These assump-
tion results in the following expression
for the water speed, c:

c=, /% tanh (kH) (2.3)

Where g is the acceleration by grav-
ity, k the angular wavenumber and H the
water depth. For shallow and deep water
respectively, ¢ is reduced to:

c=+/gh,A\>H (2.4)
c= L < H (2.5)
k|

Equation (2.5) is known as the disper-
sion relation for ocean waves and is re-
sponsible for the characteristic look of
ship wakes (Kelvin wakes) and is there-
fore critical to simulation of realistic
ocean waves.

2.1.2 The Shallow Water
Equations

The shallow water equations are the re-
sults of a different set of approximations.
Just as in linear wave theory viscosity is
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assumed to be zero. The most important
assumptions are that the water height
is assumed to be significantly less than
the wavelength of water waves and that
the flow is assumed to be constant ver-
tically. Because of this the shallow wa-
ter equations only simulate large water
waves correctly - small waves will have a
small wavelength compared to the water
height and therefore contradict the wave-
length assumption. Contrary to linear
wave theory current is simulated; rivers
etc can be simulated. Also the sharpen-
ing of waves as they reach shallower wa-
ter is handled. The resulting equations
are:

%’ +gVh+(v-V)v=0 (2.6)
dh
— 4+ (h+b)V-v=0 (2.7)

dt
Where v is the horizontal flow, g is
the acceleration by gravity and h the wa-
ter height from a reference level hy and
b the water depth from hg. Worth not-
ing is that if we remove the advection
term,(v - V)v, from (2.6) assume that
h < b the shallow water equations re-
duce to the linear wave theory model for
shallow water, that is the wave speed is
given by (2.4).

2.1.3 Turbulence

Neither linear wave theory nor shallow
water equations model turbulence. How-
ever turbulence plays an important role
in realistic simulation of water surfaces.
Many situations common in games re-
sult in a great deal of turbulence. A
person running through water is such a
situation. Turbulence is created when
there is a large difference in flow velocity
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within a short distance. Understanding
of turbulence is limited and it is therefore
hard to do accurate simulations without
solving the full Navier-Stokes equations.
There are however several phenomeno-
logical models. See [FS06, MK99]. One
of the simplest methods is to model tur-
bulence by diffusion.
eas the flow field will be close to ran-
dom which results in diffusion, much like
Brownian motion. Physical models for
turbulence are beyond the scope of this
paper. In section 2.2 a brief overview of
turbulence models for computer graphics
is given.

In turbulent ar-

2.2 Related Work

This literature review is limited to work
relevant to real-time water surface simu-
lations with rigid body interaction. For
a complete overview of fluid simula-
tion in computer graphics see [Sch07,
Iglo4, BMFO7]. Section 2.2.1 contains
an overview of 2d height field techniques,
section 2.2.2 an overview of research on
controlling simulations and phenomeno-
logical methods for adding details to sim-
ulations such as turbulence, foam and
particles and section 2.2.3 an overview
of different methods for interaction.

2.2.1 Height Field Methods

An early approach for simulating wa-
ter surfaces uses a Fourier approach and
propagates waves in the frequency do-
main. Waves are stored as amplitude and
phaseangle for each wavenumber. Propa-
gation is done by updating the phasean-
gle according to the dispersion relation
for ocean waves. While accurate mod-
eling the dispersion relation it is difficult
to combine this method with interaction.

Because of this it is often used for ambi-
ent waves. For an overview see [Tes04b].
Recently this algorithm has been imple-
mented on GPU [Fin04].

One other approach for simulating wa-
ter height fields is to use grids and fi-
nite differences to solve simplified 2D
shallow water equations where the flow
is assumed to be zero. This approach
was used by [KM90]. [CL95] use a sim-
ilar method and solve compressible 2D-
Navier Stokes equation and extend the
finite difference approach to handle ob-
ject interaction by introducing variable
boundary conditions. The height of the
water is generated using the pressure.

Recent work has focused on solv-
ing the full shallow water equations in-
cluding current using a Semi-Lagrangian
approach[LvdP02, HHL'05].  [Kal0g]
simulate shallow water equations with an
adaptive grid to do fluid simulations with
a scale of several hundred meters for use
in open world games. Semi-Lagrangian
approaches suffer from dissipation due
to the discretization. Research has been
done to reduce this [KLLRO5].

Another recent development is the in-
corporation of dispersion in interactive
simulations. [Tes04a] and [Lov02, Lov03]
do this by convolution.[Day09] use a
multi-resolution frequency domain ap-
proach. Their simulation is done using
an adaptive grid. The waves are prop-
agated in the Fourier domain using the
deep water dispersion relation. The res-
olution is changed in run-time to so that
the simulation has high resolution near
the player and low resolution far away.

Particle systems have also been used
for water simulation. Recently 2D par-
ticle systems have been used to simulate
water surfaces. [LH10] use SPH in 2D to
animate a height field. [YHKO07] intro-



duce the wave particles, particles repre-
senting a small disturbance of the water
surface, and use them to solve a simple
wave equation. The particles are splat-
ted to a height field for rendering. A
big advantage of this approach is that
the simulation is concentrated to the ar-
eas with perturbations and barely any
computation is needed in areas without
waves. However, with lots disturbances
more and more wave particles have to
be created which results in bad worst
case performance. Wave particles are in
this wave very similar to ordinary parti-
cle systems.

[Cor08] extend the wave particle ap-
proach to handle flow by coupling it with
a low resolution flow simulation. [Cor07]
couple a low resolution SPH simulation
with a surface wave simulation.

2.2.2 Control and Detail

Increasing particle numbers and grid
resolution result in major performance
degradation. Therefore a lot of work
has been made regarding up-sampling
and adding details to lower resolution
simulations. Up-sampling a fluid with-
out turbulence is fairly easy to do. To
make a low resolution simulation more
detailed high frequency turbulence has
to be added. This can be done either
by adding noise [BHN07, KTJGO8] or
by simulating the generation of turbu-
lence at a higher resolution [PTSGO09].
Height field simulation lack foam and
splashes. Work has been done on how to
add this to existing simulations. [JGO1]
add foam from particles and steep waves
and render it by blending in a foam tex-
ture. They also generate particles from
the height field simulation to simulate
splashes. [V1al0] use flow to animate a
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texture with good result.

Fluid simulations are generally hard
to control and predict due to many pa-
rameters (such as grid subdivision, static
geometry, interacting objects etc) with
often large unexpected consequences.
Therefore work has been made at con-
trolling fluid animations while keeping
the overall appearance dynamic. For
SPH simulations the notion of guide par-
ticles has been introduced [TKPRO6].
With this approach individual parti-
cles are allowed to move freely but the
local mean of particle motion is re-
stricted. [NCZ'09, NielO] propose a
method for guiding grid-based fluid sim-
ulations. Neither of these approaches are
directly applicable to height field simula-
tions.

2.2.3 Interaction

There are mainly two different ways of
interacting with a height field. Either
the height field and flow are modified
directly or the boundary conditions are
modified. The first approach is used in
[CL95, TesO4a] to simulate the motion
of rigid objects. In the approach used
by [Tes04a] the height of the water is in-
creased in front of a moving object and
decreased behind it. When an object is
submerged the height is increased above
it corresponding to the volume of the
object and when an object emerges the
height is decreased. This approach can
also be used to add and remove water.
The other approach is to use handle in-
teraction by applying pressure. When an
object is floating in the water pressure is
applied to the height field resulting in a
lower height below the object.

[Tes04a] also use what they refer to as
an obstruction mask. This mask con-
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tains which parts of the water surface
that is obstructed. This is used to create
rigid boundaries against the obstructed
areas. This is not physically correct but
results in plausible reflections against dy-
namic objects.






Chapter 3

Overview

The aim of this chapter is to give a simple
overview of the complete system. The
purpose of this is to give the reader an in-
tuitive understanding before diving into
theoretical details. Therefore this chap-
ter will be less formal than the rest of the
report and will not contain many refer-
ences. More theoretical details and mo-
tivation of design choices can be found
in the following chapters: chapter 4 och
chapter 5.

3.1 Variable Wave Speed

As we saw in chapter 2 an important
property of water is that the wave speed
is dependent on wave length. This is
known as the dispersion relation of water
waves. The result of this property is the
characteristic look of water surface waves
and the reason behind phenomenon such
as Kelvin wakes. Linear wave theory
provides a highly simplified description
of surface waves. While being heavily
simplified it still manages to capture the
dispersion property. In the linear wave
theory model wave speed increases until
wave length and water height is roughly
the same and then remains constant.
The water surface can be represented

by a grid. Given this representation it
is easy to simulate waves with constant
speed. This can be done by Euler step-
ping the wave equation:

0%h
ot?
It can be showed that the variable wave
speed of linear wave theory can be simu-

lated by replacing ¢>V? with a convolu-
tion, L:

= *V>%h (3.1)

*h

ot?

This is similar to the method of
[TesO4a]. While correctly accounting for
the dispersion relation this method is not
optimal for use in a real time context.
The size of the convolution operator L is
dependent on the largest possible wave
length. To represent a 1 m wave with
a grid resolution of 5 ecm the convolu-
tion operator needs roughly 20 grid cells
wide to handle variable wave speed at
that wave length. The convolution is not
separable either so 400 cells have to be
summed to calculate the contribution to
one pixel. [Day09] alleviate this by carry-
ing out the convolution in the Fourier do-
main at the cost of doing a forward and

=Lxh (3.2)



inverse Fourier transform in each step.
We present a different solution.

Our method is the following: h is split
into different parts (hq,ha,hs,. .., hy)
representing different ranges of wave
lengths. We will refer to these as sub
grids. h; contains wave lengths down to
some wave length A, ho wave lengths be-

tween A and %, hswave lengths between

A A

5 and 7, and so on. With this repre-

sentation the shortest wavelengths of h;
are twice those of hijt1 (i€ Z,i > 0). Be-
cause of this h; can be simulated at half
the resolution of h;11. The total height
h can be retrieved by interpolating and
summing h; for all possible 3.

The big advantage of this approach is
that all the wave lengths contained in a
grid are fairly small compared with the
grid cell width. Because of this the con-
volution operator L can be approximated
with a small convolution kernel. Within
a sub grid the wave speed will not vary
as much as within the whole range of
frequencies and simple approximation of
L can be used. By splitting the grid
into several sub grids the total number
of grid cells being simulated increase but
the computation per cell is drastically re-
duced.

All the sub grid together will be re-
ferred to as a pyramid.

3.2 Level of Detail

To make the simulation fast without sac-
rificing detail it is important to control
the resolution of the grid so that ar-
eas of high importance get higher res-
olution than unimportant areas. When
viewed through a perspective projection
the water close to the observer will re-
quire higher resolution since it occupies

10
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36

12

Figure 3.1. Level of Detail. Example dis-
tribution of different resolution pyramids.

more of projected space. As the observer
moves different areas will need higher
resolution.

Our system solves this by having pool
of pyramids of different resolutions all
with the same width ( 6 m for exam-
ple). These are dynamically distributed
to simulate water close to the observer
width a high resolution and water fur-
ther away with a higher resolution. See
figure 3.1 for an example distribution.

3.3

Interaction

Interaction is handled by displacing the
height field. When an object is pulled
out of water the water height is de-
creased and when pushed down height
is increased. See figure 3.2. Using our
wavelength decomposition into sub grids
makes this more complex. Only waves
with correct wavelength should be added
to a sub grid. This can be achieved by
bandpass filtering the displacement with
a filter corresponding to the wavelengths
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A

o]

®

Figure 3.2. Example of Object Interaction.
A, B and C show an object moving in differ-
ent directions (arrow) and the corresponding
change in height-field (gray).

represented in the sub grid.

To simplify the interaction the inter-
section between an object and the water
surface is approximated by an ellipse. In-
stead filtering the ellipse numerically an
approximate analytical filter is used.

11






Chapter 4

Theory and Techniques

In this chapter we describe the tech-
niques used to solve Linear Wave The-
ory approximately in real time. We de-
scribe various approximations made and
their implications. We describe how in-
teraction and boundary conditions can
be handled. Also a system for adding
details to a lower resolution simulation
is described.

4.1 Dispersion as
Convolution

In this section we will provide a theoreti-
cal derivation of the results of section 3.1.
While being similar to the derivation in
[Tes04a] our derivation is based on Lin-
ear Wave Theory rather than Bernoulli’s
principle and also uses different set of
variables: we use the time derivative of
h, [TesO4a] use a velocity potential for h.

Simple waves with constant speed can
be modeled by the wave equation:

0%h

ot?

This ordinary differential equation can
easily solved by discretization and Eu-
ler stepping in time. However, this re-
quires ¢ to be constant with respect to

= 2V2h (4.1)

wavenumber since all wavelengths are
handled in the same way. As we recall
from section 2.1.1 wave speed relates to
water height from bottom, H, and angu-
lar wavenumber, k, in the following way:
2 g ||
¢t = mtanh I
This expression can not be directly
used for integrating (4.1) because of its
dependence on k. However, by trans-
forming (4.1) into the Fourier domain
(4.2) can be directly used.

(4.2)

2
F (g;) = 2(ik)*F(h) (4.3)

Where F is the Fourier transform. In-
sertion of (4.2) gives:

9*h 9 k|02
Fl= | =—— — |k|°F
( % ) | ‘tanh I |k|“F(h)

(4.4)
Applying the inverse Fourier trans-
form gives the following result, where
F~lis the inverse Fourier transform and
* the convolution operator:
0h

— =L=xh

5 (4.5)

13



CHAPTER 4. THEORY AND TECHNIQUES

where L is defined as:

L=r"1 <—g k| tanh|k’> (4.6)
H

This equation can now be solved by
computing L and solving (4.5) numeri-
cally. While feasible, [Tes04a] does this,
solving (4.5) directly requires a lot of
computation because of the convolution.
If waves of unlimited size are allowed
L has to be computed accurately in
the whole frequency range resulting in a
large kernel. If the range of wavenum-
bers is limited L can be approximated to
be correct within that range and to have
a small kernel size. Ideally wavelengths
should also be fairly small compared with
the grid size to avoid computation on a
higher frequency than needed.

4.2 Laplacian Pyramids

Laplacian Pyramids, first introduced in
[BA83], have been successfully used to
solve various problems within computer
graphics. Laplacian pyramids decompo-
sition is a way of representing an image,
much similar to wavelets. The basic idea
is very simple. To represent an image [
using a Laplacian pyramid an iterative
algorithm is used. An overview of the
algorithm is given in figure 4.1 and an
example decomposition in figure 4.2.

In essence this means that each image
in the Laplacian pyramid only contains
a limited amount of frequencies. Also
the wavelengths stored in each image are
small compared with the pixels size and
the original image is retrieved by sum-
ming all images in the pyramid. We can
thus conclude that the Laplacian pyra-
mid is a great match for the requirements
posed in the end of section 4.1.

Usually, a Laplacian is constructed
only once, some calculation are per-
formed on it and then it is converted
back into an ordinary image. One way
of implementing wave propagation us-
ing Laplacian pyramids. Each frame the
pyramid is constructed, the waves are
propagated and the resulting pyramid
is then summed. The results are then
drawn and displacements of the water
surface are generated. The reason the de-
composition algorithm has to be run each
frame is to allow for interaction through
height displacements. This is a potential
bottle neck of the algorithm. The de-
composition algorithm requires each im-
age in the pyramid to be down-sampled,
blurred and then up-sampled. We there-
fore propose an implicit construction of
the Laplacian pyramids. The basic idea
is that instead of running the decompo-
sition algorithm each frame on the whole
water surface only the displacements are
decomposed. To simplify the decompo-
sition further we propose a new method
in section 4.5.

4.3 Approximating L

To take advantage of the water height
field representation introduced in 4.2 we
need an approximation for L. The goal
for this approximation is to accurately
approximate L for wavenumbers between
j and 2j for some values j where j satis-
fies j = % where h is the grid cell width
and C is some constant. We have used
wavelengths between 6k and 12h. This
means that the range of frequencies rel-
ative to grid cell width represented in a
grid are independent of grid size. The ap-
proximation should also be fast to com-
pute.

14
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Figure 4.1. Laplacian Pyramid Algorithm.
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shows the original height-field. Black is -1
and white is 1. B the resulting decomposi-
tion. 50% gray is 0, white is 1 and black -1.
C shows the resolution of the different grids
(at a lower resolution than B to exaggerate)

A third requirement is that the ap-
proximation should be symmetric. The
reason for this is to make the wave speed
equal in all directions. We believe that
this property is more important than the
accurate wavenumber wave speed rela-
tion since it is required to keep waves
circular.

For this reason a kernel based on a lin-
ear combination of a separable Gaussian
kernel and an impulse was chosen. The
Gaussian kernel is the only kernel that is
both rotationally symmetric and separa-
ble. This means that a 2D convolution

15

can be made by a 1D convolution first
vertically and then horizontally. This
means that an n X n convolution only
needs 2n reads and 2 writes per cell to
be computed instead of n? reads and 1
write for a non-separable kernel.

We express this kernel as:

Ay5(r) + Age B (4.7)

Where ¢ is the Dirac delta function, r
is the distance to center and Ai, As, B
are weights. To choose the weigths we
transformed locally 4.7 into the Fourier
domain 4.8.
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Magnitude

Figure 4.3. Approximation of L. The first
plot show L in the Fourier domain. The sec-
ond plot shows the corresponding Gaussian
functions.

_ K2
e 4B2

Ay n As
V2r 2B

The weights were determined by test-
ing various values for B and comparing
4.8 with F(L). When k approaches zero

(4.8)

Ay Ao
4.8 approaches Nor + ‘I/EB. Thejefore
2 _ 1
Aswas chosen so that 5 T T van to

keep the simulation stable at low fre-
quencies. A; was chosen visually to make
4.8 and F(L) close in the area of interest,
between j and 2j. We start by choos-
ing Ai, As, B for F(L) with infinite wa-
ter depths. To make our approximation
independent of pixels size and average
wavelength we parametrize it based on
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| Pixels | B Ay ‘
7 0.53 - h —5.91 - qg- jmean
5 0.74 - h —10.2 - qg- jmean
3 1.24-h —26.0 - qg- jmean

Table 4.1. Approximation of L: Values for
B and A1

pixel width grid cell width h and mean
wavenumber, jmean. Ao is not calculated
analytically. Instead it is calculated nu-
merically once the Gaussian kernel has
been discretized. This is to ensure sta-
bility with the discretized kernel. The
calculation is done by numerically inte-
grating I = e~ B’ and setting Ay = %.
See figure 4.3 and table 4.1.

In order to handle non infinite water
depths we need values for A;, As, B for
water depth limited wave speeds. For
computational simplicity B is not al-
lowed to vary with depth so that a sub
grid will not need multiple B values. In-
stead we simply clamp A; and Ay to
avoid the wave speed from reaching over
the shallow water speed.

4.4 Interaction

For interaction simple linear displace-
ment of the height field was chosen for
its simplicity. The displacements have
to be decomposed to be distributed to
the different sub grids in the Laplacian
pyramid. Computing the intersection
between an arbitrary body and the wa-
ter surface is complex. Because of this
a simple approximation of the intersec-
tion is used. All interacting bodies are
modeled as ellipsoids and their resulting
intersections as ellipses. This makes it
possible to do an approximate analytical
decomposition rather than numerical de-
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composition as we shall see in section 4.5.
A horizontally moving body is modeled
by increasing the water height in front of
it and decreasing it behind. To do this
the intersection ellipse is used to modify
the height field twice. It is moved for-
ward and used to increase water height
and backward to decrease water height.
When a body is moved vertically through
the water surface the ellipse is used to
change the water height dependent on
the change of submerged volume.

4.5 Bandpass Filtered
Ellipses

In order to generate bandpass filtered el-
lipses we derive an approximate analyti-
cal expression. This expression is correct
for ellipses which are considerable larger
than the size of the band pass filter.

The basic idea is the following: Let
f(d) be the edge response function of a
band pass filter . An ellipse can locally
be approximated by a line segment. Let
d(xz,y) be the signed distance function
to the ellipse. Then f(d(z,y)) will lo-
cally represent the bandpass filtered el-
lipse, given that the filter is much smaller
than the line segments, so that curva-
ture does not start to play a role. If
we can find an expression for d(z,y) over
the whole ellipse f(d(x,y)) will have an
approximation for the band pass filtered
ellipse valid for large ellipses.

We will use two properties of d in our
derivation: its gradient is perpendicular
to the boundary of the ellipse and the
gradient’s magnitude is one.

An ellipse is usually described by the
following equation:
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2 2
S (4.9)
Ty Ty

Where z and y are orthogonal coor-
dinates in a coordinate system defined
so that the direction of x and y coincide
with the major and minor axis of the el-
lipse and 7, and r, are the radii along
the z and y directions respectively. To
find d we start by finding an expression
of the form:

2+ =r*(z,y) (4.10)

We therefore propose r2(x,3) of the
form:

2 + )

4.11
r%xz + 1292 ( )

T2<$7y) =

We need to prove that 4.9 and 4.10 are
equivalent:

224y el
¢>1—T%;%%%2 (4.13)
& r§x2 +r2y? = riri (4.14)
& ij + ‘zj 1 (4.15)

z Ty

Using this expression we can find

an approximation for d : /a2 +y? —

Vr?(z,y). This expression equals d
when the ellipse is a circle since it reduces

to the distance from origin minus the ra-
dius. For ellipses it is inaccurate since
the gradient of 2 + y? is not perpendic-
ular to the boundary of the ellipse. To
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compensate for this we divide with the
gradient of 2 4 y? projected on the nor-
mal of the ellipse (%, % ). This gives the
following results. !

1 (az y) 1 (2,1)
777 '7"B7y
T T'y
_ 1 a2y
a 22 |y 2 2 ngg r
(F+5) @+ ’
r§x2+r§y2

\/<r§‘m2 + rf%yz) (2% 4+ y?)

4,4 2,2,2.2 | A4 4
ryxt + 2rzrortyt +rypy
4,4 4 1 A 202 1 pdgA

Tyt + (rg + ) eyt + iy

[+ )

Using this we can find an expression

X )

2 Bk

T

(12 = r2)2a%y?

(r2a% + 122)?

for d:
1/2
(5 +2)" - () /
g r2 2 r2x24riy?
1 4 rEmry)?aty? /2
(1+ Gt

(4.16)

Laplacian pyramids use Gaussian fil-

ters as their basic low pass filter. To

make the analytical bandpass filtering

possible we need a band pass filtered step

function to use as a basis. We have three
requirements for this function:

o Fast to calculate
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e Short tail
e Good frequency response

The chosen function was selected by test-
ing various simple function, consisting of
only addition, multiplications and a sin-
gle division and comparing them with a
Gaussian filter and a perfect band pass
filter. See figure 4.4 for a comparison.
Based on its simplicity and short tail we
chose:

ad

)= @)

4.6 Level of Detail

In computer games predictable memory
and computation requirements are im-
portant. A game has to run at a high
frame rate for the experience to be en-
joyable. It is therefore better to sacrifice
quality for performance. Because of this
we require our level of detail algorithm
to be close to constant in both mem-
ory and computation independent of ob-
server and water configuration.

As we shall see the Laplacian pyra-
mid approach is very well suited for
adaptive resolution. The simulation is
done by simulating several sub grids
(h1,ha, hs, ..., h;) . Different resolution
is easily obtained by varying ¢. For ex-
ample 5 sub grids could be used close to
the observer, 4 further away and 3 even
further away etc.

In order to achieve constant memory
and performance we decided to base our
level of detail system on a pool. The
pool contains pyramids of different res-
olutions. These are dynamically dis-
tributed to achieve varying level of de-
tail. To make the change of resolution
easy, the area which should be simulated



Gaussian
Difference

05

Intensity

-0.5

o
T

Magnitude

4 6
Angle (rad)

Figure 4.4. Bandpass Filtered Edges.
First plot shows the edge response of dif-
ferent functions. Second plot the frequency
plot of the corresponding bandpass filter. a
is a scaling factor. a = 0.3 was used in the
example.
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(this is defined by the user) is split into
equal sized squares (for example 6 x 6 m
in size). We refer to these as simulation
cells. The pyramids are at run-time dis-
tributed to the simulation cells so that
cells close to the observer get high reso-
lution pyramids while cells further away
get lower resolution. This results in con-
stant performance independent of sim-
ulated area. However, the bigger area
needed to be simulated the lower resolu-
tion it will be, relative to distance to the
observer. When there are so many cells
that there are not enough pyramids the
cells furthest away will not be simulated.

4.7 Phenomenological
Generation of Details

Real world water has waves down to just
a few millimeters in size. With our ap-
proach and current processors it is im-
possible to achieve this amount of detail
in real-time. Because of this an inter-
esting area to study is phenomenologi-
cal addition of details. Phenomenologi-
cal approaches have been used success-
fully to add details to smoke simulations
[BHNO07, KTJGO8]. It is therefore in-
teresting to consider similar methods for
height field based water. [KTJGOS8| use
wavelet noise to modify the flow of a low
resolution simulation. This method is
not applicable since our simulation as-
sumes zero flow. Instead a method that
modifies the height-field is needed. An
early approach at generating waves for
computer games is to render a billboard
with a circular wave on it and animate
the billboard scaling. While an interest-
ing approach it is hard to integrate with
the rest of the simulation. Ideally the de-
tail addition could be done mainly in a
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A B C D
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Figure 4.5. Propagation of Detail Waves.
A explains the meaning of the different val-
ues. B, C and D show example propagations.

pixel shader.

Instead we propose a method for mod-
eling the existence of waves rather than
a height field. The idea is that instead
of propagating waves information about
wave direction and amplitude is propa-
gated. Simulation is done in a grid. Each
grid cell contains the wave energy, F, and
a 2d vector containing the average direc-
tion of the waves, d, this vector is not
normalized. Because of this the d con-

vations:

o If |d| = 1 they should propagate in
that direction and maintain |d| = 1.

o If |d| = 0 one possible reason for this
is that the waves are traveling in all
directions. In that case they should
propagate in all directions and be-
come more and more directional.

e Sum of FE for all cells should be con-

tains information about how directional served.
the waves are. If |d| = 0 no direction Based this E i ted in ¢
is favored , if |d| = 1 they are com- —occ Of HS Bds propagated in two

pletely directional. This representation
is clearly inaccurate and violates the su-
perposition principle.
sults using the approach are promising.

A method of propagation is needed
to use this representation. We base
the propagation on three simple obser-

However our re-

ways dependent on |d|. E is split
into two parts: directional |d|E and
non-directional (1 — |d|)E. The non-
directional part is diffused equally in all
directions. The directional part weighted
by the scalar product between d and the
direction to the adjacent cell. Energy is
only moved in the directions where the
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scalar product is positive. See figure 4.5
for examples. Propagation speed is con-
trolled by the amount of energy being
propagated.

FE and d are then exposed in a pixel
shader to generate the actual details.

4.8 Phenomenological
Boundary Conditions

Correct handling of boundary conditions
is a hard problem. [Tes04a] uses a phe-
nomenological approach and simply sets
the water displacement to zero where
there is no water. This results in a
rigid boundary condition which gener-
ates reflected waves. However these
waves are completely unphysical since
the water height is kept constant at bor-
ders. A better approximation would be
a free boundary condition. Using this
boundary condition is more complicated.
Therefore we use a simple approxima-
tion: water displacement is modeled by
diffusion where there is no water. Physi-
cally this is very inaccurate and may gen-
erate both energy and mass. In practice
it is a cheap way of generating plausi-
ble boundary interactions and also has
a dampening effect on wave amplitude.
The diffusion is cheap to calculate since
we already calculate L which can directly
be used to calculate the diffusion.

This model does not take non linear ef-
fects of water boundaries. A large wave
generates smaller waves when interact-
ing at a boundary. In order to model
these effects we allow waves in low reso-
lution sub grids to move into higher res-
olution sub grids near borders. This also
compensates for the energy loss of the
boundary condition approximation.
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Chapter 5

Implementation

We have created two implementations of
the methods and algorithms described in
chapter 4. One implementation is cre-
ated using GNU Octave to create easy
analyzable results. We have also im-
plemented the algorithm of [TesO4a] for
comparison. The Octave implementa-
tion is made directly from the equations
presented in 4. The Octave implemen-
tation does not feature the LOD system.
The second implementation is made us-
ing C++ in the Frostbite engine. This
implementations is made to see how our
algorithm works in a real computer game
engine and is highly optimized. The
Frostbite implementation is used for per-
formance evaluation.

The rest of this chapter is focused on
the Frostbite implementation and how
our algorithm is optimized and adapted
to the game engine architecture.

5.1 Update method

We solve eq. 4.5 using Euler integration
in the following way:

Unt1 = Up + At (L * hy)

thrl = hy + At Un41 + Ahdisplace’rnent

Where n is the last step, n + 1 is the
step to be calculated, v the velocity, At
the change in time and Ahgisplacement 18
the change in water height due to inter-
action. To solve this the height and ve-
locity is stored in two buffers, one for the
current frame and one for the previous.
The two buffers alternate role so that the
first buffered is updated from the second
and in the next frame the second from
the first.

To make sure the simulation is sta-
ble At is clamped at a maximum value
Atppae. This results in slower wave speed
for large At rather than unstable simu-
lation.

5.2 Parallelism

To fully utilize the Parallelism of modern
computers and game consoles it is impor-
tant to take into account when imple-
menting high performance code. There
are several kinds of parallelism. Two im-
portant types, which we will focus on, are
vectorization and processor parallelism.
Vectorization refers to utilizing Single In-
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Figure 5.1. Vectorization.

struction Multiple Data (SIMD) capabil-
ities. Processor parallelism to the usage
of multi core architectures to run code
on several processors in parallel.

If fully utilized parallization can pro-
vide huge speed ups. A Cell processor,
which is used in PlayStation 3, has 6 in-
dependent processors that each are ca-
pable of doing 4 instructions on 32 bit
floating point number. This is makes it
possible to process 24 numbers at once.

The Frostbite engine is using a job
model to handle processor parallelism.
This means that to parallelize a task it
has to be divided into a number of inde-
pendent jobs which are then scheduled
to the many different cores. Frostbite
also has a cross platform vector library
to simplify vectorization.

5.2.1 Vectorization

To wutilize SIMD capabilities the sub
grids are stored as vectors of length four
aligned in the x-direction as shown in fig-
ure 5.1. Most parts of the simulation is
trivial to vectorize since it does not de-
pend on neighbor cells. The two parts
that are harder are up-sampling and con-
volution. Up-sampling and convolution
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in the y-direction is unchanged. In the
x-direction it can be calculated by ma-
trix multiplication. Since up-sampling
and convolution are similar we only show
how convolution is done in more de-
tail. Calculating the convolution in the
x-direction with a 9 cells wide vector
w(wo, w1, ..., ws) in an height field rep-
resented by the 4 long column vector h,
(each z represents 4 values, y represents
1 value) can be done in the following way:

Mbefore X h:c—l,y + Mmiddle X ha:,y +
Mafter X hw+1,y

Where
wy w1 w2 W3
0 wy wp ws
Mbefore = 0 0 wy w
0 0 0 w
w4 Wy W Wy
Mopiaaie = | 3 04 W5 W6
W2 W3 W4 Ws
w] W W3 W4
wg 0 0 O
Mafter = ws we 0 0
We W7 Wg 0
wWs Wg W7 WS

5.2.2 Processor parallelism

To be able to use the job model for par-
allelism the simulation has to be split
into smaller problems. The Cell pro-
cessor consists of 7 processing units. 6
of these, called Synergistic Processing
Units (SPU’s), do not have direct access
to main memory and only have 256 kB of
cache for both code and data. Because of
this jobs can only access 256 kB simul-
taneously. To meet these requirements
wave propagation is split into two part:
a simulation step and a border copy step.
All grids contain a border outside the
simulated area. This border is used to
calculate the Laplacian in the propaga-
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Frame start
Switch buffer
Update LOD

Parallelized per pyramid

| Handle Interaction | Copy data

Propagate waves |
|

Frame end

Render

Copy borders

Figure 5.3. Algorithm Overview. The
frame starts at the task “Frame start” and
progresses downwards. Tasks beside each
other are performed in parallel.

tion step. In the border copy step two
neighbors are processed simultaneously
and their border are filled with the sim-
ulated data from their neighbor.

The height-field has to be copied to the
GPU for rendering. In order to do this
in parallel with simulation the copying
is done on the data calculated in the last
frame. This results in a slight time differ-
ence between simulation and rendering.
However this has not been noticeable in
practice.

5.3 Algorithm Overview

Figure 5.3 contains an overview of the
work done during a frame.

5.4 Client and Server

The multiplayer games at EA DICE™
use a client server model. Critical sys-
tems such as player movement, vehicle
physics simulation, large scale destruc-
tion etc run on the server and are mir-
rored on the client. Effects and less im-
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portant physics objects such as smoke,
newspaper blowing in the wind, debris
from destruction etc are only simulated
on the client. We will refer to objects
only existing on the client as client side
objects and objects being simulated at
the server and mirrored at the client as
server side objects.

For performance reasons it was de-
cided that the water simulation should
only run on the client. If the simula-
tion was to be run on the server level
of detail methods could not have been
used and lots of network traffic had been
needed. Because of this a server side sim-
ulation would have had substantially re-
duced resolution.

Client side objects can interact fully
They both
generate waves and respond to them.
Server side objects do not have access to
the height field simulation and can there-
fore not be affected by waves. Instead
server side objects use the resting water
height. Since server side objects are mir-
rored onto the client they can generate
waves in same way client side objects do.
This makes it less obvious that server
objects are not affected and in practice
it is barely noticeable unless large waves
are present (comparable to the interact-
ing object in size).

with the water simulation.

5.5 Rendering

This is only a sort overview of the ren-
dering since this was not the focus of this
thesis. This is an important area of fu-
ture work.

To render the height field a vertex
buffer and a texture map is used. The
vertex buffer contains a triangle repre-
sentation of all the grids and the phe-
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Figure 5.2. Border sizes for Different Grid

Resolutions.

nomenological detail model. The texture
map the height values which are used
for normal calculation. For simplicity all
grids are represented in the whether they
are simulated or not. However, only the
grids that are currently active are ren-
dered.

The vertex buffer is generated at
a lower resolution than simulation to
increase performance of the rendering
while the texture map is generated at full
resolution. The textures for all the grid
are stored in a single texture using a tex-
ture atlas approach.

The normals are generated from the
texture map by computing the gradient.
In addition to this details are added in
the vertex buffer using the phenomeno-
logical detail simulation. The direction
is used to blend in an animated texture
moving in that direction. The energy is
used to scale the amplitude of the ani-
mated texture. The texture is animated
using the method of [V1al0].

In order to provide smooth transitions
between LOD levels the highest resolu-
tion grid in a pyramid are faded towards
any neighbors with lower resolution.
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5.6 Physics Interaction

The Frostbite engine has existing sys-
tems for handling rigid body physics and
buoyancy. Our simulation interacts with
this system in three ways.

e The bottom height is determined by
checking vertical rays for intersec-
tion with static geometry

¢ Interacting bodies are updated with
the current water height at their po-

sition to handle buoyancy

Interacting bodies are approximated
with an ellipsoid to find an intersec-
tion with the water surface to gen-
erate waves. See 4.4.



Chapter 6

Results

6.1 Octave Implementation

These are the results of the GNU Octave implementation. Wave speeds where cal-
culated by measuring zero crossings of a standing wave. The iwave implementation
uses a kernal constructed by a numerical inverse Fourier transform of eq. (4.6).

Figure 6.1. Sum of eight bandpass filtered
functions.
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Figure 6.2. Bandpass Decomposition.
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3.5 T T T T

Figure 6.3. Measured wave speed.

our algorithm iwave wave-equation

Figure 6.4. Height-field Results Compari-
son. 50% gray represents 0, lighter gray pos-
itive and darker gray negative.
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512x512 256 x 256

128 x 128 64 x 64 32x32

Figure 6.5. Grids in the Pyramid. 50%
gray represents 0, lighter gray positive and
darker gray negative.
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6.2 Frostbite Implementation

These are the results of the optimized implementation. All measurements where
made on a 8 core Intel Xeon x5550 processor running at 2.67 GHz with 12 GB of
RAM and a Nvidia GeForceGTX 470 graphics card.

’ Pyramid resolution | Time per frame (ms) ‘

128 6.5

64 2.1

32 0.9

16 0.5
Table 6.1. Time Measurements for 8

Connected Pyramids. Measurements where
made in Frostbite with 8 pyramids of dif-
ferent resolutions. The measurements show
the time spent on propagation and border

copying.

No. of pyramids with resolution Time per frame spent on
64x64 ‘ 32x32 ‘ 16x16 ‘ All Simulation (ms) ‘ Rendering (ms)

4 12 0 16 2 0.5

6 24 0 30 4 0.7

4 12 36 52 3.1 0.7

6 18 54 78 4.5 1.0

4 16 64 84 4.3 0.9

6 24 96 126 6.5 1.3

Table 6.2. Time Measurements for Vari-
ous Pyramid Configurations. Measurements
where made in Frostbite. The measurements
show the time spent on propagation and bor-
der copying and the amount of time spent on
the CPU to generate vertex buffers and tex-
tures.
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Chapter 7

Discussion

The method presented in this thesis is a
new method for simulating water surface
waves. This method is fast enough to
be usable in computer and video games
and provides an approximation of lin-
ear wave theory. In particular both wa-
ter height and wave length dependency
on wave speed is handled which creates
complex effects impossible without it.
Formal quality and performance com-
parisons are important areas which have
not been adressed in this thesis. Be-
cause of a lack of reference implemen-
taions and because of the dynamic level
of detail system performance is hard to
compare. Quality is also hard to evaluate
since the goal is not numerical accuracy.
This could be evaluated by a user study.

7.1 Design Choices

7.1.1 Linear Wave Theory

We have successfully used linear wave
theory as a basis for real time water
surface waves simulations. Linear wave
theory is also used to derive the iWave
method which makes it possible to do
a qualitative comparison based on the
common base.

7.1.2 Wave decomposition

We have presented a novel method for
approximating linear wave theory by do-
ing a wavelength based decomposition
similar to Laplacian pyramids. This al-
lows heavy approximation of L while re-
quiring 33% more memory than previ-
ous methods. Because of the multireso-
lution approach it is well suited for level
of detail methods. We believe that this
decomposition has been a success. How-
ever, our approximation of L and decom-
position algorithm leave room for further
developments.

7.1.3 Approximation of L

The Gaussian approximation of L is one
of the simplest possible. While being
fast to compute it is not an accurate
approximation. Because of the goal of
being usable in current generation video
games and consoles a more expensive ap-
proximation is impossible. In figure 6.4
our algorithm does not feature as strong
inference pattern (Kelvin wakes) as the
iWave algorithm, which correctly solves
the linear wave theory dispersion rela-
With a better approximation L
our results would have been closer to the

tion.
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iWave results. However, while being less
accurate, our method accounts for height
dependence.

7.1.4 Level of Detail

The level of detail system presented au-
tomatically adapts resolution of the sim-
ulation while keeping the performance
One big disadvantage of the
pool-based method is that the total pos-
sible area of the simulation is held con-
stant. This becomes a problem when the
observer is moved far from a large water
surface. Also as the number of pyramids
increase in the pool border copying be-
comes an larger issue. For 4x4 grids the
size of the border is 8 times larger than
the grid itself. See figure 5.2.

constant.

7.1.5 Interaction

All intersections are modeled as ellipses.
In the implementation in the Frostbite
engine this has not limited the interac-
tions. Finding accurate intersection for
use more advanced system is currently
too costly to be of practical use. The
ellipse method allows for fairly varied in-
teraction without becoming overly com-
plex.

7.1.6 Phenomenological
boundaries and details

The phenomenological boundaries and
details improves the visual quality by
adding interest and detail. Naturally
an accurate high resolution simulation
would be better but given the constraints
on performance this is not possible.
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7.2 Future Research

7.2.1 Different approximations of
L

Our approximation of L is fast to com-
pute but not accurate. For future games
and other applications a more complex
approximation may be of interest. L
could potentially be modeled as a sum
of several Gaussian functions, two keep
the separable property. Another alterna-
tive would be to generate a two dimen-
sional kernel computed directly from a
windowed frequency response of L.

7.2.2 Hybrid Methods

Hybrid methods are common in fluid
simulations. See for example [Cor08§].
Using out method in conjunction with
another model is an interesting future
area of research. One way of doing this
is to couple our linear wave theory based
method with another height field method
such as shallow water equations. Shal-
low water equations do not account for
dispersion effects but handles flow. An
interesting use would be to couple a low
resolution shallow water equations solu-
tion with a high resolution linear wave
theory solution. To do this the linear
wave theory solver would need an advec-
tion step. Another similar possibility is
to couple a static laminar flow solution
with our solution. to simulate rivers etc
which have a close to constant flow.
Coupling our simulation with a turbu-
lence model could also be interesting.

7.2.3 Level of Detail

Researching more advanced LOD meth-
ods for our multiresolution simulation
is an important area of future research.



7.2. FUTURE RESEARCH

The current system uses equal sized
pyramids of varying resolution. This lim-
its the algorithm to a maximum area:
the total area of all the pyramids. Sev-
eral other methods were considered but
not implemented due to time constraints.
A promising approach is to have a pool
of equal resolution grids. The pyra-
mid hierarchy is created globally by dy-
namically varying the scale of the grids.
This makes it possible to grid to tran-
sition from one scale to another making
the LOD algorithm independent of scene
scale. The equal size of grid also removes
the problem of border copying becoming
a larger performance hit for small grids.

7.2.4 Rendering

In order for the simulation to be per-
ceived as realistic in a computer or video
game the visualization needs to be real-
istic. This research is beyond this thesis
but is still an important field of research.

7.2.5 Interaction

We have limited ourselves to interactions
through ellipses. A more advanced ap-
proach using general intersections and
numerical bandpass filtering should be
investigated. Also a more accurate band
pass filter should investigated.

7.2.6 Boundary Conditions

The boundary conditions we have used
are phenomenological in their nature. A
more scientific approach should be con-
sidered.

7.2.7 Performance Comparisons

Comparing performance is important to
find the most efficient method. With
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level of detail methods and different ap-
proximations such a comparison is hard
to do. Nevertheless such comparisons are
important and so far have not been done
with height-field based methods. To do
such a study it is important to find a
good metric of simulation quality.

7.2.8 Other uses

The multiresolution method for solving
linear wave theory is applied to simu-
lation for computer and video games.
Combined with a better approximation
for L it could potentially be used for non-
real-time simulations. Another possibil-
ity is to use this multiresolution meth-
ods with higher order methods and other
similar computational problems.






Bibliography

[BAS3]

[BHNO7]

[BMF07]

[CL95]

[Cor07]

[Cor08]

[Day09]

[Fin04]

[FS06]

[Gre08]

P. Burt and E. Adelson. The Laplacian pyramid as a compact image
code. IEEE Transactions on communications, 31(4):532-540, 1983.

Robert Bridson, Jim Houriham, and Marcus Nordenstam. Curl-noise
for procedural fluid flow. ACM Trans. Graph., 26(3):46, 2007.

R. Bridson and M. Miller-Fischer. Fluid simulation: SIGGRAPH 2007
course notes Video files associated with this course are available from
the citation page. In ACM SIGGRAPH 2007 courses, page 81. ACM,
2007.

J.X. Chen and N.D.V. Lobo. Toward interactive-rate simulation of fluids
with moving obstacles using Navier-Stokes equations. Graphical Models
and Image Processing, 57(2):107-116, 1995.

H. Cords. Mode-splitting for highly detailed, interactive liquid simula-
tion. In GRAPHITE ’07: Proceedings of the 5th international confer-
ence on Computer graphics and interactive techniques in Australia and
Southeast Asia, pages 265-272, New York, NY, USA, 2007. ACM.

Hilko Cords. Moving with the flow: Wave particles in flowing liquids.
In Journal of WSCG (WSCG’08), 2008.

Mike Day. Insomniac’s water rendering system, 2009. retrieved from
http://www.insomniacgames.com/tech /articles /0409 /files /water.pdf.

Mark Finch. Effective water simulation from physical models. In GPU
Gems. Addison-Wesley Professional, 2004.

G. Falkovich and K.R. Sreenivasan. Lessons from hydrodynamic turbu-
lence. Physics Today, 59(4):43, 2006.

Simon  Green. Particle-based fluid simulation for games.
http://developer.nvidia.com/object /gdc-2008.html, 2008.  Retrieved
September 10th 2010.

37



[HHL* 05

[Igl04]

[JGO1]

[Kal08]

[KID10]

[KLLRO5]

[KMO90]

[KTJGOS]

[LH10]

[Lov02]

[Lov03]

[LvdP02]

[MK99]

BIBLIOGRAPHY

T.R. Hagen, J.M. Hjelmervik, K.-A. Lie, J.R. Natvig, and M. Ofstad
Henriksen. Visual simulation of shallow-water waves. Simulation Mod-
elling Practice and Theory, 13(8):716 — 726, 2005. Programmable Graph-

ics Hardware.

A TIglesias. Computer graphics for water modeling and rendering: a
survey. Future Generation Computer Systems, 2004.

Lasse Staff Jensen and Robert Golias. Deep-water animation and ren-
dering. http://www.gamasutra.com/gdce/2001 /jensen/jensen 01.html,
2001. Retrieved September 10th 2010.

Daniel Kallin. Real time large scale fluids for games. Linkdping Elec-
tronic Conference Proceedings (Proceedings of SIGRAD 2008), 2008.

Jeffrey Kiel, Kumar Iyer, and Sebastien Domine. Taking
fluid simulation out of the box: Particle effects in dark void.
http://developer.nvidia.com/object /gdc-2010.html, 2010.  Retrieved
September 10th 2010.

B.M. Kim, Y. Liu, I. Llamas, and J. Rossignac. Flowfixer: Using bfecc
for fluid simulation. In Furographics Workshop on Natural Phenomena,
volume 1. Citeseer, 2005.

Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for com-
puter graphics. In SIGGRAPH ’90: Proceedings of the 17th annual con-
ference on Computer graphics and interactive techniques, pages 49-57,
New York, NY, USA, 1990. ACM.

Theodore Kim, Nils Thiirey, Doug James, and Markus Gross. Wavelet
turbulence for fluid simulation. ACM Trans. Graph., 27(3):1-6, 2008.

Hyokwang Lee and Soonhung Han. Solving the shallow water equations
using 2d sph particles for interactive applications. The Visual Computer,
26:865-872, 2010. 10.1007/s00371-010-0439-9.

J. Loviscach. A convolution-based algorithm for animated water waves.
In Eurographics, volume 2, pages 381-389, 2002.

J. Loviscach. Complex water effects at interactive frame rates. Journal
of WSCG, 11:2003, 2003.

Anita T. Layton and Michiel van de Panne. A numerically efficient
and stable algorithm for animating water waves. The Visual Computer,
18:41-53, 2002. 10.1007/s003710100131.

A.J. Majda and P.R. Kramer. Simplified models for turbulent diffusion:
Theory, numerical modelling, and physical phenomena. Physics Reports,
314(237):574, 1999.

38



INCZ+09)

[Nie10]

[PTSG09)]

[real

[Sch07]

[Tes04a)

[Tes04b)]

[TKPROG]

[V1al0]

[YHKO7]

M.B. Nielsen, B.B. Christensen, N.B. Zafar, D. Roble, and K. Museth.
Guiding of smoke animations through variational coupling of simula-
tions at different resolutions. In Proceedings of the 2009 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, pages 217—
226. ACM, 20009.

Michael B. Nielsen. Improved variational guiding of smoke animations.
Computer Graphics Forum, 29:705-712(8), May 2010.

Tobias Pfaff, Nils Thuerey, Andrew Selle, and Markus Gross. Synthetic
turbulence using artificial boundary layers. In SIGGRAPH Asia '09:
ACM SIGGRAPH Asia 2009 papers, pages 1-10, New York, NY, USA,
2009. ACM.

Realflow. http://www.realflow.com/. Retrieved September 10th 2010.

R. Schuster. Algorithms and data structures of fluids in computer graph-
ics. Unpublished State of the Art Report, 2007.

Jerry Tessendorf. Interactive water surfaces. In Game Programming
Gems 4. Charles River Media, 2004.

Jerry Tessendorf. Simulating ocean surface. SIGGRAPH 2004 Course
Notes, 2004. retrieved from http://tessendorf.org/reports.html Septem-
ber 10th 2010.

N. Thiirey, R. Keiser, M. Pauly, and U. Riide. Detail-preserving
fluid control. In SCA ’06: Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 7-12,
Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics Association.

Alex Vlachos. Water flow in portal. Advances in Real-Time Rendering
in 3D Graphics and Games, SIGGRAPH 2010 Course Slides, 2010. re-
trieved from http://advances.realtimerendering.com/s2010/index.html
September 10th 2010.

Cem Yuksel, Donald H. House, and John Keyser. Wave particles. ACM
Transactions on Graphics (Proceedings of SIGGRAPH 2007), 26(3):99,
2007.

39



